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doi:10.3906/mat-1504-39

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Tetravalent normal edge-transitive Cayley graphs on a certain group of order 6n

Mohammad Reza DARAFSHEH∗, Maysam YAGHOOBIAN
School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran,

Tehran, Iran

Received: 14.04.2015 • Accepted/Published Online: 31.12.2016 • Final Version: 28.09.2017

Abstract: Let U6n = ⟨a, b|a2n = b3 = 1, a−1ba = b−1⟩ be a group of order 6n. In this paper tetravalent normal

edge-transitive Cayley graphs on U6n are considered. In this way several nonequivalent normal edge-transitive Cayley

graphs on U6n are obtained whose automorphism groups are given exactly.
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1. Introduction

Let Γ = (V,E) be a simple graph with vertex set V and edge set E , where no loops or multiple edges are

allowed in Γ. If u and v are two distinct vertices of Γ, then the edge joining u to v is denoted by e = {u, v} .
If σ is a permutation on V preserving edges of Γ, then σ is called an automorphism of Γ. The set of all

automorphisms of Γ forms a group under composition of mappings, which is denoted by Aut (Γ). The group of

automorphisms of Γ is denoted by A = Aut (Γ), and Γ is called vertex- or edge-transitive if A acts transitively

on the set of vertices or edges of Γ, respectively. An arc of Γ is an ordered pair (u, v) of vertices of Γ and Γ

is called arc-transitive if A acts transitively on the set of all arcs of Γ.

Let G be a finite group and S be an inverse closed subset of G , i.e. S = S−1 , such that 1 /∈ S . The

Cayley graph of G on S , denoted by Cay(G,S), is a graph with vertex set G where distinct vertices x, y ∈ G

are joined by an edge iff there is s ∈ S such that y = sx . It is easy to verify that Γ = Cay(G,S) is a regular

graph of valency |S| , and it is connected iff G is generated by S .

Let g ∈ G . We define ρg : G → G by ρg(x) = xg , x ∈ G . It can be verified that ρg is a permutation

of G that preserves edges of Γ. Therefore, ρg is an automorphism of the Cayley graph Γ. The right regular

representations of G , denoted by R(G) = {ρg|g ∈ G} , are a subgroup of Aut (Γ) isomorphic to G , which acts

regularly on the vertices of Γ, forcing Γ to be a vertex-transitive graph.

For the Cayley graph Γ = Cay(G,S) we define Aut(G,S) = {α ∈ Aut(G)|α(S) = S} , and it can be

verified that it is a subgroup of Aut(Γ), which acts on R(G) by ρσg := ρσ−1(g) , where σ ∈ Aut(G,S) and

ρg ∈ R(G). Therefore, with this action the semidirect product R(G)⋊Aut(G,S) can be constructed, which is

a subgroup of A = Aut(Γ). In [6] it was proved that NA(R(G)) = R(G)⋊Aut(G,S), where NA(R(G)) denotes

the normalizer of R(G) in A . In [12] the concept of normality of a graph was defined when R(G) is a normal

subgroup of A , and in this case we have A = R(G)⋊Aut(G,S).
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The normality of Cayley graphs has been the subject of research by various authors from different points

of view. To study the normality of Cayley graphs it suffices to consider connected normal Cayley graphs,

because in [11] all disconnected normal Cayley graphs were determined.

Another area of research is the edge-transitivity of Cayley graphs of small valency. In this respect, one

of the standard problems is to study normal edge-transitive Cayley graphs. The aim is to determine the Cayley

graphs of this type that have specified order and valency. It was suggested in [10] to study Cayley graphs

that are not normal edge-transitive or are normal edge-transitive but are not normal. In [8] the edge-transitive

tetravalent Cayley graphs on groups of square-free order were determined.

There has been much interest in studying normal edge-transitive Cayley graphs of small valencies. We

will mention a few such papers. In [5] the authors determined all nonnormal Cayley digraphs of outvalency 2 of

all nonabelian groups of order 2p2 , where p is an odd prime and consequently the normal ones can be obtained.

Normal edge-transitive Cayley graphs are a rather special case of edge-transitive ones in which the full

automorphism group is known. In fact, in the general case of determining vertex-transitive Cayley graphs, the

special case reduces to the determination of the normal edge-transitive Cayley graphs, in which case the full

automorphism group of this graph is completely known. In [1] the author found normal edge-transitive Cayley

graphs of abelian groups and in [2] the same group G of order 6n was considered and it was shown that in

general if S is a subset of G with 1 /∈ S , S = S−1 and if Cay(G,S) is normal edge-transitive, then |S| is even.
In [9] the author obtained interesting results concerning 2-arc transitive Cayley graphs. In [7] all the tetravalent

edge-transitive Cayley graphs on the group PSL2(p) and in [3] the normal edge-transitive Cayley graphs of

Frobenius group of order pq where p and q are different prime numbers were determined. In [13] tetravalent

nonnormal Cayley graphs of order 4p , p a prime number, were determined. In [4] the authors studied normal

edge-transitive Cayley graphs of order 4p where p is an odd prime. To obtain a broader picture of normal

edge-transitive graphs we initiated [4] and obtained normal edge-transitive graphs on different subsets. We

were motivated by [4] to investigate normal edge-transitive Cayley graphs on a certain group of order 6n . This

family of groups of order 6n was chosen arbitrarily, as it presents a minor but interesting advance in the state

of our understanding. For feasibility, we chose to restrict our attention to tetravalent graphs. In particular we

prove the following:

Main result. Let U6n = ⟨a, b|a2n = b3 = 1, a−1ba = b−1⟩ . Then, up to isomorphism, the con-

nected tetravalent normal edge-transitive Cayley graphs on U6n are precisely those Cay(U6n, Sj) with Sj =

{a, a−1, ajb, a−jb} , where j2
2n≡ ±1.

2. Preliminary results

Let G be a group and S be a subset of G such that 1 /∈ S . The Cayley digraph Cay(G,S) of G relative to

S is a directed graph having G as the set of its vertices and (x, sx) as its edges, where x ∈ G and s ∈ S . If

S = S−1 , then (x, sx) is an edge if and only if (sx, x) is an edge; therefore, the edge (x, sx) is denoted by

{x, sx} and Cay(G,S) is an undirected graph that is simply called a Cayley graph. In [10], the following result

was proved, which gives a criterion for the normality of a Cayley graph.

Lemma 2.1 Let Γ = Cay(G,S) be the Cayley graph of G with respect to S and let A = Aut (Γ) . Then the

following hold:

(i) NA(R(G)) = R(G)⋊Aut(G,S) .

1355



DARAFSHEH and YAGHOOBIAN/Turk J Math

(ii) R(G) ⊴ A if and only if A = R(G)⋊Aut(G,S) .

(iii) Γ is normal if and only if A1 = Aut(G,S) , where A1 denotes the stabilizer of the vertex 1 under A .

Next we set N = NA(R(G)) = R(G) ⋊ Aut(G,S) and remark that for normal edge-transitivity of

Cay(G,S) the group N need only be transitive on undirected edges, and may or may not be transitive on

ordered pairs of adjacent vertices. From [10] we have the following result, which is useful in our further

investigation.

Lemma 2.2 Let Γ = Cay(G,S) be an undirected Cayley graph of the group G on S and let N = NA(R(G)) =

R(G)⋊Aut(G,S) . Then the following are equivalent:

(i) Γ is normal edge-transitive.

(ii) S = T ∪ T−1 where T is an orbit of Aut(G,S) on S .

(iii) There exist a subgroup H of Aut(G) and g ∈ G such that S = gH ∪ (g−1)H , where gH = {gh|h ∈
H} .

3. Main result

We are going to study the Cayley graphs, and in particular tetravalent normal edge-transitive Cayley graphs,

of a certain group of order 6n whose presentation is given as follows:

U6n = ⟨a, b|a2n = b3 = 1, a−1ba = b−1⟩.

The elements of U6n can be written uniquely in the form aibj , where 0 ≤ i < 2n , j = 0, 1,−1. Using

the defining relations of U6n it can be proved that:

bai =

{
aib if i is even

aib−1 if i is odd,

and hence Z(U6n) = ⟨a2⟩ . For the inverse of aibj we have:

(
aibj

)−1
=

{
a−ib−j if i is even
a−ibj if i is odd.

In the Table below we give the orders of elements of U6n .

Table. Order of elements in the group U6n .

Type Element Order
I ai, 1 ≤ i ≤ 2n 2n

(i,2n)

II aib±1, 1 ≤ i ≤ 2n, i odd 2 n
(i,n)

III aib±1, 1 ≤ i ≤ 2n, i even 3 2n
(3i,2n)

Lemma 3.1 Aut(U6n) is a group of order 6φ(n) , where φ denotes the Euler totient function.

Proof Any automorphism f of U6n is completely determined by its effect on a and b . Since O(a) = 2n and

O(b) = 3, the order of f(a) and f(b) must be 2n and 3, respectively.

However, using the Table, we see that elements of order 2n in U6n are either ai , (i, 2n) = 1, or aib±1 ,

(i, n) = 1, i odd, 1 ≤ i ≤ 2n , and the elements of order 3 in U6n are b±1 or a±
2n
3 if n is a multiple of 3.
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Since a±
2n
3 ∈ Z (U6n) and b /∈ Z (U6n), we have f(b) ̸= a±

2n
3 . Therefore, all automorphisms of U6n have the

following definition: {
f(a) = ak

f(b) = b±1
or

{
f(a) = akb±1

f(b) = b±1

where (k, 2n) = 1. Hence, all together we have 6φ(2n) choices for automorphisms of U6n , i.e. |Aut(U6n)| =
6φ(2n). 2

From Lemma 3.1 we observe that the general form of an automorphism of U6n , which is defined on the

generators a and b, should be as follows: {
fk,l,r(a) = akbl

fk,l,r(b) = br

where (k, 2n) = 1, l = 0,±1, and r = ±1.

It can be verified that H = {fk,0,1|(k, 2n) = 1, 1 ≤ k < 2n} and K = {f1,l,r|l = 0,±1, r = ±1} are

normal subgroups of Aut(U6n) of order φ(2n) and 6 respectively and H ∩K = 1. We have H ∼= Φ2n as the

group of units of the ring Z2n , and K ∼= S3 . Therefore, Aut(U6n) ∼= Φ2n × S3 .

By Lemma 2.2, if Cay(G,S) is a connected normal edge-transitive graph, then S = T ∪ T−1 where T

is an orbit of Aut(G,S) on S . Therefore, all elements of S have the same order. From the Table it is easy to

see that the only elements of order 2 in U6n are an , anb , and anb−1 when n is odd, and if n is even then

U6n has a unique element of order 2, namely an . Therefore, if ⟨S⟩ = U6n and all elements of S have the same

order, then S does not contain elements of order 2 and |S| ≥ 4 is an even number.

Let us assume that |S| = 4 and each element of S has the same order. We may assume S =

{x, y, x−1, y−1} . Obviously elements of type I can not generate U6n . Suppose we have two elements of type II:

aib±1 and ajb±1 . By the defining relations for U6n , we have:

aibajb = ai+j ,

aibajb−1 = ai+jb,

aib−1ajb−1 = ai+j ,

and since i + j is even and S = S−1 , two elements of type II can not generate U6n . Similarly, two

elements of type III can not generate U6n , so elements must be of two distinct types. It can proved that

there are no elements of types III and II with the same order. If they come from types III and I, then it

can proved that ⟨S⟩ = ⟨x, y⟩ ⩽ ⟨a2, b⟩ < U6n . If x and y come from I and II with order k < 2n , then

⟨S⟩ = ⟨x, y⟩ ⩽ ⟨a 2n
k , b⟩ < U6n . Hence, elements of S are of types I and II with order 2n . Therefore, we assume

that S contains ai and ajb (or ajb−1 ) and their inverses, where we have (i, 2n) = (j, 2n) = 1, 1 ≤ i, j ≤ 2n ,

and S = {ai, a−i, ajb, a−jb} or S = {ai, a−i, ajb−1, a−jb−1} . It is clear that in these cases ⟨S⟩ = U6n .

Next we define a concept that is useful in our further investigation. If S and S′ are two inverse closed

subsets of a group G such that 1 /∈ S ∪ S′ , and if there is an automorphism f of G such that f(S) = S′ , then

Cay(G,S) and Cay(G,S′) are isomorphic graphs. In this case we call S and S′ equivalent.

Proposition 3.2 If ⟨S⟩ = U6n , |S| = 4 , S = S−1 , and each element of S has order 2n , then S is equivalent

to {a, a−1, ajb, a−jb} where 1 ≤ j ≤ 2n , (j, 2n) = 1 .
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Proof By what we proved above S has one of the following shapes: S1 = {ai, a−i, ajb, a−jb} or S2 =

{ai, a−i, ajb−1, a−jb−1} . Now if we take f ∈ Aut(U6n) with the definition f(a) = a−1 , f(b) = b−1 , then

f(S1) = S2 , showing that S1 is equivalent to S2 . Next let S = {ai, a−i, ajb, a−jb} . Since (i, 2n) = 1, i has a

multiplicative inverse k in Z2n , and hence if k is its inverse, then we define φ by φ(a) = ak , φ(b) = b , and

then φ(S) = {aik, a−ik, ajkb, a−jkb} = {a, a−1, ajkb, a−jkb} . Since jk runs through invertible elements of Z2n

as j varies we have S equivalent to {a, a−1, ajb, a−jb} where 1 ≤ j ≤ 2n , (j, 2n) = 1. 2

Lemma 3.3 Let S = {a, a−1, ajb, a−jb} and T = {a, a−1, akb, a−kb} be two distinct subsets of U6n consisting

of elements of order 2n . If S and T are equivalent, then jk
2n≡ ±1 .

Proof Suppose that there is an f ∈ Aut(U6n) such that f(S) = T . We consider two cases:

Case (i): f(a) = a±1 . In this case f(ajb) = a±jf(b) and by Lemma 3.1, f(b) = b±1 ; hence,

f(ajb) = a±jb±1 . This implies that f(S) ̸= T , which is not the case.

Case (ii): f(a) = a±kb . In this case f(ajb) = (a±kb)jf(b). Since j is odd we have (a±kb)j = a±kjb ;

hence, f(ajb) = a±kjbf(b). Therefore, f(b) = b−1 and ±jk
2n≡ 1 and the lemma is proved. 2

Proposition 3.4 Let S = {a, a−1, ajb, a−jb} , 1 ≤ j ≤ 2n , (j, 2n) = 1 . If j2
2n≡ ±1 then Aut(U6n, S) acts

transitively on S ; otherwise, Aut(U6n, S) has two orbits on S .

Proof Note that f2n−1,0,1 takes each element of S to its inverse, so there are at most 2 orbits on S . By

the same proof as in Lemma 3.3, if there is a single orbit on S , then j2
2n≡ ±1. Conversely, if j2

2n≡ ±1, then

f defined by f(a) = ajb , f(b) = b−1 will be an element of Aut(U6n, S) mapping a to ajb , so the action is

transitive. 2

By Lemma 2.2 if Cay(U6n, S) is normal edge-transitive, then S = T ∪ T−1 where T is an orbit of

Aut(U6n, S). If j2
2n

̸≡ ±1, then by Proposition 3.4 there is no f ∈ Aut(U6n, S) taking a to ajb ; therefore,

there is no T orbit of Aut(U6n, S) such that S = T ∪ T−1 . Therefore, in this case, Cay(U6n, S) is not normal

edge-transitive. The above proof shows that the action of f2n−1,0,1 implies that the edge-transitive action is in

fact always arc-transitive on these graphs.

Theorem 3.5 Let S = {a, a−1, ajb, a−jb} , 1 ≤ j ≤ 2n , (j, 2n) = 1 .

(a) If j2
2n

̸≡ ±1 , then Cay(U6n, S) is not normal edge-transitive.

(b)If j
2n≡ ±1 , then Cay(U6n, S) is normal edge-transitive with automorphism group isomorphic to

U6n ⋊ (Z2 × Z2) .

(c) If the multiplicative order of j in Z2 is 4 , i.e. j2
2n≡ −1 , then Cay(U6n, S) is normal edge-transitive

with automorphism group isomorphic to U6n ⋊D8 .

Proof Since S generates U6n , the group Aut(U6n, S) acts faithfully on S and hence Aut(U6n, S) is isomorphic

to a subgroup of S4 . If Aut(U6n, S) contains a permutation σ of order 3, then σ would fix an element, say α ,

in S , but in this case σ(α−1) = α−1 and σ cannot be a 3-cycle. Therefore, |Aut(U6n, S)|
∣∣8.
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By Proposition 3.4 and Lemma 2.2, case (a) is clear.

Examine the action of Aut(U6n, S) on S . It contains f2n−1,0,1 , which exchanges the first two elements

and the last two elements of S . We have in fact seen that it is generated by this, together with f , where

f(a) = ajb and f(b) = b−1 . We see that f2(a) = f(ajb) = aj
2

, which is a if j
2n≡ ±1 and a−1 if j2

2n≡ −1.

Accordingly, if j
2n≡ ±1 then f has order 2 and commutes with f2n−1,0,1 , so by examining the action on S it

is easy to see that Aut(U6n, S) ∼= Z2 × Z2 . On the other hand, if j
2n≡ −1, then f has order 4 and does not

commute with f2n−1,0,1 , and by examining the action on S we see that Aut(U6n, S) ∼= D8 .

In the case that Cay(U6n, S) is normal its automorphism group is isomorphic to U6n⋊Aut(U6n, S), from

which statements (b) and (c) follow, and the theorem is proved. 2
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