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Abstract: In this paper we find a generalization of the snake lemma and Schanuel’s lemma in Hv -modules. We define

the isomorph sequences and determine the conditions to split the exact sequences in Hv -modules. Some interesting

results on these concepts are given.
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1. Introduction

A couple (H, ∗) of a nonempty set H and a mapping on H × H into the family of nonempty subsets of H

is called a hyperstructure (or hypergroupoid). A hypergroup is a hyperstructure (H, ∗) with associative law

(x ∗ y) ∗ z = x ∗ (y ∗ z) for every x, y, z ∈ H and the reproduction axiom is valid: x ∗ H = H ∗ x = H

for every x ∈ H ; i.e. for every x, y ∈ H there exist u, v ∈ H such that y ∈ x ∗ u and y ∈ v ∗ x . This

concept was introduced by Marty in 1934 [11]. If A and B are nonempty subsets of H then A ∗B is given by

A ∗ B =
∪
a∈A,b∈B a ∗ b . Also, x ∗ A is used for {x} ∗ A and A ∗ x for A ∗ {x} . Hyperrings, hypermodules,

and other hyperstructures are defined and several books have been written to date [1, 2, 8, 16]. The concept

of Hv -structures as a larger class than the well-known hyperstructures was introduced by Vougiouklis at the

Fourth Congress on Algebraic Hyperstructures and Applications [14] where the axioms are replaced by the weak

ones; that is, instead of the equality on sets, one has nonempty intersections. The basic definitions and results

of Hv -structures can be found in [3–6, 9, 10, 12, 15, 16].

The weak-equality and exact sequences in Hv -modules are defined and some results in this respect have

been proved [7]. Accordingly, the present authors in [13] proved the five short lemma in Hv -modules. They

also introduced M [−] and −[M ] functors and then investigated the exactness of them and other problems.

The notion of exact sequences is a fundamental concept and it has been widely used in many areas such as

ring and module theory. Our aim in this paper is to introduce a generalization of some notions in homological

algebra to prove the snake lemma (in Hv -modules) and Schanuel’s lemma (in Hv -modules) and also determine

the conditions to split a sequence (in Hv -modules); finally, some interesting results are given. We define the

concepts of star homomorphism, product and direct sum, isomorph sequences, split sequence, and projective

Hv -modules.
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2. Basic concepts and snake lemma

The hyperstructure (H, ∗) is called an Hv -group if “ ∗ ” is weak associative: x ∗ (y ∗ z) ∩ (x ∗ y) ∗ z ̸= ∅ and

the reproduction axiom holds: x ∗H = H ∗ x = H for every x ∈ H . The Hv -group H is weak commutative if

for every x, y ∈ H , x ∗ y ∩ y ∗ x ̸= ∅.
A multivalued system (R,+, ·) is an Hv -ring if (R,+) is a weak commutative Hv -group, (R, ·) is a weak

associative hyperstructure where the “ · ” hyperoperation is weak distributive with respect to “ + ”; i.e. for

every x, y, z ∈ R we have x · (y + z) ∩ (x · y + x · z) ̸= ∅ and (x+ y) · z ∩ (x · z + y · z) ̸= ∅ .
A nonempty set M is a (left) Hv -module over an Hv -ring R if (M,+) is a weak commutative Hv -

group and there exists a map · : R ×M → P∗(M) denoted by (r,m) 7→ rm such that for every r1, r2 ∈ R

and every m1,m2 ∈ M we have r1(m1 + m2) ∩ (r1m1 + r1m2) ̸= ∅ , (r1 + r2)m1 ∩ (r1m1 + r2m1) ̸= ∅ and

(r1r2)m1∩r1(r2m1) ̸= ∅ . A mapping f :M1 −→M2 of Hv -modules M1 and M2 over an Hv -ring R is a strong

homomorphism if for every x, y ∈M1 and every r ∈ R we have f(x+ y) = f(x) + f(y) and f(rx) = rf(x).

By using a certain type of equivalence relations we can connect hyperstructures to ordinary structures.

The smallest of these relations are called fundamental relations and denoted by β∗, γ∗, ε∗ . If H is an Hv -group

(Hv -ring, Hv -module over an Hv -ring R) then H/β∗ is a group (H/γ∗ is a ring, H/ε∗ is a R/γ∗ -module,

respectively). According to [16] the fundamental relation ε∗ on an Hv -module can be defined as follows:

Consider the left Hv -module M over an Hv -ring R . If ϑ denotes the set of all expressions consisting

of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of

elements of R and M , a relation ε can be defined on M whose transitive closure is the fundamental relation

ε∗ so that for every x, y ∈M ; x ε y if and only if {x, y} ⊆ u for some u ∈ ϑ ; i.e.:

xεy ⇔ x, y ∈
n∑
i=1

m
′

i, m
′

i = mi or m
′

i =
ni∑
j=1

(
kij∏
k=1

rijk)mi,

where mi ∈M, rijk ∈ R.

Suppose that γ∗(r) is the equivalence class containing r ∈ R and ε∗(x) is the equivalence class containing

x ∈M . On M/ε∗ the ⊕ and the external product ⊙ using the γ∗ classes in R are defined as follows:

For every x, y ∈M and for every r ∈ R ,

ε∗(x)⊕ ε∗(y) = ε∗(c), for every c ∈ ε∗(x) + ε∗(y),

γ∗(r)⊙ ε∗(x) = ε∗(d), for every d ∈ γ∗(r) · ε∗(x).

The heart of an Hv -module M over an Hv -ring R is denoted by ωM and defined by ωM = {x ∈
M | ε∗M (x) = 0} where 0 is the unit element of the group (M/ε∗,⊕). One can prove that the unit element of

the group (M/ε∗,⊕) is equal to ωM . By the definition of ωM we have

ωωM
= Ker(ϕ : ωM −→ ωM/ε

∗
ωM

= 0) = ωM .

Let M1 and M2 be two Hv -modules over an Hv -ring R and let ε∗1 , ε
∗
2 , and ε∗ be the fundamental

relations on M1 , M2 , and M1 ×M2 , respectively; then (x1, x2)ε
∗(y1, y2) if and only if x1ε

∗
1y1 and x2ε

∗
2y2 for

all (x1, x2), (y1, y2) ∈M1 ×M2 [15, 16].

Weak equality (monic, epic), exact sequences, and relative results in Hv -modules are defined as follows

[7]: let M be an Hv -module. The nonempty subsets X and Y of M are weakly equal if for every x ∈ X there
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exists y ∈ Y such that ε∗M (x) = ε∗M (y) and for every y ∈ Y there exists x ∈ X such that ε∗M (x) = ε∗M (y) and it

is denoted by X
w
= Y . The sequence M0

f1−→M1
f2−→M2 −→ · · · −→Mn−1

fn−→Mn of Hv -modules and strong

homomorphisms is exact if, for every 2 ≤ i ≤ n, Im(fi−1)
w
= Ker(fi) where Ker(fi) = {a ∈ Mi−1 | fi(a) ∈

ωMi
} (that is, an Hv -submodule of Mi−1 ).

The strong homomorphism f :M1 −→M2 is called weak-monic if for every m1,m
′

1 ∈ M1 the equality

f(m1) = f(m
′

1) implies ε∗M1
(m1) = ε∗M1

(m
′

1) and f is called weak-epic if for every m2 ∈ M2 there exists

m1 ∈ M1 such that ε∗M2
(m2) = ε∗M2

(f(m1)). Finally, f is called a weak-isomorphism if f is weak-monic and

weak-epic.

It is easy to see that every one to one (onto) strong homomorphism is weak-monic (weak-epic), but the

converse is not necessarily true. In fact, the concept of weak-monic (weak-epic) is a generalization of the concept

of one to one (onto) [see the mapping f in Example 1].

Let f : A −→ B be a strong homomorphism of Hv -modules over an Hv -ring R . Then we have f(ωA) ⊆
ωB and so ωA ⊆ Ker(f). Moreover, Ker(f) = ωA if and only if f is weak-monic.

Lemma 2.1 [13] Let A and B be Hv -modules. If ωA
i−→ A

f−→ B is exact, then f is weak-monic.

Proof It is enough to show that Ker(f) = ωA . We always have ωA ⊆ Ker(f). On the other hand, if

a ∈ Ker(f) then there exists a1 ∈ Im(i) = ωA such that ε∗A(a) = ε∗A(a1) = ωA and so a ∈ ωA . Therefore,

Ker(f) = ωA and f is weak-monic. 2

Now we prove the snake lemma and close this section.

Theorem 2.2 (Snake lemma in Hv -modules) Let

A
f //

h

��

B
g //

k

��

C //

l

��

ωC

ωA1
// A1

f1

// B1 g1
// C1

be a commutative diagram of Hv -modules and strong homomorphisms over an Hv -ring R with both exact rows.

If l is weak-monic, then there exists an exact sequence as follows:

Ker(h)
α−→ Ker(k)

β−→ Ker(l).

Proof First we want to define α and β . We have

Ker(h) = {a ∈ A | h(a) ∈ ωA1},
Ker(k) = {b ∈ B | k(b) ∈ ωB1},
Ker(l) = {c ∈ C | l(c) ∈ ωC1}.

Now, for a ∈ Ker(h), f1 ◦ h(a) ∈ f1(ωA1
) ⊆ ωB1

. Since f1 ◦ h(a) = k ◦ f(a), we obtain f(a) ∈ Ker(k). Also,

for b ∈ Ker(k), g1 ◦ k(b) ∈ g1(ωB1) ⊆ ωC1 . Since g1 ◦ k(b) = l ◦ g(b), we obtain g(b) ∈ Ker(l).

We define α by α(a) = f(a) for every a ∈ Ker(h) and β by β(b) = g(b) for every b ∈ Ker(k).

Since Ker(h), Ker(k), and Ker(l) are Hv -submodules of A , B , and C , respectively, and f , g are strong

homomorphisms, it follows that α and β are strong homomorphisms.
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We show that Im(α)
w
= Ker(β). Letting x ∈ Im(α), then x = f(a) for some a ∈ Ker(h)(⊆ A).

The first row is exact, so there exists b ∈ Ker(g) such that ε∗B(f(a)) = ε∗B(b), where g(b) ∈ ωC . Since l is

weak-monic we have ker(l) = ωC , but ωker(l) = ωωC
= ωC and so β(b) = g(b) ∈ ωKer(l) . It is enough to show

b ∈ Ker(k). Since ε∗B(f(a)) = ε∗B(b) and f(a) ∈ Im(α)(⊆ Ker(k)), we obtain b ∈ Ker(k).

Conversely, let b ∈ Ker(β), and then β(b) = g(b) ∈ ωKer(l) = ωC and b ∈ Ker(g). Since the first row is

exact, there exists f(a) ∈ Im(f) for some a ∈ A such that ε∗B(b) = ε∗B(f(a)). It is enough to show a ∈ Ker(h).

Since k is strong and the diagram is commutative, we obtain ε∗B1
(k(b)) = ε∗B1

(k(f(a))) = ε∗B1
(f1(h(a))). Since

b ∈ Ker(β)(⊆ Ker(k)), it follows that f1(h(a)) ∈ ωB1 and h(a) ∈ Ker(f1). Since f1 is weak-monic (by

exactness and Lemma 2.1), we have Ker(f1) = ωA1 . Therefore, a ∈ Ker(h). 2

3. Schanuel’s lemma in Hv -modules

In this section we define the concepts of star homomorphism, (star) isomorph sequences, and star projective

Hv -modules (we also build and present some examples for these concepts) in order to find a generalization of

Schanuel’s lemma. We also prove a problem on commutative diagrams.

Definition 3.1 A mapping f :M1 −→M2 of Hv -modules M1 and M2 over an Hv -ring R is called a star

homomorphism if for every x, y ∈M1 and every r ∈ R : ε∗M2
(f(x+ y)) = ε∗M2

(f(x) + f(y)) and ε∗M2
(f(rx)) =

ε∗M2
(rf(x)) ; i.e. f(x+ y)

w
= f(x) + f(y) and f(rx)

w
= rf(x).

Every strong homomorphism is a star homomorphism but the converse is not true necessarily by the following

example.

Example 1 Let R be an Hv -ring. Consider the following Hv -modules on R :

(1) M1 = {a, b} together with the following hyperoperations:

∗M1 a b
a a b
b b a

and ·M1 : R×M1 → P∗(M1)
(r,m1)7→{a}

,

(2) M2 = {0, 1, 2} together with the following hyperoperations:

∗M2 0 1 2
0 0 1 2
1 1 0,2 1
2 2 1 0

and ·M2 : R×M2 → P∗(M2)
(r,m2) 7→{0}

.

We obtain M2/ε
∗
M2

= {ε∗M2
(0) = {0, 2}, ε∗M2

(1) = {1}} . If f :M1 −→M2 defined by f(a) = 0 and f(b) = 1

then f is a star homomorphism but not a strong homomorphism because f(b ∗M1 b) ̸= f(b) ∗M2 f(b) .

Definition 3.2 Two mappings f, g :M −→ N on Hv -modules are called weak equal if for every m ∈ M ;

ε∗N (f(m)) = ε∗N (g(m)) and denoted by f
w
= g . The following diagram of Hv -modules and strong homomorphisms
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is called star commutative if g ◦ f w
= h .

A

h
��

f

��~~
~~
~~
~~

B
g

// C

Also, it is said to be commutative if for every a ∈ A , g ◦ f(a) = h(a) .

Definition 3.3 The sequences

ωA −→ A
f−→ B

g−→ C −→ ωC

and

ωA′ −→ A
′ f

′

−→ B
′ g

′

−→ C
′
−→ ωC′

are called isomorph (star isomorph) if there exist weak-isomorphisms (star homomorphisms) α : A −→ A
′
,

β : B −→ B
′
, and γ : C −→ C

′
such that the following diagram is commutative (star commutative):

ωA // A
f //

α
��

B
g //

β
��

C //

γ

��

ωC

ωA′ // A
′

f
′

// B
′

g
′

// C
′ // ωC′ .

Definition 3.4 An Hv -module P is called star projective if for every diagram of strong homomorphisms and

Hv -modules as follows

P

f

��
M

g // N // ωN

,

such that its row is exact, there exists a strong homomorphism ϕ : P −→M such that g ◦ ϕ w
= f .

According to [7], for every strong homomorphism f :M −→ N there is the R/γ∗ -homomorphism F :M/ε∗M −→ N/ε∗N

of R/γ∗ -modules defined by F (ε∗M (m)) = ε∗N (f(m)).

Lemma 3.5 [13] Let f : A −→ B be a strong homomorphism of Hv -modules. Then f is weak-epic (weak-

monic) if and only if F is onto (one to one). Thus, f is a weak-isomorphism if and only if F is an isomorphism.

Proof Suppose that f is weak-epic and ε∗B(b) ∈ B/ε∗B . Since f is weak-epic, there exists a ∈ A such that

ε∗B(f(a)) = ε∗B(b), but ε
∗
B(f(a)) = F (ε∗A(a)). Thus, F (ε

∗
A(a)) = ε∗B(b) and consequently F is onto.

Conversely, let F be onto. Then, for every b ∈ B , there exists ε∗A(a) ∈ A/ε∗A such that F (ε∗A(a)) = ε∗B(b),

but F (ε∗A(a)) = ε∗B(f(a)). Thus, there exists a ∈ A such that ε∗B(f(a)) = ε∗B(b) and consequently f is weak-

epic. The second part is proved in [7]. The third part is an obvious result. 2
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Theorem 3.6 (Schanuel’s lemma in Hv -modules) Let P1 and P2 be two star projective Hv -modules.

Then the following exact sequences are star isomorph:

ωK // K
f // P1

g // M // ωM , (1)

ωL // L
f1

// P2 g1
// M // ωM . (2)

Proof Let γ :M −→M be identity on M . Since P1 is a star projective Hv -module, there exists a strong

homomorphism β : P1 −→ P2 such that for every p ∈ P1 ; ε
∗
M (g1 ◦ β(p)) = ε∗M (g(p)). Now, for every k ∈ K ;

f(k) ∈ P1 and then by exactness of sequence (1) we have β ◦ f(k) ∈ Ker(g1) and so by exactness of sequence

(2) there exists lk ∈ L such that ε∗P2
(β(f(k))) = ε∗P2

(f1(lk)). We define α : K −→ L by α(k) = lk . Supposing

k1, k2 ∈ K and r ∈ R , we have:

ε∗P2
(β ◦ f(k1 + k2)) = ε∗P2

(β(f(k1)) + β(f(k2)))

= ε∗P2
(βf(k1))⊕ ε∗P2

(β(f(k2)))

= ε∗P2
(f1(lk1))⊕ ε∗P2

(f1(lk2))

= ε∗P2
(f1(lk1) + f1(lk2))

= ε∗P2
(f1(lk1 + lk2))

= ε∗P2
(f1(α(k1) + α(k2))

= F1(ε
∗
L(α(k1) + α(k2))),

while on the other hand

ε∗P2
(β ◦ f(k1 + k2)) = {ε∗P2

(β(f(t)))| t ∈ k1 + k2}
= {ε∗P2

(f1(lt))| t ∈ k1 + k2; ε
∗
P2
(β(f(t))) = ε∗P2

(f1(lt))}
= {ε∗P2

(f1(α(t)))| t ∈ k1 + k2}
= ε∗P2

(f1(α(k1 + k2)))

= F1(ε
∗
L(α(k1 + k2))).

Thus, F1(ε
∗
L(α(k1 + k2))) = F1(ε

∗
L(α(k1) + α(k2))). Now by Lemma 2.1 and Lemma 3.5, F1 is one to one and

ε∗L(α(k1 + k2)) = ε∗L(α(k1) + α(k2)).

Also,

ε∗P2
(β ◦ f(rk1)) = ε∗P2

(rβ(f(k1))

= γ∗(r)⊙ ε∗P2
(β(f(k1))

= γ∗(r)⊙ ε∗P2
(f1(lk1))

= ε∗P2
(rf1(lk1))

= ε∗P2
(rf1(α(k1)))

= ε∗P2
(f1(rα(k1)))

= F1(ε
∗
L(rα(k1)),
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while on the other hand

ε∗P2
(β(f(rk1))) = {ε∗P2

(β(f(t)))| t ∈ rk1}
= {ε∗P2

(f1(lt))| t ∈ rk1; ε
∗
P2
(β(f(t))) = ε∗P2

(f1(lt))}
= {ε∗P2

(f1(α(t)))| t ∈ rk1}
= ε∗P2

(f1(α(rk1)))

= F1(ε
∗
L(α(rk1))).

Thus, F1(ε
∗
L(α(rk1))) = F1(ε

∗
L(rα(k1)). Now by Lemma 2.1 and Lemma 3.5, F1 is one to one and ε∗L(α(rk1)) =

ε∗L(rα(k1), and α is a star homomorphism.

One can check the star commutativity on these star homomorphisms. 2

Theorem 3.7 (i) Let

ωA // A
f // B

g //

β

��

C

γ

��
[1ex]ωA1

// A1
f1

// B1 g1
// C1

be a star commutative diagram of Hv -modules and strong Hv -homomorphisms with both exact rows. Then there

exists a star homomorphism α : A −→ A1 such that it star-commutes the diagram.

(ii) Let

A
f //

α

��

B
g //

β

��

C // ωC

A1
f1

// B1 g1
// C1

// ωC1

be a star commutative diagram of Hv -modules and strong homomorphisms with both exact rows. Then there

exists a star homomorphism γ : C −→ C1 such that it star-commutes the diagram.

Proof (i) For every a ∈ A we have ε∗C1
(g1 ◦ β ◦ f(a)) = ε∗C1

(γ ◦ g ◦ f(a)). The first row is exact and γ is

strong homomorphism. Then g ◦ f(a) ∈ ωC and γ ◦ g ◦ f(a) ∈ ωC1 . Thus, β ◦ f(a) ∈ Ker(g1) and there exists

a1 ∈ A1 such that ε∗B1
(β ◦ f(a)) = ε∗B1

(f1(a1)). Now we define α : A −→ A1 by α(a) = a1 .

Similar to the proof of Theorem 3.6 one can show that α is a star homomorphism. Also, for every a ∈ A ,

we have
ε∗B1

(f1 ◦ α(a)) = ε∗B1
(f1(a1)) = ε∗B1

(β ◦ f(a)).

(ii) Since g is weak-epic for every c ∈ C there exists bc ∈ B such that ε∗C(c) = ε∗C(g(bc)). We define

γ : C −→ C1 by γ(c) = g1◦β(bc). The remainder of the proof is straightforward and similar to the proof of (i). 2

4. Product and direct sum in Hv -modules

In this section we define the concepts of the product and direct sum of Hv -modules (we also build and present

some examples for these concepts), and we determine the conditions to split an exact sequence.
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Definition 4.1 Let M be an Hv -module; H and K are Hv -submodules of M . M is said to be the direct

sum of H and K if H ∩K ⊆ ωM and ε∗(H +K) = ε∗(M) . We denote it by H ⊕K =M .

Example 2 For every Hv -module M we have M = ωM ⊕M .

Example 3 Consider the following weak commutative Hv -group:

∗M 0 1 2 3 4 5 6
0 0,1 0,1 2 3 4 5 6
1 0,1 0,1 2 3 4 5 6
2 2 2 0,1 5,6 5,6 2,3,4 2,3,4
3 3 3 5,6 0,1 5,6 2,3,4 2,3,4
4 4 4 5,6 5,6 0,1 2,3,4 2,3,4
5 5 5 2,3,4 2,3,4 2,3,4 6 0,1
6 6 6 2,3,4 2,3,4 2,3,4 0,1 5

One can check that R = (M, ∗M , .) is an Hv -ring where r1.r2 = {0, 1} for every r1, r2 ∈ R and M is an

Hv -module over the Hv -ring R . Also,

M/ε∗M = {ε∗M (0), ε∗M (2)},

where
ε∗M (0) = ωM = {0, 1, 5, 6}, ε∗M (2) = {2, 3, 4}.

Now H = {0, 1, 2} and K = {0, 1, 5, 6} are Hv -submodules of M and H ⊕K =M .

Proposition 4.2 Let f :M −→M be a strong homomorphism of Hv -modules such that f2 = f . Then M is

the direct sum of Im(f) and Ker(f) . Moreover, f is identity on Im(f) ∩Ker(f) .

Proof Let m ∈ Im(f) ∩Ker(f), and then

m = f(m1) for some m1 in M (3)

and
f(m) ∈ ωM . (4)

By applying f on Eq. (3) we obtain f(m) = f2(m1) = f(m1) = m as a member of ωM by Eq. (4), so

Im(f) ∩Ker(f) ⊆ ωM and f is identity on Im(f) ∩Ker(f). Now, for every m ∈M , we have:

F (F (ε∗(m))) = F (ε∗(f(m))) = ε∗(f2(m)) = ε∗(f(m)) = F (ε∗(m)).

Thus, Im(F ) + Ker(F ) = M/ε∗M , since F is a R/γ∗ -module such that F 2 = F . Therefore, ε∗(Im(f) +

Ker(f)) = ε∗(M). 2

Let {Mi}i∈I be a nonempty collection of Hv -modules. The product of this collection,

⊓i∈I{Mi} = {(xi)| xi ∈M ; ∀ i ∈ I},

with the following hyperoperations is an Hv -module:

(xi) + (yi) = {(zi)| zi ∈ xi + yi},

r(xi) = {(wi)| wi ∈ rxi}.

1128



VAZIRI and GHADIRI/Turk J Math

Lemma 4.3 Let ⊓i∈IMi be the product of the nonempty collection of Hv -modules. Then:

(i) Pk : ⊓Mi −→Mk defined by Pk((xi)) = xk is a strong homomorphism.

(ii) For every exact sequence M1
ϕ−→M

ψ−→M2 the mapping

λ1 :M1 −→M1 ⊓M2 defined by λ1(x) = (x, ψϕ(x)) is a strong homomorphism. Also, λ2 :M2 −→M1 ⊓M2 ,

defined by λ2(x) = (a, x) , where a is an arbitrary member of ωM1 , is a star homomorphism. In particular, if

there exists a t ∈ ωM1 such that t+ t = t , then λ2 is a strong homomorphism.

(iii) Pkλk = IMk
.

Proof (i)

Pk((xi) + (yi)) = Pk({(zi)| zi ∈ xi + yi}) = {zk| zk ∈ xk + yk}.

On the other hand,

Pk((xi)) + Pk((yi)) = xk + yk.

Similarly, we obtain Pk(r(xi)) = rPk((xi)).

(ii) We have

λ1(x+ y) =
∪
a∈x+y,b∈ψϕ(x+y)(a, b)

= (x, ψϕ(x)) + (y, ψϕ(y))

= λ1(x) + λ1(y).

obtain λ1(rx) = rλ1(x). Also,

ε∗(λ2(x+ y)) = ε∗(
∪
a∈ωM1

,b∈x+y(a, b))

= ε∗((a1, x) + (a1, y)) where a1 ∈ ωM1

= ε∗((a1, x))⊕ ε∗((a1, y))

= ε∗(λ2(x))⊕ ε∗(λ2(y))

= ε∗(λ2(x) + λ2(y)).

Similarly, ε∗(λ2(rx)) = ε∗(rλ2(x)).

(iii) The proof of this part is straightforward. 2

Theorem 4.4 Let {Mi} be a nonempty collection of Hv -modules. For every Hv -module X and every collection

of strong homomorphisms {fi : X −→Mi} there exists a unique strong homomorphism ϕ : X −→ ⊓Mi defined

by ϕ(x) = (fi(x)) such that for every i ∈ I the following diagram is commutative.

⊓Mi

Pi

��
[1ex]X

fi

//

ϕ
::vvvvvvvvv
Mi

Proof The proof is straightforward. 2

We want to define the inverse of a weak-isomorphism to determine the conditions for splitting an exact sequence.
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Lemma 4.5 Let f :M −→ N be a weak-isomorphism. Then f−1 : N −→M defined by f−1(n) = mn for

selected mn ∈ F−1(ε∗N (n)) is a star homomorphism such that f−1 ◦ f w
= IM and f ◦ f−1 w

= IN .

Proof Since f is a weak-isomorphism by Lemma 3.5, F is an isomorphism and has an inverse. For every

n1, n2 ∈ N we have

f−1(n1 + n2) = {mc| mc ∈ F−1(ε∗N (c)), c ∈ n1 + n2}. (5)

On the other hand,

f−1(n1) + f−1(n2) = mn1 +mn2

⊆ F−1(ε∗N (n1)) + F−1(ε∗N (n2))

= F−1(ε∗N (n1 + n2)).

(6)

From Eq. (5) and Eq. (6) we obtain ε∗M (f−1(n1 + n2)) = ε∗M (f−1(n1) + f−1(n2)) (notice that for every

n1, n2 ∈ N , n1 + n2 ⊆ ε∗N (n) for some n ∈ n1 + n2 ).

Similarly, we obtain ε∗M (f−1(rn)) = ε∗M (rf−1(n)).

Finally, for every m ∈M we have

f−1 ◦ f(m) ∈ F−1(ε∗N (f(m)))

= F−1(F (ε∗M (m))),

= ε∗M (m)

and for every n ∈ N ,

f ◦ f−1(n) = f(mn), where mn ∈ F−1(ε∗N (n)),

but f(mn) ∈ ε∗N (n).

2

Definition 4.6 Letting f be a weak-isomorphism, the f−1 defined in Lemma 4.5 is called the inverse of f . It

is clear that this inverse is not necessarily unique.

Theorem 4.7 Let M1 , M2 , and M be three Hv -modules and the sequence

ωM1−→M1
ϕ−→M

ψ−→M2−→ωM2 (7)

is exact:

(i) If there exists a star homomorphism ϕ
′
:M −→M1 (ψ

′
:M2 −→M ) such that ϕ

′
ϕ
w
= IM1 (ψψ

′ w
= IM2 ),

then the sequence (7) is star isomorph with the sequence

ωM1−→M1
λ1−→M1 ⊓M2

P2−→M2−→ωM2 . (8)

(ii) If the sequences (7) and (8) are isomorph, then there exist star homomorphisms ϕ
′
:M −→M1 and

ψ
′
:M2 −→M such that ϕ

′
ϕ
w
= IM1 , ψψ

′ w
= IM2 .

Proof (i) We define α :M −→M1 ⊓M2 by α(x) = (ϕ
′
(x), ψ(x)). It is easy to see that α is a star

homomorphism. Since for every m1 ∈ M1 we have ϕ
′
ϕ(m1) ∈ ε∗M1

(m1) and ψϕ(m1) ∈ ωM1 , the following

1130



VAZIRI and GHADIRI/Turk J Math

diagram is star commutative with both exact rows.

ωM1
// M1

ϕ //

1M1

��

M
ψ //

α

��

M2
//

1M2

��

ωM2

ωM1
// M1

λ1

// M1 ⊓M2
P2

// M2
// ωM2

.

Now let there exist the star homomorphism ψ
′
:M2 −→M such that ψψ

′ w
= IM2 . We define the mapping

β :M1 ×M2 −→M by β((m1,m2)) = mm1,m2
where mm1,m2

is a member of ϕ(m1)+ψ
′
(m2) (according to the

choice axiom). We show that β is a star homomorphism. We have: ε∗(β((a1, a2) + (a
′

1, a
′

2))) = ε∗(β((t1, t2)),

where t1 ∈ a1 + a
′

1 and t2 ∈ a2 + a
′

2 .

and

ε∗(β((a1, a2)))⊕ ε∗(β((a
′

1, a
′

2))) = ε∗(ϕ(a1) + ψ
′
(a2))⊕ ε∗(ϕ(a

′

1) + ψ
′
(a

′

2))

= ε∗(ϕ(a1) + ψ
′
(a

′

1) + ϕ(a2) + ψ
′
(a

′

2))

= ε∗(ϕ(t1))⊕ ε∗(ψ
′
(t2)

= ε∗(ϕ(t1) + ψ
′
(t2))

= ε∗(β((t1, t2)),

where t1 ∈ a1 + a
′

1 and t2 ∈ a2 + a
′

2 . Thus, β is a star homomorphism. One can show that the following

diagram is star commutative:

ωM1
// M1

ϕ // M
ψ // M2

// ωM2

ωM1
// M1

λ1

//

1M1

OO

M1 ⊓M2
P2

//

β

OO

M2
//

1M2

OO

ωM2

.

(ii) By hypothesis there exist weak-isomorphisms

α :M1 −→M1 , β :M −→M1 ⊓M2 , and γ :M2 −→M2 that commute the following diagram:

ωM1
// M1

ϕ //

α

��

M
ψ //

β

��

M2
//

γ

��

ωM2

ωM1
// M1

λ1

// M1 ⊓M2
P2

// M2
// ωM2

By Lemma 4.5, there exists star homomorphism α−1 :M1 −→M1 such that α−1 ◦ α w
= IM1 . Now we define

ϕ
′
:M −→M1 by ϕ

′
= α−1P1β . Consequently, ϕ

′
is a star homomorphism and

ϕ
′
ϕ = α−1P1βϕ = α−1P1λ1α = α−11M1α

w
= IM1 .
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Similarly, by hypothesis, there exist weak-isomorphisms

α :M1 −→M1 , β :M1 ⊓M2 −→M , and γ :M2 −→M2 such that the following diagram is commutative:

ωM1
// M1

λ1 //

α

��

M1 ⊓M2
P2 //

β

��

M2
//

γ

��

ωM2

ωM1
// M1

ϕ
// M

ψ
// M2

// ωM2

By Lemma 4.5, there exists star homomorphism γ−1 :M2 −→M2 such that γ ◦ γ−1 w
= IM2 Now we define

ψ
′
:M2 −→M by ψ

′
= βλ2γ

−1 . Obviously ψ
′
is a star homomorphism and

ψψ
′
= ψβλ2γ

−1 = γP2λ2γ
−1 = γ1M2γ

−1 w
= IM2 .

2

An exact sequence in Theorem 4.7 is called a split sequence.
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