Schanuel's lemma, the snake lemma, and product and direct sum in H_{v}-modules

Yaser VAZIRI*, Mansour GHADIRI
Department of Mathematics, Yazd University, Yazd, Iran

| Received: 03.05 .2016 | Accepted/Published Online: 25.10 .2016 | Final Version: 28.09 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper we find a generalization of the snake lemma and Schanuel's lemma in H_{v}-modules. We define the isomorph sequences and determine the conditions to split the exact sequences in H_{v}-modules. Some interesting results on these concepts are given.

Key words: H_{v}-module, snake lemma, Schanuel's lemma, product and direct sum, star homomorphism, exact sequence

1. Introduction

A couple $(H, *)$ of a nonempty set H and a mapping on $H \times H$ into the family of nonempty subsets of H is called a hyperstructure (or hypergroupoid). A hypergroup is a hyperstructure $(H, *)$ with associative law $(x * y) * z=x *(y * z)$ for every $x, y, z \in H$ and the reproduction axiom is valid: $x * H=H * x=H$ for every $x \in H$; i.e. for every $x, y \in H$ there exist $u, v \in H$ such that $y \in x * u$ and $y \in v * x$. This concept was introduced by Marty in 1934 [11]. If A and B are nonempty subsets of H then $A * B$ is given by $A * B=\bigcup_{a \in A, b \in B} a * b$. Also, $x * A$ is used for $\{x\} * A$ and $A * x$ for $A *\{x\}$. Hyperrings, hypermodules, and other hyperstructures are defined and several books have been written to date $[1,2,8,16]$. The concept of H_{v}-structures as a larger class than the well-known hyperstructures was introduced by Vougiouklis at the Fourth Congress on Algebraic Hyperstructures and Applications [14] where the axioms are replaced by the weak ones; that is, instead of the equality on sets, one has nonempty intersections. The basic definitions and results of H_{v}-structures can be found in $[3-6,9,10,12,15,16]$.

The weak-equality and exact sequences in H_{v}-modules are defined and some results in this respect have been proved [7]. Accordingly, the present authors in [13] proved the five short lemma in H_{v}-modules. They also introduced $M[-]$ and $-[M]$ functors and then investigated the exactness of them and other problems. The notion of exact sequences is a fundamental concept and it has been widely used in many areas such as ring and module theory. Our aim in this paper is to introduce a generalization of some notions in homological algebra to prove the snake lemma (in H_{v}-modules) and Schanuel's lemma (in H_{v}-modules) and also determine the conditions to split a sequence (in H_{v}-modules); finally, some interesting results are given. We define the concepts of star homomorphism, product and direct sum, isomorph sequences, split sequence, and projective H_{v}-modules.

[^0]
2. Basic concepts and snake lemma

The hyperstructure $(H, *)$ is called an H_{v}-group if "*" is weak associative: $x *(y * z) \cap(x * y) * z \neq \emptyset$ and the reproduction axiom holds: $x * H=H * x=H$ for every $x \in H$. The H_{v}-group H is weak commutative if for every $x, y \in H, x * y \cap y * x \neq \emptyset$.

A multivalued system $(R,+, \cdot)$ is an H_{v}-ring if $(R,+)$ is a weak commutative H_{v}-group, (R, \cdot) is a weak associative hyperstructure where the "." hyperoperation is weak distributive with respect to " + "; i.e. for every $x, y, z \in R$ we have $x \cdot(y+z) \cap(x \cdot y+x \cdot z) \neq \emptyset$ and $(x+y) \cdot z \cap(x \cdot z+y \cdot z) \neq \emptyset$.

A nonempty set M is a (left) H_{v}-module over an H_{v}-ring R if $(M,+)$ is a weak commutative H_{v} group and there exists a map $\cdot: R \times M \rightarrow \mathcal{P}^{*}(M)$ denoted by $(r, m) \mapsto r m$ such that for every $r_{1}, r_{2} \in R$ and every $m_{1}, m_{2} \in M$ we have $r_{1}\left(m_{1}+m_{2}\right) \cap\left(r_{1} m_{1}+r_{1} m_{2}\right) \neq \emptyset,\left(r_{1}+r_{2}\right) m_{1} \cap\left(r_{1} m_{1}+r_{2} m_{1}\right) \neq \emptyset$ and $\left(r_{1} r_{2}\right) m_{1} \cap r_{1}\left(r_{2} m_{1}\right) \neq \emptyset$. A mapping $f: M_{1} \longrightarrow M_{2}$ of H_{v}-modules M_{1} and M_{2} over an H_{v}-ring R is a strong homomorphism if for every $x, y \in M_{1}$ and every $r \in R$ we have $f(x+y)=f(x)+f(y)$ and $f(r x)=r f(x)$.

By using a certain type of equivalence relations we can connect hyperstructures to ordinary structures. The smallest of these relations are called fundamental relations and denoted by $\beta^{*}, \gamma^{*}, \varepsilon^{*}$. If H is an H_{v}-group (H_{v}-ring, H_{v}-module over an H_{v}-ring R) then H / β^{*} is a group $\left(H / \gamma^{*}\right.$ is a ring, H / ε^{*} is a R / γ^{*}-module, respectively). According to [16] the fundamental relation ε^{*} on an H_{v}-module can be defined as follows:

Consider the left H_{v}-module M over an H_{v}-ring R. If ϑ denotes the set of all expressions consisting of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of elements of R and M, a relation ε can be defined on M whose transitive closure is the fundamental relation ε^{*} so that for every $x, y \in M ; x \varepsilon y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \vartheta$; i.e.:

$$
x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m_{i}^{\prime}, m_{i}^{\prime}=m_{i} \text { or } m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right) m_{i},
$$

where $m_{i} \in M, r_{i j k} \in R$.
Suppose that $\gamma^{*}(r)$ is the equivalence class containing $r \in R$ and $\varepsilon^{*}(x)$ is the equivalence class containing $x \in M$. On M / ε^{*} the \oplus and the external product \odot using the γ^{*} classes in R are defined as follows:

For every $x, y \in M$ and for every $r \in R$,

$$
\begin{aligned}
& \varepsilon^{*}(x) \oplus \varepsilon^{*}(y)=\varepsilon^{*}(c), \text { for every } c \in \varepsilon^{*}(x)+\varepsilon^{*}(y) \\
& \gamma^{*}(r) \odot \varepsilon^{*}(x)=\varepsilon^{*}(d), \text { for every } d \in \gamma^{*}(r) \cdot \varepsilon^{*}(x)
\end{aligned}
$$

The heart of an H_{v}-module M over an H_{v}-ring R is denoted by ω_{M} and defined by $\omega_{M}=\{x \in$ $\left.M \mid \varepsilon_{M}^{*}(x)=0\right\}$ where 0 is the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$. One can prove that the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$ is equal to ω_{M}. By the definition of ω_{M} we have

$$
\omega_{\omega_{M}}=\operatorname{Ker}\left(\phi: \omega_{M} \longrightarrow \omega_{M} / \varepsilon_{\omega_{M}}^{*}=0\right)=\omega_{M}
$$

Let M_{1} and M_{2} be two H_{v}-modules over an H_{v}-ring R and let $\varepsilon_{1}^{*}, \varepsilon_{2}^{*}$, and ε^{*} be the fundamental relations on M_{1}, M_{2}, and $M_{1} \times M_{2}$, respectively; then $\left(x_{1}, x_{2}\right) \varepsilon^{*}\left(y_{1}, y_{2}\right)$ if and only if $x_{1} \varepsilon_{1}^{*} y_{1}$ and $x_{2} \varepsilon_{2}^{*} y_{2}$ for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in M_{1} \times M_{2}[15,16]$.

Weak equality (monic, epic), exact sequences, and relative results in H_{v}-modules are defined as follows [7]: let M be an H_{v}-module. The nonempty subsets X and Y of M are weakly equal if for every $x \in X$ there

VAZIRI and GHADIRI/Turk J Math

exists $y \in Y$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$ and for every $y \in Y$ there exists $x \in X$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$ and it is denoted by $X \stackrel{w}{=} Y$. The sequence $M_{0} \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} M_{2} \longrightarrow \cdots \longrightarrow M_{n-1} \xrightarrow{f_{n}} M_{n}$ of H_{v}-modules and strong homomorphisms is exact if, for every $2 \leq i \leq n, \operatorname{Im}\left(f_{i-1}\right) \stackrel{w}{=} \operatorname{Ker}\left(f_{i}\right)$ where $\operatorname{Ker}\left(f_{i}\right)=\left\{a \in M_{i-1} \mid f_{i}(a) \in\right.$ $\left.\omega_{M_{i}}\right\}$ (that is, an H_{v}-submodule of M_{i-1}).

The strong homomorphism $f: M_{1} \longrightarrow M_{2}$ is called weak-monic if for every $m_{1}, m_{1}^{\prime} \in M_{1}$ the equality $f\left(m_{1}\right)=f\left(m_{1}^{\prime}\right)$ implies $\varepsilon_{M_{1}}^{*}\left(m_{1}\right)=\varepsilon_{M_{1}}^{*}\left(m_{1}^{\prime}\right)$ and f is called weak-epic if for every $m_{2} \in M_{2}$ there exists $m_{1} \in M_{1}$ such that $\varepsilon_{M_{2}}^{*}\left(m_{2}\right)=\varepsilon_{M_{2}}^{*}\left(f\left(m_{1}\right)\right)$. Finally, f is called a weak-isomorphism if f is weak-monic and weak-epic.

It is easy to see that every one to one (onto) strong homomorphism is weak-monic (weak-epic), but the converse is not necessarily true. In fact, the concept of weak-monic (weak-epic) is a generalization of the concept of one to one (onto) [see the mapping f in Example 1].

Let $f: A \longrightarrow B$ be a strong homomorphism of H_{v}-modules over an H_{v}-ring R. Then we have $f\left(\omega_{A}\right) \subseteq$ ω_{B} and so $\omega_{A} \subseteq \operatorname{Ker}(f)$. Moreover, $\operatorname{Ker}(f)=\omega_{A}$ if and only if f is weak-monic.

Lemma 2.1 [13] Let A and B be H_{v}-modules. If $\omega_{A} \xrightarrow{i} A \xrightarrow{f} B$ is exact, then f is weak-monic.
Proof It is enough to show that $\operatorname{Ker}(f)=\omega_{A}$. We always have $\omega_{A} \subseteq \operatorname{Ker}(f)$. On the other hand, if $a \in \operatorname{Ker}(f)$ then there exists $a_{1} \in \operatorname{Im}(i)=\omega_{A}$ such that $\varepsilon_{A}^{*}(a)=\varepsilon_{A}^{*}\left(a_{1}\right)=\omega_{A}$ and so $a \in \omega_{A}$. Therefore, $\operatorname{Ker}(f)=\omega_{A}$ and f is weak-monic.
Now we prove the snake lemma and close this section.

Theorem 2.2 (Snake lemma in H_{v}-modules) Let

be a commutative diagram of H_{v}-modules and strong homomorphisms over an H_{v}-ring R with both exact rows. If l is weak-monic, then there exists an exact sequence as follows:

$$
\operatorname{Ker}(h) \xrightarrow{\alpha} \operatorname{Ker}(k) \xrightarrow{\beta} \operatorname{Ker}(l) .
$$

Proof First we want to define α and β. We have

$$
\begin{aligned}
& \operatorname{Ker}(h)=\left\{a \in A \mid h(a) \in \omega_{A_{1}}\right\} \\
& \operatorname{Ker}(k)=\left\{b \in B \mid k(b) \in \omega_{B_{1}}\right\} \\
& \operatorname{Ker}(l)=\left\{c \in C \mid l(c) \in \omega_{C_{1}}\right\}
\end{aligned}
$$

Now, for $a \in \operatorname{Ker}(h), f_{1} \circ h(a) \in f_{1}\left(\omega_{A_{1}}\right) \subseteq \omega_{B_{1}}$. Since $f_{1} \circ h(a)=k \circ f(a)$, we obtain $f(a) \in \operatorname{Ker}(k)$. Also, for $b \in \operatorname{Ker}(k), g_{1} \circ k(b) \in g_{1}\left(\omega_{B_{1}}\right) \subseteq \omega_{C_{1}}$. Since $g_{1} \circ k(b)=l \circ g(b)$, we obtain $g(b) \in \operatorname{Ker}(l)$.

We define α by $\alpha(a)=f(a)$ for every $a \in \operatorname{Ker}(h)$ and β by $\beta(b)=g(b)$ for every $b \in \operatorname{Ker}(k)$. Since $\operatorname{Ker}(h), \operatorname{Ker}(k)$, and $\operatorname{Ker}(l)$ are H_{v}-submodules of A, B, and C, respectively, and f, g are strong homomorphisms, it follows that α and β are strong homomorphisms.

VAZIRI and GHADIRI/Turk J Math

We show that $\operatorname{Im}(\alpha) \stackrel{w}{=} \operatorname{Ker}(\beta)$. Letting $x \in \operatorname{Im}(\alpha)$, then $x=f(a)$ for some $a \in \operatorname{Ker}(h)(\subseteq A)$. The first row is exact, so there exists $b \in \operatorname{Ker}(g)$ such that $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$, where $g(b) \in \omega_{C}$. Since l is weak-monic we have $\operatorname{ker}(l)=\omega_{C}$, but $\omega_{\operatorname{ker}(l)}=\omega_{\omega_{C}}=\omega_{C}$ and so $\beta(b)=g(b) \in \omega_{\operatorname{Ker}(l)}$. It is enough to show $b \in \operatorname{Ker}(k)$. Since $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$ and $f(a) \in \operatorname{Im}(\alpha)(\subseteq \operatorname{Ker}(k))$, we obtain $b \in \operatorname{Ker}(k)$.

Conversely, let $b \in \operatorname{Ker}(\beta)$, and then $\beta(b)=g(b) \in \omega_{\operatorname{Ker}(l)}=\omega_{C}$ and $b \in \operatorname{Ker}(g)$. Since the first row is exact, there exists $f(a) \in \operatorname{Im}(f)$ for some $a \in A$ such that $\varepsilon_{B}^{*}(b)=\varepsilon_{B}^{*}(f(a))$. It is enough to show $a \in \operatorname{Ker}(h)$. Since k is strong and the diagram is commutative, we obtain $\varepsilon_{B_{1}}^{*}(k(b))=\varepsilon_{B_{1}}^{*}(k(f(a)))=\varepsilon_{B_{1}}^{*}\left(f_{1}(h(a))\right)$. Since $b \in \operatorname{Ker}(\beta)(\subseteq \operatorname{Ker}(k))$, it follows that $f_{1}(h(a)) \in \omega_{B_{1}}$ and $h(a) \in \operatorname{Ker}\left(f_{1}\right)$. Since f_{1} is weak-monic (by exactness and Lemma 2.1), we have $\operatorname{Ker}\left(f_{1}\right)=\omega_{A_{1}}$. Therefore, $a \in \operatorname{Ker}(h)$.

3. Schanuel's lemma in H_{v}-modules

In this section we define the concepts of star homomorphism, (star) isomorph sequences, and star projective H_{v}-modules (we also build and present some examples for these concepts) in order to find a generalization of Schanuel's lemma. We also prove a problem on commutative diagrams.

Definition 3.1 A mapping $f: M_{1} \longrightarrow M_{2}$ of H_{v}-modules M_{1} and M_{2} over an H_{v}-ring R is called a star homomorphism if for every $x, y \in M_{1}$ and every $r \in R: \varepsilon_{M_{2}}^{*}(f(x+y))=\varepsilon_{M_{2}}^{*}(f(x)+f(y))$ and $\varepsilon_{M_{2}}^{*}(f(r x))=$ $\varepsilon_{M_{2}}^{*}(r f(x))$; i.e. $f(x+y) \stackrel{w}{=} f(x)+f(y)$ and $f(r x) \stackrel{w}{=} r f(x)$.

Every strong homomorphism is a star homomorphism but the converse is not true necessarily by the following example.

Example 1 Let R be an H_{v}-ring. Consider the following H_{v}-modules on R :
(1) $M_{1}=\{a, b\}$ together with the following hyperoperations:

$$
\begin{array}{c|ll}
*_{M_{1}} & a & b \\
\hline a & a & b \\
b & b & a
\end{array} \text { and } \quad{ }_{M_{1}}: R \underset{\left(r, m_{1}\right) \mapsto\{a\}}{ } \quad M_{1} \rightarrow \mathcal{P}^{*}\left(M_{1}\right),
$$

(2) $M_{2}=\{0,1,2\}$ together with the following hyperoperations:

$*_{M_{2}}$	0	1	2		
0	0	1	2		
1	1	0,2	1		
2	2	1	0	and \quad	$M_{2}: R \underset{\left(r, m_{2}\right) \mapsto\{0\}}{ } \times M_{2} \rightarrow \mathcal{P}^{*}\left(M_{2}\right)$.
:---:					

We obtain $M_{2} / \varepsilon_{M_{2}}^{*}=\left\{\varepsilon_{M_{2}}^{*}(0)=\{0,2\}, \varepsilon_{M_{2}}^{*}(1)=\{1\}\right\}$. If $f: M_{1} \longrightarrow M_{2}$ defined by $f(a)=0$ and $f(b)=1$ then f is a star homomorphism but not a strong homomorphism because $f\left(b *_{M_{1}} b\right) \neq f(b) *_{M_{2}} f(b)$.

Definition 3.2 Two mappings $f, g: M \longrightarrow N$ on H_{v}-modules are called weak equal if for every $m \in M$; $\varepsilon_{N}^{*}(f(m))=\varepsilon_{N}^{*}(g(m))$ and denoted by $f \stackrel{w}{=} g$. The following diagram of H_{v}-modules and strong homomorphisms
is called star commutative if $g \circ f \stackrel{w}{=} h$.

Also, it is said to be commutative if for every $a \in A, g \circ f(a)=h(a)$.
Definition 3.3 The sequences

$$
\omega_{A} \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \omega_{C}
$$

and

$$
\omega_{A^{\prime}} \longrightarrow A^{\prime} \xrightarrow{f^{\prime}} B^{\prime} \xrightarrow{g^{\prime}} C^{\prime} \longrightarrow \omega_{C^{\prime}}
$$

are called isomorph (star isomorph) if there exist weak-isomorphisms (star homomorphisms) $\alpha: A \longrightarrow A^{\prime}$, $\beta: B \longrightarrow B^{\prime}$, and $\gamma: C \longrightarrow C^{\prime}$ such that the following diagram is commutative (star commutative):

Definition 3.4 An H_{v}-module P is called star projective if for every diagram of strong homomorphisms and H_{v}-modules as follows

such that its row is exact, there exists a strong homomorphism $\phi: P \longrightarrow M$ such that $g \circ \phi \stackrel{w}{=} f$.
According to [7], for every strong homomorphism $f: M \longrightarrow N$ there is the R / γ^{*}-homomorphism $F: M / \varepsilon_{M}^{*} \longrightarrow N / \varepsilon_{N}^{*}$ of R / γ^{*}-modules defined by $F\left(\varepsilon_{M}^{*}(m)\right)=\varepsilon_{N}^{*}(f(m))$.

Lemma 3.5 [13] Let $f: A \longrightarrow B$ be a strong homomorphism of H_{v}-modules. Then f is weak-epic (weakmonic) if and only if F is onto (one to one). Thus, f is a weak-isomorphism if and only if F is an isomorphism.

Proof Suppose that f is weak-epic and $\varepsilon_{B}^{*}(b) \in B / \varepsilon_{B}^{*}$. Since f is weak-epic, there exists $a \in A$ such that $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$, but $\varepsilon_{B}^{*}(f(a))=F\left(\varepsilon_{A}^{*}(a)\right)$. Thus, $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(b)$ and consequently F is onto.

Conversely, let F be onto. Then, for every $b \in B$, there exists $\varepsilon_{A}^{*}(a) \in A / \varepsilon_{A}^{*}$ such that $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(b)$, but $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(f(a))$. Thus, there exists $a \in A$ such that $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$ and consequently f is weakepic. The second part is proved in [7]. The third part is an obvious result.

VAZIRI and GHADIRI/Turk J Math

Theorem 3.6 (Schanuel's lemma in H_{v}-modules) Let P_{1} and P_{2} be two star projective H_{v}-modules. Then the following exact sequences are star isomorph:

$$
\begin{align*}
& \omega_{K} \longrightarrow K \xrightarrow{f} P_{1} \xrightarrow{g} M \longrightarrow \omega_{M}, \tag{1}\\
& \omega_{L} \longrightarrow L \underset{f_{1}}{\longrightarrow} P_{2} \xrightarrow[g_{1}]{\longrightarrow} M \longrightarrow \omega_{M} . \tag{2}
\end{align*}
$$

Proof Let $\gamma: M \longrightarrow M$ be identity on M. Since P_{1} is a star projective H_{v}-module, there exists a strong homomorphism $\beta: P_{1} \longrightarrow P_{2}$ such that for every $p \in P_{1} ; \varepsilon_{M}^{*}\left(g_{1} \circ \beta(p)\right)=\varepsilon_{M}^{*}(g(p))$. Now, for every $k \in K$; $f(k) \in P_{1}$ and then by exactness of sequence (1) we have $\beta \circ f(k) \in \operatorname{Ker}\left(g_{1}\right)$ and so by exactness of sequence (2) there exists $l_{k} \in L$ such that $\varepsilon_{P_{2}}^{*}(\beta(f(k)))=\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k}\right)\right)$. We define $\alpha: K \longrightarrow L$ by $\alpha(k)=l_{k}$. Supposing $k_{1}, k_{2} \in K$ and $r \in R$, we have:

$$
\begin{aligned}
\varepsilon_{P_{2}}^{*}\left(\beta \circ f\left(k_{1}+k_{2}\right)\right) & =\varepsilon_{P_{2}}^{*}\left(\beta\left(f\left(k_{1}\right)\right)+\beta\left(f\left(k_{2}\right)\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(\beta f\left(k_{1}\right)\right) \oplus \varepsilon_{P_{2}}^{*}\left(\beta\left(f\left(k_{2}\right)\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k_{1}}\right)\right) \oplus \varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k_{2}}\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k_{1}}\right)+f_{1}\left(l_{k_{2}}\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k_{1}}+l_{k_{2}}\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(\alpha\left(k_{1}\right)+\alpha\left(k_{2}\right)\right)\right. \\
& =F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(k_{1}\right)+\alpha\left(k_{2}\right)\right)\right),
\end{aligned}
$$

while on the other hand

$$
\begin{aligned}
\varepsilon_{P_{2}}^{*}\left(\beta \circ f\left(k_{1}+k_{2}\right)\right) & =\left\{\varepsilon_{P_{2}}^{*}(\beta(f(t))) \mid t \in k_{1}+k_{2}\right\} \\
& =\left\{\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{t}\right)\right) \mid t \in k_{1}+k_{2} ; \varepsilon_{P_{2}}^{*}(\beta(f(t)))=\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{t}\right)\right)\right\} \\
& =\left\{\varepsilon_{P_{2}}^{*}\left(f_{1}(\alpha(t))\right) \mid t \in k_{1}+k_{2}\right\} \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(\alpha\left(k_{1}+k_{2}\right)\right)\right) \\
& =F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(k_{1}+k_{2}\right)\right)\right) .
\end{aligned}
$$

Thus, $F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(k_{1}+k_{2}\right)\right)\right)=F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(k_{1}\right)+\alpha\left(k_{2}\right)\right)\right)$. Now by Lemma 2.1 and Lemma 3.5, F_{1} is one to one and $\varepsilon_{L}^{*}\left(\alpha\left(k_{1}+k_{2}\right)\right)=\varepsilon_{L}^{*}\left(\alpha\left(k_{1}\right)+\alpha\left(k_{2}\right)\right)$.

Also,

$$
\begin{aligned}
\varepsilon_{P_{2}}^{*}\left(\beta \circ f\left(r k_{1}\right)\right) & =\varepsilon_{P_{2}}^{*}\left(r \beta\left(f\left(k_{1}\right)\right)\right. \\
& =\gamma^{*}(r) \odot \varepsilon_{P_{2}}^{*}\left(\beta\left(f\left(k_{1}\right)\right)\right. \\
& =\gamma^{*}(r) \odot \varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{k_{1}}\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(r f_{1}\left(l_{k_{1}}\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(r f_{1}\left(\alpha\left(k_{1}\right)\right)\right) \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(r \alpha\left(k_{1}\right)\right)\right) \\
& =F_{1}\left(\varepsilon_{L}^{*}\left(r \alpha\left(k_{1}\right)\right),\right.
\end{aligned}
$$

while on the other hand

$$
\begin{aligned}
\varepsilon_{P_{2}}^{*}\left(\beta\left(f\left(r k_{1}\right)\right)\right) & =\left\{\varepsilon_{P_{2}}^{*}(\beta(f(t))) \mid t \in r k_{1}\right\} \\
& =\left\{\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{t}\right)\right) \mid t \in r k_{1} ; \varepsilon_{P_{2}}^{*}(\beta(f(t)))=\varepsilon_{P_{2}}^{*}\left(f_{1}\left(l_{t}\right)\right)\right\} \\
& =\left\{\varepsilon_{P_{2}}^{*}\left(f_{1}(\alpha(t))\right) \mid t \in r k_{1}\right\} \\
& =\varepsilon_{P_{2}}^{*}\left(f_{1}\left(\alpha\left(r k_{1}\right)\right)\right) \\
& =F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(r k_{1}\right)\right)\right)
\end{aligned}
$$

Thus, $F_{1}\left(\varepsilon_{L}^{*}\left(\alpha\left(r k_{1}\right)\right)\right)=F_{1}\left(\varepsilon_{L}^{*}\left(r \alpha\left(k_{1}\right)\right)\right.$. Now by Lemma 2.1 and Lemma 3.5, F_{1} is one to one and $\varepsilon_{L}^{*}\left(\alpha\left(r k_{1}\right)\right)=$ $\varepsilon_{L}^{*}\left(r \alpha\left(k_{1}\right)\right.$, and α is a star homomorphism.

One can check the star commutativity on these star homomorphisms.

Theorem 3.7 (i) Let

be a star commutative diagram of H_{v}-modules and strong H_{v}-homomorphisms with both exact rows. Then there exists a star homomorphism $\alpha: A \longrightarrow A_{1}$ such that it star-commutes the diagram.
(ii) Let

be a star commutative diagram of H_{v}-modules and strong homomorphisms with both exact rows. Then there exists a star homomorphism $\gamma: C \longrightarrow C_{1}$ such that it star-commutes the diagram.
Proof (i) For every $a \in A$ we have $\varepsilon_{C_{1}}^{*}\left(g_{1} \circ \beta \circ f(a)\right)=\varepsilon_{C_{1}}^{*}(\gamma \circ g \circ f(a))$. The first row is exact and γ is strong homomorphism. Then $g \circ f(a) \in \omega_{C}$ and $\gamma \circ g \circ f(a) \in \omega_{C_{1}}$. Thus, $\beta \circ f(a) \in \operatorname{Ker}\left(g_{1}\right)$ and there exists $a_{1} \in A_{1}$ such that $\varepsilon_{B_{1}}^{*}(\beta \circ f(a))=\varepsilon_{B_{1}}^{*}\left(f_{1}\left(a_{1}\right)\right)$. Now we define $\alpha: A \longrightarrow A_{1}$ by $\alpha(a)=a_{1}$.

Similar to the proof of Theorem 3.6 one can show that α is a star homomorphism. Also, for every $a \in A$, we have

$$
\varepsilon_{B_{1}}^{*}\left(f_{1} \circ \alpha(a)\right)=\varepsilon_{B_{1}}^{*}\left(f_{1}\left(a_{1}\right)\right)=\varepsilon_{B_{1}}^{*}(\beta \circ f(a)) .
$$

(ii) Since g is weak-epic for every $c \in C$ there exists $b_{c} \in B$ such that $\varepsilon_{C}^{*}(c)=\varepsilon_{C}^{*}\left(g\left(b_{c}\right)\right)$. We define $\gamma: C \longrightarrow C_{1}$ by $\gamma(c)=g_{1} \circ \beta\left(b_{c}\right)$. The remainder of the proof is straightforward and similar to the proof of (i).

4. Product and direct sum in H_{v}-modules

In this section we define the concepts of the product and direct sum of H_{v}-modules (we also build and present some examples for these concepts), and we determine the conditions to split an exact sequence.

VAZIRI and GHADIRI/Turk J Math

Definition 4.1 Let M be an H_{v}-module; H and K are H_{v}-submodules of $M . M$ is said to be the direct sum of H and K if $H \cap K \subseteq \omega_{M}$ and $\varepsilon^{*}(H+K)=\varepsilon^{*}(M)$. We denote it by $H \oplus K=M$.

Example 2 For every H_{v}-module M we have $M=\omega_{M} \oplus M$.
Example 3 Consider the following weak commutative H_{v}-group:

$*_{M}$	0	1	2	3	4	5	6
0	0,1	0,1	2	3	4	5	6
1	0,1	0,1	2	3	4	5	6
2	2	2	0,1	5,6	5,6	$2,3,4$	$2,3,4$
3	3	3	5,6	0,1	5,6	$2,3,4$	$2,3,4$
4	4	4	5,6	5,6	0,1	$2,3,4$	$2,3,4$
5	5	5	$2,3,4$	$2,3,4$	$2,3,4$	6	0,1
6	6	6	$2,3,4$	$2,3,4$	$2,3,4$	0,1	5

One can check that $R=\left(M, *_{M},.\right)$ is an H_{v}-ring where $r_{1} \cdot r_{2}=\{0,1\}$ for every $r_{1}, r_{2} \in R$ and M is an H_{v}-module over the H_{v}-ring R. Also,

$$
M / \varepsilon_{M}^{*}=\left\{\varepsilon_{M}^{*}(0), \varepsilon_{M}^{*}(2)\right\}
$$

where

$$
\varepsilon_{M}^{*}(0)=\omega_{M}=\{0,1,5,6\}, \quad \varepsilon_{M}^{*}(2)=\{2,3,4\}
$$

Now $H=\{0,1,2\}$ and $K=\{0,1,5,6\}$ are H_{v}-submodules of M and $H \oplus K=M$.

Proposition 4.2 Let $f: M \longrightarrow M$ be a strong homomorphism of H_{v}-modules such that $f^{2}=f$. Then M is the direct sum of $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$. Moreover, f is identity on $\operatorname{Im}(f) \cap \operatorname{Ker}(f)$.
Proof Let $m \in \operatorname{Im}(f) \cap \operatorname{Ker}(f)$, and then

$$
\begin{equation*}
m=f\left(m_{1}\right) \text { for some } m_{1} \text { in } M \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(m) \in \omega_{M} \tag{4}
\end{equation*}
$$

By applying f on Eq. (3) we obtain $f(m)=f^{2}\left(m_{1}\right)=f\left(m_{1}\right)=m$ as a member of ω_{M} by Eq. (4), so $\operatorname{Im}(f) \cap \operatorname{Ker}(f) \subseteq \omega_{M}$ and f is identity on $\operatorname{Im}(f) \cap \operatorname{Ker}(f)$. Now, for every $m \in M$, we have:

$$
F\left(F\left(\varepsilon^{*}(m)\right)\right)=F\left(\varepsilon^{*}(f(m))\right)=\varepsilon^{*}\left(f^{2}(m)\right)=\varepsilon^{*}(f(m))=F\left(\varepsilon^{*}(m)\right)
$$

Thus, $\operatorname{Im}(F)+\operatorname{Ker}(F)=M / \varepsilon_{M}^{*}$, since F is a R / γ^{*}-module such that $F^{2}=F$. Therefore, $\varepsilon^{*}(\operatorname{Im}(f)+$ $\operatorname{Ker}(f))=\varepsilon^{*}(M)$.

Let $\left\{M_{i}\right\}_{i \in I}$ be a nonempty collection of H_{v}-modules. The product of this collection,

$$
\sqcap_{i \in I}\left\{M_{i}\right\}=\left\{\left(x_{i}\right) \mid x_{i} \in M ; \forall i \in I\right\},
$$

with the following hyperoperations is an H_{v}-module:

$$
\begin{gathered}
\left(x_{i}\right)+\left(y_{i}\right)=\left\{\left(z_{i}\right) \mid z_{i} \in x_{i}+y_{i}\right\} \\
r\left(x_{i}\right)=\left\{\left(w_{i}\right) \mid w_{i} \in r x_{i}\right\}
\end{gathered}
$$

VAZIRI and GHADIRI/Turk J Math

Lemma 4.3 Let $\sqcap_{i \in I} M_{i}$ be the product of the nonempty collection of H_{v}-modules. Then:
(i) $P_{k}: \sqcap M_{i} \longrightarrow M_{k}$ defined by $P_{k}\left(\left(x_{i}\right)\right)=x_{k}$ is a strong homomorphism.
(ii) For every exact sequence $M_{1} \xrightarrow{\phi} M \xrightarrow{\psi} M_{2}$ the mapping
$\lambda_{1}: M_{1} \longrightarrow M_{1} \sqcap M_{2}$ defined by $\lambda_{1}(x)=(x, \psi \phi(x))$ is a strong homomorphism. Also, $\lambda_{2}: M_{2} \longrightarrow M_{1} \sqcap M_{2}$, defined by $\lambda_{2}(x)=(a, x)$, where a is an arbitrary member of $\omega_{M_{1}}$, is a star homomorphism. In particular, if there exists a $t \in \omega_{M_{1}}$ such that $t+t=t$, then λ_{2} is a strong homomorphism.
(iii) $P_{k} \lambda_{k}=I_{M_{k}}$.

Proof (i)

$$
P_{k}\left(\left(x_{i}\right)+\left(y_{i}\right)\right)=P_{k}\left(\left\{\left(z_{i}\right) \mid z_{i} \in x_{i}+y_{i}\right\}\right)=\left\{z_{k} \mid z_{k} \in x_{k}+y_{k}\right\}
$$

On the other hand,

$$
P_{k}\left(\left(x_{i}\right)\right)+P_{k}\left(\left(y_{i}\right)\right)=x_{k}+y_{k}
$$

Similarly, we obtain $P_{k}\left(r\left(x_{i}\right)\right)=r P_{k}\left(\left(x_{i}\right)\right)$.
(ii) We have

$$
\begin{aligned}
\lambda_{1}(x+y) & =\bigcup_{a \in x+y, b \in \psi \phi(x+y)}(a, b) \\
& =(x, \psi \phi(x))+(y, \psi \phi(y)) \\
& =\lambda_{1}(x)+\lambda_{1}(y) .
\end{aligned}
$$

obtain $\lambda_{1}(r x)=r \lambda_{1}(x)$. Also,

$$
\begin{aligned}
\varepsilon^{*}\left(\lambda_{2}(x+y)\right) & =\varepsilon^{*}\left(\bigcup_{a \in \omega_{M_{1}}, b \in x+y}(a, b)\right) \\
& =\varepsilon^{*}\left(\left(a_{1}, x\right)+\left(a_{1}, y\right)\right) \text { where } \mathrm{a}_{1} \in \omega_{\mathrm{M}_{1}} \\
& =\varepsilon^{*}\left(\left(a_{1}, x\right)\right) \oplus \varepsilon^{*}\left(\left(a_{1}, y\right)\right) \\
& =\varepsilon^{*}\left(\lambda_{2}(x)\right) \oplus \varepsilon^{*}\left(\lambda_{2}(y)\right) \\
& =\varepsilon^{*}\left(\lambda_{2}(x)+\lambda_{2}(y)\right)
\end{aligned}
$$

Similarly, $\varepsilon^{*}\left(\lambda_{2}(r x)\right)=\varepsilon^{*}\left(r \lambda_{2}(x)\right)$.
(iii) The proof of this part is straightforward.

Theorem 4.4 Let $\left\{M_{i}\right\}$ be a nonempty collection of H_{v}-modules. For every H_{v}-module X and every collection of strong homomorphisms $\left\{f_{i}: X \longrightarrow M_{i}\right\}$ there exists a unique strong homomorphism $\phi: X \longrightarrow \sqcap M_{i}$ defined by $\phi(x)=\left(f_{i}(x)\right)$ such that for every $i \in I$ the following diagram is commutative.

Proof The proof is straightforward.
We want to define the inverse of a weak-isomorphism to determine the conditions for splitting an exact sequence.

VAZIRI and GHADIRI/Turk J Math

Lemma 4.5 Let $f: M \longrightarrow N$ be a weak-isomorphism. Then $f^{-1}: N \longrightarrow M$ defined by $f^{-1}(n)=m_{n}$ for selected $m_{n} \in F^{-1}\left(\varepsilon_{N}^{*}(n)\right)$ is a star homomorphism such that $f^{-1} \circ f \stackrel{w}{=} I_{M}$ and $f \circ f^{-1} \stackrel{w}{=} I_{N}$.
Proof Since f is a weak-isomorphism by Lemma 3.5, F is an isomorphism and has an inverse. For every $n_{1}, n_{2} \in N$ we have

$$
\begin{equation*}
f^{-1}\left(n_{1}+n_{2}\right)=\left\{m_{c} \mid m_{c} \in F^{-1}\left(\varepsilon_{N}^{*}(c)\right), c \in n_{1}+n_{2}\right\} . \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
f^{-1}\left(n_{1}\right)+f^{-1}\left(n_{2}\right) & =m_{n_{1}}+m_{n_{2}} \\
& \subseteq F^{-1}\left(\varepsilon_{N}^{*}\left(n_{1}\right)\right)+F^{-1}\left(\varepsilon_{N}^{*}\left(n_{2}\right)\right) \tag{6}\\
& =F^{-1}\left(\varepsilon_{N}^{*}\left(n_{1}+n_{2}\right)\right)
\end{align*}
$$

From Eq. (5) and Eq. (6) we obtain $\varepsilon_{M}^{*}\left(f^{-1}\left(n_{1}+n_{2}\right)\right)=\varepsilon_{M}^{*}\left(f^{-1}\left(n_{1}\right)+f^{-1}\left(n_{2}\right)\right)$ (notice that for every $n_{1}, n_{2} \in N, n_{1}+n_{2} \subseteq \varepsilon_{N}^{*}(n)$ for some $\left.n \in n_{1}+n_{2}\right)$.

Similarly, we obtain $\varepsilon_{M}^{*}\left(f^{-1}(r n)\right)=\varepsilon_{M}^{*}\left(r f^{-1}(n)\right)$.
Finally, for every $m \in M$ we have

$$
\begin{aligned}
f^{-1} \circ f(m) & \in F^{-1}\left(\varepsilon_{N}^{*}(f(m))\right) \\
& =F^{-1}\left(F\left(\varepsilon_{M}^{*}(m)\right)\right) \\
& =\varepsilon_{M}^{*}(m)
\end{aligned}
$$

and for every $n \in N$,

$$
\begin{aligned}
f \circ f^{-1}(n) & =f\left(m_{n}\right), \text { where } m_{n} \in F^{-1}\left(\varepsilon_{N}^{*}(n)\right) \\
& \text { but } f\left(m_{n}\right) \in \varepsilon_{N}^{*}(n)
\end{aligned}
$$

Definition 4.6 Letting f be a weak-isomorphism, the f^{-1} defined in Lemma 4.5 is called the inverse of f. It is clear that this inverse is not necessarily unique.

Theorem 4.7 Let M_{1}, M_{2}, and M be three H_{v}-modules and the sequence

$$
\begin{equation*}
\omega_{M_{1}} \longrightarrow M_{1} \xrightarrow{\phi} M \xrightarrow{\psi} M_{2} \longrightarrow \omega_{M_{2}} \tag{7}
\end{equation*}
$$

is exact:
(i) If there exists a star homomorphism $\phi^{\prime}: M \longrightarrow M_{1}\left(\psi^{\prime}: M_{2} \longrightarrow M\right)$ such that $\phi^{\prime} \phi \stackrel{w}{=} I_{M_{1}}\left(\psi \psi^{\prime} \stackrel{w}{=} I_{M_{2}}\right)$, then the sequence (7) is star isomorph with the sequence

$$
\begin{equation*}
\omega_{M_{1}} \longrightarrow M_{1} \xrightarrow{\lambda_{1}} M_{1} \sqcap M_{2} \xrightarrow{P_{2}} M_{2} \longrightarrow \omega_{M_{2}} \tag{8}
\end{equation*}
$$

(ii) If the sequences (7) and (8) are isomorph, then there exist star homomorphisms $\phi^{\prime}: M \longrightarrow M_{1}$ and $\psi^{\prime}: M_{2} \longrightarrow M$ such that $\phi^{\prime} \phi \stackrel{w}{=} I_{M_{1}}, \psi \psi^{\prime} \stackrel{w}{=} I_{M_{2}}$.

Proof (i) We define $\alpha: M \longrightarrow M_{1} \sqcap M_{2}$ by $\alpha(x)=\left(\phi^{\prime}(x), \psi(x)\right)$. It is easy to see that α is a star homomorphism. Since for every $m_{1} \in M_{1}$ we have $\phi^{\prime} \phi\left(m_{1}\right) \in \varepsilon_{M_{1}}^{*}\left(m_{1}\right)$ and $\psi \phi\left(m_{1}\right) \in \omega_{M_{1}}$, the following
diagram is star commutative with both exact rows.

Now let there exist the star homomorphism $\psi^{\prime}: M_{2} \longrightarrow M$ such that $\psi \psi^{\prime} \stackrel{w}{=} I_{M_{2}}$. We define the mapping $\beta: M_{1} \times M_{2} \longrightarrow M$ by $\beta\left(\left(m_{1}, m_{2}\right)\right)=m_{m_{1}, m_{2}}$ where $m_{m_{1}, m_{2}}$ is a member of $\phi\left(m_{1}\right)+\psi^{\prime}\left(m_{2}\right)$ (according to the choice axiom). We show that β is a star homomorphism. We have: $\varepsilon^{*}\left(\beta\left(\left(a_{1}, a_{2}\right)+\left(a_{1}^{\prime}, a_{2}^{\prime}\right)\right)\right)=\varepsilon^{*}\left(\beta\left(\left(t_{1}, t_{2}\right)\right)\right.$, where $t_{1} \in a_{1}+a_{1}^{\prime}$ and $t_{2} \in a_{2}+a_{2}^{\prime}$.
and

$$
\begin{aligned}
\varepsilon^{*}\left(\beta\left(\left(a_{1}, a_{2}\right)\right)\right) \oplus \varepsilon^{*}\left(\beta\left(\left(a_{1}^{\prime}, a_{2}^{\prime}\right)\right)\right) & =\varepsilon^{*}\left(\phi\left(a_{1}\right)+\psi^{\prime}\left(a_{2}\right)\right) \oplus \varepsilon^{*}\left(\phi\left(a_{1}^{\prime}\right)+\psi^{\prime}\left(a_{2}^{\prime}\right)\right) \\
& =\varepsilon^{*}\left(\phi\left(a_{1}\right)+\psi^{\prime}\left(a_{1}^{\prime}\right)+\phi\left(a_{2}\right)+\psi^{\prime}\left(a_{2}^{\prime}\right)\right) \\
& =\varepsilon^{*}\left(\phi\left(t_{1}\right)\right) \oplus \varepsilon^{*}\left(\psi^{\prime}\left(t_{2}\right)\right. \\
& =\varepsilon^{*}\left(\phi\left(t_{1}\right)+\psi^{\prime}\left(t_{2}\right)\right) \\
& =\varepsilon^{*}\left(\beta\left(\left(t_{1}, t_{2}\right)\right),\right.
\end{aligned}
$$

where $t_{1} \in a_{1}+a_{1}^{\prime}$ and $t_{2} \in a_{2}+a_{2}^{\prime}$. Thus, β is a star homomorphism. One can show that the following diagram is star commutative:

(ii) By hypothesis there exist weak-isomorphisms $\alpha: M_{1} \longrightarrow M_{1}, \beta: M \longrightarrow M_{1} \sqcap M_{2}$, and $\gamma: M_{2} \longrightarrow M_{2}$ that commute the following diagram:

By Lemma 4.5, there exists star homomorphism $\alpha^{-1}: M_{1} \longrightarrow M_{1}$ such that $\alpha^{-1} \circ \alpha \stackrel{w}{=} I_{M_{1}}$. Now we define $\phi^{\prime}: M \longrightarrow M_{1}$ by $\phi^{\prime}=\alpha^{-1} P_{1} \beta$. Consequently, ϕ^{\prime} is a star homomorphism and

$$
\phi^{\prime} \phi=\alpha^{-1} P_{1} \beta \phi=\alpha^{-1} P_{1} \lambda_{1} \alpha=\alpha^{-1} 1_{M_{1}} \alpha \stackrel{w}{=} I_{M_{1}} .
$$

Similarly, by hypothesis, there exist weak-isomorphisms $\alpha: M_{1} \longrightarrow M_{1}, \beta: M_{1} \sqcap M_{2} \longrightarrow M$, and $\gamma: M_{2} \longrightarrow M_{2}$ such that the following diagram is commutative:

By Lemma 4.5, there exists star homomorphism $\gamma^{-1}: M_{2} \longrightarrow M_{2}$ such that $\gamma \circ \gamma^{-1} \stackrel{w}{=} I_{M_{2}}$ Now we define $\psi^{\prime}: M_{2} \longrightarrow M$ by $\psi^{\prime}=\beta \lambda_{2} \gamma^{-1}$. Obviously ψ^{\prime} is a star homomorphism and

$$
\psi \psi^{\prime}=\psi \beta \lambda_{2} \gamma^{-1}=\gamma P_{2} \lambda_{2} \gamma^{-1}=\gamma 1_{M_{2}} \gamma^{-1} \stackrel{w}{=} I_{M_{2}}
$$

An exact sequence in Theorem 4.7 is called a split sequence.

References

[1] Corsini P. Prolegomena of Hypergroup Theory. 2nd ed. Tricesimo, Italy: Aviani, 1993.
[2] Corsini P, Leoreanu V. Applications of Hyperstructure Theory. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2003.
[3] Davvaz B. H_{v}-module of fractions. In: Proceedings of the 8th Algebra Seminar of the Iranian Mathematical Society, 17-18 December 1996; Tehran, Iran. Tehran, Iran; University of Tehran, 1996, pp. 37-46.
[4] Davvaz B. Remarks on weak hypermodules. B Korean Math Soc 1999; 36: 599-608.
[5] Davvaz B. Approximations in H_{v}-modules. Taiwanese J Math 2002; 6: 499-505.
[6] Davvaz B. A brief survey of the theory of H_{v}-structures. In: Proceedings of the 8th International Congress on Algebraic Hyperstructures and Applications; 1-9 September 2002; Samothraki, Greece. Athens, Greece: Spanidis Press, 2003, pp. 39-70.
[7] Davvaz B, Ghadiri M. Weak equality and exact sequences in H_{v}-modules. Southeast Asian Bull Math 2001; 25: 403-411.
[8] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. San Diego, CA, USA: International Academic Press, 2007.
[9] Davvaz B, Vougiouklis T. n-ary H_{v}-modules with external n-ary P-hyperoperation. U Politeh Buch Ser A 2014; 76: 141-150.
[10] Ghadiri M, Davvaz B. Direct system and direct limit of H_{v}-modules. Iran J Sci Technol A 2004; 28: 267-275.
[11] Marty F. Sur une generalization de la notion de groupe. In: Proceedings of the 8th Congress des Mathematiciens; 1934; Stockholm, Sweden. pp. 45-49 (in French).
[12] Taghavi A, Vougiouklis T, Hosseinzadeh R. A note on operators on normed finite dimensional weak hypervector spaces. U Politeh Buch Ser A Appl Math Phy 2012; 74: 103-108.
[13] Vaziri Y, Ghadiri M, Davvaz B. The M[-] and [-]M functor and five short lemma in H_{v}-modules. Turk J Math 2016; 40: 397-410.
[14] Vougiouklis T. The fundamental relation in hyperrings. The general hyperfield. In: Algebraic Hyperstructures and Applications (Xanthi, 1990). Teaneck, NJ, USA: World Science Publishing, 1991, pp. 203-211.
[15] Vougiouklis T. H_{v}-vector spaces. In: Proceedings of the 5th International Congress on Algebraic Hyperstructures and Applications; 4-10 July 1993; Iasi, Romania. Palm Harbor, FL, USA: Hadronic Press, 1994, pp. 181-190.
[16] Vougiouklis T. Hyperstructures and Their Representations. Palm Harbor, FL, USA: Hadronic Press, 1994.

[^0]: *Correspondence: forutan.vaziri@yahoo.com
 2010 AMS Mathematics Subject Classification: 16Y99, 16E05, 20N20.

