

http://journals.tubitak.gov.tr/math/

Research Article

Schanuel's lemma, the snake lemma, and product and direct sum in H_v -modules

Yaser VAZIRI^{*}, Mansour GHADIRI

Department of Mathematics, Yazd University, Yazd, Iran

Received: 03.05.2016	•	Accepted/Published Online: 25.10.2016	•	Final Version: 28.09.2017
-----------------------------	---	---------------------------------------	---	---------------------------

Abstract: In this paper we find a generalization of the snake lemma and Schanuel's lemma in H_v -modules. We define the isomorph sequences and determine the conditions to split the exact sequences in H_v -modules. Some interesting results on these concepts are given.

Key words: H_v -module, snake lemma, Schanuel's lemma, product and direct sum, star homomorphism, exact sequence

1. Introduction

A couple (H, *) of a nonempty set H and a mapping on $H \times H$ into the family of nonempty subsets of H is called a hyperstructure (or hypergroupoid). A hypergroup is a hyperstructure (H, *) with associative law (x * y) * z = x * (y * z) for every $x, y, z \in H$ and the reproduction axiom is valid: x * H = H * x = H for every $x \in H$; i.e. for every $x, y \in H$ there exist $u, v \in H$ such that $y \in x * u$ and $y \in v * x$. This concept was introduced by Marty in 1934 [11]. If A and B are nonempty subsets of H then A * B is given by $A * B = \bigcup_{a \in A, b \in B} a * b$. Also, x * A is used for $\{x\} * A$ and A * x for $A * \{x\}$. Hyperrings, hypermodules, and other hyperstructures are defined and several books have been written to date [1, 2, 8, 16]. The concept of H_v -structures as a larger class than the well-known hyperstructures was introduced by Vougiouklis at the Fourth Congress on Algebraic Hyperstructures and Applications [14] where the axioms are replaced by the weak ones; that is, instead of the equality on sets, one has nonempty intersections. The basic definitions and results of H_v -structures can be found in [3–6, 9, 10, 12, 15, 16].

The weak-equality and exact sequences in H_v -modules are defined and some results in this respect have been proved [7]. Accordingly, the present authors in [13] proved the five short lemma in H_v -modules. They also introduced M[-] and -[M] functors and then investigated the exactness of them and other problems. The notion of exact sequences is a fundamental concept and it has been widely used in many areas such as ring and module theory. Our aim in this paper is to introduce a generalization of some notions in homological algebra to prove the snake lemma (in H_v -modules) and Schanuel's lemma (in H_v -modules) and also determine the conditions to split a sequence (in H_v -modules); finally, some interesting results are given. We define the concepts of star homomorphism, product and direct sum, isomorph sequences, split sequence, and projective H_v -modules.

^{*}Correspondence: forutan.vaziri@yahoo.com

²⁰¹⁰ AMS Mathematics Subject Classification: 16Y99, 16E05, 20N20.

2. Basic concepts and snake lemma

The hyperstructure (H, *) is called an H_v -group if "*" is weak associative: $x * (y * z) \cap (x * y) * z \neq \emptyset$ and the reproduction axiom holds: x * H = H * x = H for every $x \in H$. The H_v -group H is weak commutative if for every $x, y \in H$, $x * y \cap y * x \neq \emptyset$.

A multivalued system $(R, +, \cdot)$ is an H_v -ring if (R, +) is a weak commutative H_v -group, (R, \cdot) is a weak associative hyperstructure where the " \cdot " hyperoperation is weak distributive with respect to "+"; i.e. for every $x, y, z \in R$ we have $x \cdot (y + z) \cap (x \cdot y + x \cdot z) \neq \emptyset$ and $(x + y) \cdot z \cap (x \cdot z + y \cdot z) \neq \emptyset$.

A nonempty set M is a (left) H_v -module over an H_v -ring R if (M, +) is a weak commutative H_v group and there exists a map $\cdot : R \times M \to \mathcal{P}^*(M)$ denoted by $(r, m) \mapsto rm$ such that for every $r_1, r_2 \in R$ and every $m_1, m_2 \in M$ we have $r_1(m_1 + m_2) \cap (r_1m_1 + r_1m_2) \neq \emptyset$, $(r_1 + r_2)m_1 \cap (r_1m_1 + r_2m_1) \neq \emptyset$ and $(r_1r_2)m_1 \cap r_1(r_2m_1) \neq \emptyset$. A mapping $f : M_1 \longrightarrow M_2$ of H_v -modules M_1 and M_2 over an H_v -ring R is a strong homomorphism if for every $x, y \in M_1$ and every $r \in R$ we have f(x + y) = f(x) + f(y) and f(rx) = rf(x).

By using a certain type of equivalence relations we can connect hyperstructures to ordinary structures. The smallest of these relations are called fundamental relations and denoted by $\beta^*, \gamma^*, \varepsilon^*$. If H is an H_v -group $(H_v$ -ring, H_v -module over an H_v -ring R) then H/β^* is a group (H/γ^*) is a ring, H/ε^* is a R/γ^* -module, respectively). According to [16] the fundamental relation ε^* on an H_v -module can be defined as follows:

Consider the left H_v -module M over an H_v -ring R. If ϑ denotes the set of all expressions consisting of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of elements of R and M, a relation ε can be defined on M whose transitive closure is the fundamental relation ε^* so that for every $x, y \in M$; $x \in y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \vartheta$; i.e.:

$$x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m'_i, \ m'_i = m_i \text{ or } m'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{k_{ij}} r_{ijk}) m_i,$$

where $m_i \in M$, $r_{ijk} \in R$.

Suppose that $\gamma^*(r)$ is the equivalence class containing $r \in R$ and $\varepsilon^*(x)$ is the equivalence class containing $x \in M$. On M/ε^* the \oplus and the external product \odot using the γ^* classes in R are defined as follows:

For every $x, y \in M$ and for every $r \in R$,

 $\varepsilon^*(x) \oplus \varepsilon^*(y) = \varepsilon^*(c)$, for every $c \in \varepsilon^*(x) + \varepsilon^*(y)$, $\gamma^*(r) \odot \varepsilon^*(x) = \varepsilon^*(d)$, for every $d \in \gamma^*(r) \cdot \varepsilon^*(x)$.

The heart of an H_v -module M over an H_v -ring R is denoted by ω_M and defined by $\omega_M = \{x \in M \mid \varepsilon_M^*(x) = 0\}$ where 0 is the unit element of the group $(M/\varepsilon^*, \oplus)$. One can prove that the unit element of the group $(M/\varepsilon^*, \oplus)$ is equal to ω_M . By the definition of ω_M we have

$$\omega_{\omega_M} = Ker(\phi: \omega_M \longrightarrow \omega_M / \varepsilon^*_{\omega_M} = 0) = \omega_M.$$

Let M_1 and M_2 be two H_v -modules over an H_v -ring R and let ε_1^* , ε_2^* , and ε^* be the fundamental relations on M_1 , M_2 , and $M_1 \times M_2$, respectively; then $(x_1, x_2)\varepsilon^*(y_1, y_2)$ if and only if $x_1\varepsilon_1^*y_1$ and $x_2\varepsilon_2^*y_2$ for all $(x_1, x_2), (y_1, y_2) \in M_1 \times M_2$ [15, 16].

Weak equality (monic, epic), exact sequences, and relative results in H_v -modules are defined as follows [7]: let M be an H_v -module. The nonempty subsets X and Y of M are weakly equal if for every $x \in X$ there exists $y \in Y$ such that $\varepsilon_M^*(x) = \varepsilon_M^*(y)$ and for every $y \in Y$ there exists $x \in X$ such that $\varepsilon_M^*(x) = \varepsilon_M^*(y)$ and it is denoted by $X \stackrel{w}{=} Y$. The sequence $M_0 \stackrel{f_1}{\longrightarrow} M_1 \stackrel{f_2}{\longrightarrow} M_2 \longrightarrow \cdots \longrightarrow M_{n-1} \stackrel{f_n}{\longrightarrow} M_n$ of H_v -modules and strong homomorphisms is exact if, for every $2 \leq i \leq n$, $Im(f_{i-1}) \stackrel{w}{=} Ker(f_i)$ where $Ker(f_i) = \{a \in M_{i-1} \mid f_i(a) \in \omega_{M_i}\}$ (that is, an H_v -submodule of M_{i-1}).

The strong homomorphism $f: M_1 \longrightarrow M_2$ is called weak-monic if for every $m_1, m'_1 \in M_1$ the equality $f(m_1) = f(m'_1)$ implies $\varepsilon^*_{M_1}(m_1) = \varepsilon^*_{M_1}(m'_1)$ and f is called weak-epic if for every $m_2 \in M_2$ there exists $m_1 \in M_1$ such that $\varepsilon^*_{M_2}(m_2) = \varepsilon^*_{M_2}(f(m_1))$. Finally, f is called a weak-isomorphism if f is weak-monic and weak-epic.

It is easy to see that every one to one (onto) strong homomorphism is weak-monic (weak-epic), but the converse is not necessarily true. In fact, the concept of weak-monic (weak-epic) is a generalization of the concept of one to one (onto) [see the mapping f in Example 1].

Let $f : A \longrightarrow B$ be a strong homomorphism of H_v -modules over an H_v -ring R. Then we have $f(\omega_A) \subseteq \omega_B$ and so $\omega_A \subseteq Ker(f)$. Moreover, $Ker(f) = \omega_A$ if and only if f is weak-monic.

Lemma 2.1 [13] Let A and B be H_v -modules. If $\omega_A \xrightarrow{i} A \xrightarrow{f} B$ is exact, then f is weak-monic.

Proof It is enough to show that $Ker(f) = \omega_A$. We always have $\omega_A \subseteq Ker(f)$. On the other hand, if $a \in Ker(f)$ then there exists $a_1 \in Im(i) = \omega_A$ such that $\varepsilon_A^*(a) = \varepsilon_A^*(a_1) = \omega_A$ and so $a \in \omega_A$. Therefore, $Ker(f) = \omega_A$ and f is weak-monic.

Now we prove the snake lemma and close this section.

Theorem 2.2 (Snake lemma in H_v -modules) Let

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \omega_{C}$$

$$h \downarrow \qquad k \downarrow \qquad l \downarrow$$

$$\omega_{A_{1}} \longrightarrow A_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{g_{1}} C_{1}$$

be a commutative diagram of H_v -modules and strong homomorphisms over an H_v -ring R with both exact rows. If l is weak-monic, then there exists an exact sequence as follows:

$$Ker(h) \xrightarrow{\alpha} Ker(k) \xrightarrow{\beta} Ker(l).$$

Proof First we want to define α and β . We have

$$Ker(h) = \{a \in A \mid h(a) \in \omega_{A_1}\},\$$
$$Ker(k) = \{b \in B \mid k(b) \in \omega_{B_1}\},\$$
$$Ker(l) = \{c \in C \mid l(c) \in \omega_{C_1}\}.$$

Now, for $a \in Ker(h)$, $f_1 \circ h(a) \in f_1(\omega_{A_1}) \subseteq \omega_{B_1}$. Since $f_1 \circ h(a) = k \circ f(a)$, we obtain $f(a) \in Ker(k)$. Also, for $b \in Ker(k)$, $g_1 \circ k(b) \in g_1(\omega_{B_1}) \subseteq \omega_{C_1}$. Since $g_1 \circ k(b) = l \circ g(b)$, we obtain $g(b) \in Ker(l)$.

We define α by $\alpha(a) = f(a)$ for every $a \in Ker(h)$ and β by $\beta(b) = g(b)$ for every $b \in Ker(k)$. Since Ker(h), Ker(k), and Ker(l) are H_v -submodules of A, B, and C, respectively, and f, g are strong homomorphisms, it follows that α and β are strong homomorphisms. We show that $Im(\alpha) \stackrel{w}{=} Ker(\beta)$. Letting $x \in Im(\alpha)$, then x = f(a) for some $a \in Ker(h)(\subseteq A)$. The first row is exact, so there exists $b \in Ker(g)$ such that $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$, where $g(b) \in \omega_C$. Since l is weak-monic we have $ker(l) = \omega_C$, but $\omega_{ker(l)} = \omega_{\omega_C} = \omega_C$ and so $\beta(b) = g(b) \in \omega_{Ker(l)}$. It is enough to show $b \in Ker(k)$. Since $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$ and $f(a) \in Im(\alpha) \subseteq Ker(k)$, we obtain $b \in Ker(k)$.

Conversely, let $b \in Ker(\beta)$, and then $\beta(b) = g(b) \in \omega_{Ker(l)} = \omega_C$ and $b \in Ker(g)$. Since the first row is exact, there exists $f(a) \in Im(f)$ for some $a \in A$ such that $\varepsilon_B^*(b) = \varepsilon_B^*(f(a))$. It is enough to show $a \in Ker(h)$. Since k is strong and the diagram is commutative, we obtain $\varepsilon_{B_1}^*(k(b)) = \varepsilon_{B_1}^*(k(f(a))) = \varepsilon_{B_1}^*(f_1(h(a)))$. Since $b \in Ker(\beta) \subseteq Ker(k)$, it follows that $f_1(h(a)) \in \omega_{B_1}$ and $h(a) \in Ker(f_1)$. Since f_1 is weak-monic (by exactness and Lemma 2.1), we have $Ker(f_1) = \omega_{A_1}$. Therefore, $a \in Ker(h)$.

3. Schanuel's lemma in H_v -modules

In this section we define the concepts of star homomorphism, (star) isomorph sequences, and star projective H_v -modules (we also build and present some examples for these concepts) in order to find a generalization of Schanuel's lemma. We also prove a problem on commutative diagrams.

Definition 3.1 A mapping $f: M_1 \longrightarrow M_2$ of H_v -modules M_1 and M_2 over an H_v -ring R is called a star homomorphism if for every $x, y \in M_1$ and every $r \in R$: $\varepsilon_{M_2}^*(f(x+y)) = \varepsilon_{M_2}^*(f(x) + f(y))$ and $\varepsilon_{M_2}^*(f(rx)) = \varepsilon_{M_2}^*(rf(x))$; i.e. $f(x+y) \stackrel{w}{=} f(x) + f(y)$ and $f(rx) \stackrel{w}{=} rf(x)$.

Every strong homomorphism is a star homomorphism but the converse is not true necessarily by the following example.

Example 1 Let R be an H_v -ring. Consider the following H_v -modules on R:

(1) $M_1 = \{a, b\}$ together with the following hyperoperations:

(2) $M_2 = \{0, 1, 2\}$ together with the following hyperoperations:

We obtain $M_2/\varepsilon_{M_2}^* = \{\varepsilon_{M_2}^*(0) = \{0,2\}, \varepsilon_{M_2}^*(1) = \{1\}\}$. If $f: M_1 \longrightarrow M_2$ defined by f(a) = 0 and f(b) = 1 then f is a star homomorphism but not a strong homomorphism because $f(b *_{M_1} b) \neq f(b) *_{M_2} f(b)$.

Definition 3.2 Two mappings $f, g: M \longrightarrow N$ on H_v -modules are called weak equal if for every $m \in M$; $\varepsilon_N^*(f(m)) = \varepsilon_N^*(g(m))$ and denoted by $f \stackrel{w}{=} g$. The following diagram of H_v -modules and strong homomorphisms is called star commutative if $g \circ f \stackrel{w}{=} h$.

Also, it is said to be commutative if for every $a \in A$, $g \circ f(a) = h(a)$.

Definition 3.3 The sequences

$$\omega_A \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \omega_C$$

and

$$\omega_{A'} \longrightarrow A^{'} \xrightarrow{f'} B^{'} \xrightarrow{g'} C^{'} \longrightarrow \omega_{C'}$$

are called isomorph (star isomorph) if there exist weak-isomorphisms (star homomorphisms) $\alpha : A \longrightarrow A'$, $\beta : B \longrightarrow B'$, and $\gamma : C \longrightarrow C'$ such that the following diagram is commutative (star commutative):

Definition 3.4 An H_v -module P is called star projective if for every diagram of strong homomorphisms and H_v -modules as follows

such that its row is exact, there exists a strong homomorphism $\phi: P \longrightarrow M$ such that $g \circ \phi \stackrel{w}{=} f$.

According to [7], for every strong homomorphism $f: M \longrightarrow N$ there is the R/γ^* -homomorphism $F: M/\varepsilon_M^* \longrightarrow N/\varepsilon_N^*$ of R/γ^* -modules defined by $F(\varepsilon_M^*(m)) = \varepsilon_N^*(f(m))$.

Lemma 3.5 [13] Let $f: A \longrightarrow B$ be a strong homomorphism of H_v -modules. Then f is weak-epic (weak-monic) if and only if F is onto (one to one). Thus, f is a weak-isomorphism if and only if F is an isomorphism.

Proof Suppose that f is weak-epic and $\varepsilon_B^*(b) \in B/\varepsilon_B^*$. Since f is weak-epic, there exists $a \in A$ such that $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$, but $\varepsilon_B^*(f(a)) = F(\varepsilon_A^*(a))$. Thus, $F(\varepsilon_A^*(a)) = \varepsilon_B^*(b)$ and consequently F is onto.

Conversely, let F be onto. Then, for every $b \in B$, there exists $\varepsilon_A^*(a) \in A/\varepsilon_A^*$ such that $F(\varepsilon_A^*(a)) = \varepsilon_B^*(b)$, but $F(\varepsilon_A^*(a)) = \varepsilon_B^*(f(a))$. Thus, there exists $a \in A$ such that $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$ and consequently f is weakepic. The second part is proved in [7]. The third part is an obvious result. \Box

VAZIRI and GHADIRI/Turk J Math

Theorem 3.6 (Schanuel's lemma in H_v -modules) Let P_1 and P_2 be two star projective H_v -modules. Then the following exact sequences are star isomorph:

$$\omega_K \longrightarrow K \xrightarrow{f} P_1 \xrightarrow{g} M \longrightarrow \omega_M , \qquad (1)$$

$$\omega_L \longrightarrow L \xrightarrow{f_1} P_2 \xrightarrow{g_1} M \longrightarrow \omega_M .$$
⁽²⁾

Proof Let $\gamma: M \longrightarrow M$ be identity on M. Since P_1 is a star projective H_v -module, there exists a strong homomorphism $\beta: P_1 \longrightarrow P_2$ such that for every $p \in P_1$; $\varepsilon_M^*(g_1 \circ \beta(p)) = \varepsilon_M^*(g(p))$. Now, for every $k \in K$; $f(k) \in P_1$ and then by exactness of sequence (1) we have $\beta \circ f(k) \in Ker(g_1)$ and so by exactness of sequence (2) there exists $l_k \in L$ such that $\varepsilon_{P_2}^*(\beta(f(k))) = \varepsilon_{P_2}^*(f_1(l_k))$. We define $\alpha: K \longrightarrow L$ by $\alpha(k) = l_k$. Supposing $k_1, k_2 \in K$ and $r \in R$, we have:

$$\begin{split} \varepsilon_{P_2}^*(\beta \circ f(k_1 + k_2)) &= \varepsilon_{P_2}^*(\beta(f(k_1)) + \beta(f(k_2))) \\ &= \varepsilon_{P_2}^*(\beta f(k_1)) \oplus \varepsilon_{P_2}^*(\beta(f(k_2))) \\ &= \varepsilon_{P_2}^*(f_1(l_{k_1})) \oplus \varepsilon_{P_2}^*(f_1(l_{k_2})) \\ &= \varepsilon_{P_2}^*(f_1(l_{k_1}) + f_1(l_{k_2})) \\ &= \varepsilon_{P_2}^*(f_1(l_{k_1} + l_{k_2})) \\ &= \varepsilon_{P_2}^*(f_1(\alpha(k_1) + \alpha(k_2)) \\ &= F_1(\varepsilon_L^*(\alpha(k_1) + \alpha(k_2))), \end{split}$$

while on the other hand

$$\begin{split} \varepsilon_{P_2}^*(\beta \circ f(k_1 + k_2)) &= \{ \varepsilon_{P_2}^*(\beta(f(t))) | \ t \in k_1 + k_2 \} \\ &= \{ \varepsilon_{P_2}^*(f_1(l_t)) | \ t \in k_1 + k_2; \ \varepsilon_{P_2}^*(\beta(f(t))) = \varepsilon_{P_2}^*(f_1(l_t)) \} \\ &= \{ \varepsilon_{P_2}^*(f_1(\alpha(t))) | \ t \in k_1 + k_2 \} \\ &= \varepsilon_{P_2}^*(f_1(\alpha(k_1 + k_2))) \\ &= F_1(\varepsilon_L^*(\alpha(k_1 + k_2))). \end{split}$$

Thus, $F_1(\varepsilon_L^*(\alpha(k_1+k_2))) = F_1(\varepsilon_L^*(\alpha(k_1)+\alpha(k_2)))$. Now by Lemma 2.1 and Lemma 3.5, F_1 is one to one and $\varepsilon_L^*(\alpha(k_1+k_2)) = \varepsilon_L^*(\alpha(k_1)+\alpha(k_2))$.

Also,

$$\begin{split} \varepsilon_{P_{2}}^{*}(\beta \circ f(rk_{1})) &= \varepsilon_{P_{2}}^{*}(r\beta(f(k_{1}))) \\ &= \gamma^{*}(r) \odot \varepsilon_{P_{2}}^{*}(\beta(f(k_{1}))) \\ &= \gamma^{*}(r) \odot \varepsilon_{P_{2}}^{*}(f_{1}(l_{k_{1}})) \\ &= \varepsilon_{P_{2}}^{*}(rf_{1}(l_{k_{1}})) \\ &= \varepsilon_{P_{2}}^{*}(rf_{1}(\alpha(k_{1}))) \\ &= \varepsilon_{P_{2}}^{*}(f_{1}(r\alpha(k_{1}))) \\ &= F_{1}(\varepsilon_{L}^{*}(r\alpha(k_{1})), \end{split}$$

while on the other hand

$$\begin{split} \varepsilon_{P_2}^*(\beta(f(rk_1))) &= \{ \varepsilon_{P_2}^*(\beta(f(t))) | \ t \in rk_1 \} \\ &= \{ \varepsilon_{P_2}^*(f_1(l_t)) | \ t \in rk_1; \ \varepsilon_{P_2}^*(\beta(f(t))) = \varepsilon_{P_2}^*(f_1(l_t)) \} \\ &= \{ \varepsilon_{P_2}^*(f_1(\alpha(t))) | \ t \in rk_1 \} \\ &= \varepsilon_{P_2}^*(f_1(\alpha(rk_1))) \\ &= F_1(\varepsilon_L^*(\alpha(rk_1))). \end{split}$$

Thus, $F_1(\varepsilon_L^*(\alpha(rk_1))) = F_1(\varepsilon_L^*(r\alpha(k_1)))$. Now by Lemma 2.1 and Lemma 3.5, F_1 is one to one and $\varepsilon_L^*(\alpha(rk_1)) = \varepsilon_L^*(r\alpha(k_1))$, and α is a star homomorphism.

One can check the star commutativity on these star homomorphisms.

Theorem 3.7 (i) Let

$$\omega_A \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C$$
$$\beta \downarrow \qquad \gamma \downarrow$$
$$[1ex] \omega_{A_1} \longrightarrow A_1 \xrightarrow{f_1} B_1 \xrightarrow{g_1} C_1$$

be a star commutative diagram of H_v -modules and strong H_v -homomorphisms with both exact rows. Then there exists a star homomorphism $\alpha : A \longrightarrow A_1$ such that it star-commutes the diagram.

(ii) Let

be a star commutative diagram of H_v -modules and strong homomorphisms with both exact rows. Then there exists a star homomorphism $\gamma: C \longrightarrow C_1$ such that it star-commutes the diagram.

Proof (i) For every $a \in A$ we have $\varepsilon_{C_1}^*(g_1 \circ \beta \circ f(a)) = \varepsilon_{C_1}^*(\gamma \circ g \circ f(a))$. The first row is exact and γ is strong homomorphism. Then $g \circ f(a) \in \omega_C$ and $\gamma \circ g \circ f(a) \in \omega_{C_1}$. Thus, $\beta \circ f(a) \in Ker(g_1)$ and there exists $a_1 \in A_1$ such that $\varepsilon_{B_1}^*(\beta \circ f(a)) = \varepsilon_{B_1}^*(f_1(a_1))$. Now we define $\alpha : A \longrightarrow A_1$ by $\alpha(a) = a_1$.

Similar to the proof of Theorem 3.6 one can show that α is a star homomorphism. Also, for every $a \in A$, we have

$$\varepsilon_{B_1}^*(f_1 \circ \alpha(a)) = \varepsilon_{B_1}^*(f_1(a_1)) = \varepsilon_{B_1}^*(\beta \circ f(a)).$$

(ii) Since g is weak-epic for every $c \in C$ there exists $b_c \in B$ such that $\varepsilon_C^*(c) = \varepsilon_C^*(g(b_c))$. We define $\gamma: C \longrightarrow C_1$ by $\gamma(c) = g_1 \circ \beta(b_c)$. The remainder of the proof is straightforward and similar to the proof of (i). \Box

4. Product and direct sum in H_v -modules

In this section we define the concepts of the product and direct sum of H_v -modules (we also build and present some examples for these concepts), and we determine the conditions to split an exact sequence. **Definition 4.1** Let M be an H_v -module; H and K are H_v -submodules of M. M is said to be the direct sum of H and K if $H \cap K \subseteq \omega_M$ and $\varepsilon^*(H + K) = \varepsilon^*(M)$. We denote it by $H \oplus K = M$.

Example 2 For every H_v -module M we have $M = \omega_M \oplus M$.

Example 3 Consider the following weak commutative H_v -group:

$*_M$	0	1	2	3	4	5	6
0	0,1	0,1		3	4	5	6
1	0,1	0,1	$\mathcal{2}$	3	4	5	6
\mathcal{Z}	\mathcal{Z}	$\mathcal{2}$	0, 1	5,6	5,6	2, 3, 4	2, 3, 4
3	3	3	5, 6	0,1	5,6	2, 3, 4	2, 3, 4
4	4	4	5, 6	5,6	0, 1	2, 3, 4	2, 3, 4
5	5		2, 3, 4	2, 3, 4	2, 3, 4	6	0,1
6	6	6	2, 3, 4	2, 3, 4	2, 3, 4	0, 1	5

One can check that $R = (M, *_M, .)$ is an H_v -ring where $r_1.r_2 = \{0, 1\}$ for every $r_1, r_2 \in R$ and M is an H_v -module over the H_v -ring R. Also,

$$M/\varepsilon_M^* = \{\varepsilon_M^*(0), \varepsilon_M^*(2)\},\$$

where

$$\varepsilon_M^*(0) = \omega_M = \{0, 1, 5, 6\}, \quad \varepsilon_M^*(2) = \{2, 3, 4\}.$$

Now $H = \{0, 1, 2\}$ and $K = \{0, 1, 5, 6\}$ are H_v -submodules of M and $H \oplus K = M$.

Proposition 4.2 Let $f: M \longrightarrow M$ be a strong homomorphism of H_v -modules such that $f^2 = f$. Then M is the direct sum of Im(f) and Ker(f). Moreover, f is identity on $Im(f) \cap Ker(f)$.

Proof Let $m \in Im(f) \cap Ker(f)$, and then

$$m = f(m_1) \text{ for some } m_1 \text{ in } M \tag{3}$$

and

$$f(m) \in \omega_M. \tag{4}$$

By applying f on Eq. (3) we obtain $f(m) = f^2(m_1) = f(m_1) = m$ as a member of ω_M by Eq. (4), so $Im(f) \cap Ker(f) \subseteq \omega_M$ and f is identity on $Im(f) \cap Ker(f)$. Now, for every $m \in M$, we have:

$$F(F(\varepsilon^*(m))) = F(\varepsilon^*(f(m))) = \varepsilon^*(f^2(m)) = \varepsilon^*(f(m)) = F(\varepsilon^*(m)).$$

Thus, $Im(F) + Ker(F) = M/\varepsilon_M^*$, since F is a R/γ^* -module such that $F^2 = F$. Therefore, $\varepsilon^*(Im(f) + Ker(f)) = \varepsilon^*(M)$.

Let $\{M_i\}_{i\in I}$ be a nonempty collection of H_v -modules. The product of this collection,

$$\sqcap_{i \in I} \{ M_i \} = \{ (x_i) | x_i \in M; \forall i \in I \},\$$

with the following hyperoperations is an H_v -module:

$$(x_i) + (y_i) = \{(z_i) | z_i \in x_i + y_i\},$$

 $r(x_i) = \{(w_i) | w_i \in rx_i\}.$

Lemma 4.3 Let $\sqcap_{i \in I} M_i$ be the product of the nonempty collection of H_v -modules. Then: (i) $P_k : \sqcap M_i \longrightarrow M_k$ defined by $P_k((x_i)) = x_k$ is a strong homomorphism. (ii) For every exact sequence $M_1 \xrightarrow{\phi} M \xrightarrow{\psi} M_2$ the mapping $\lambda_1 : M_1 \longrightarrow M_1 \sqcap M_2$ defined by $\lambda_1(x) = (x, \psi\phi(x))$ is a strong homomorphism. Also, $\lambda_2 : M_2 \longrightarrow M_1 \sqcap M_2$,

defined by $\lambda_2(x) = (a, x)$, where a is an arbitrary member of ω_{M_1} , is a star homomorphism. In particular, if there exists a $t \in \omega_{M_1}$ such that t + t = t, then λ_2 is a strong homomorphism.

(*iii*) $P_k \lambda_k = I_{M_k}$.

 $\mathbf{Proof} \quad (i)$

$$P_k((x_i) + (y_i)) = P_k(\{(z_i) | z_i \in x_i + y_i\}) = \{z_k | z_k \in x_k + y_k\}$$

On the other hand,

$$P_k((x_i)) + P_k((y_i)) = x_k + y_k.$$

Similarly, we obtain $P_k(r(x_i)) = rP_k((x_i))$.

(ii) We have

$$\lambda_1(x+y) = \bigcup_{a \in x+y, b \in \psi\phi(x+y)} (a,b)$$
$$= (x, \psi\phi(x)) + (y, \psi\phi(y))$$
$$= \lambda_1(x) + \lambda_1(y).$$

obtain $\lambda_1(rx) = r\lambda_1(x)$. Also,

$$\begin{split} \varepsilon^*(\lambda_2(x+y)) &= \varepsilon^*(\bigcup_{a \in \omega_{M_1}, b \in x+y}(a, b)) \\ &= \varepsilon^*((a_1, x) + (a_1, y)) \quad \text{where } a_1 \in \omega_{M_1} \\ &= \varepsilon^*((a_1, x)) \oplus \varepsilon^*((a_1, y)) \\ &= \varepsilon^*(\lambda_2(x)) \oplus \varepsilon^*(\lambda_2(y)) \\ &= \varepsilon^*(\lambda_2(x) + \lambda_2(y)). \end{split}$$

Similarly, $\varepsilon^*(\lambda_2(rx)) = \varepsilon^*(r\lambda_2(x)).$

(iii) The proof of this part is straightforward.

Theorem 4.4 Let $\{M_i\}$ be a nonempty collection of H_v -modules. For every H_v -module X and every collection of strong homomorphisms $\{f_i : X \longrightarrow M_i\}$ there exists a unique strong homomorphism $\phi : X \longrightarrow \square M_i$ defined by $\phi(x) = (f_i(x))$ such that for every $i \in I$ the following diagram is commutative.

Proof The proof is straightforward.

We want to define the inverse of a weak-isomorphism to determine the conditions for splitting an exact sequence.

Lemma 4.5 Let $f: M \longrightarrow N$ be a weak-isomorphism. Then $f^{-1}: N \longrightarrow M$ defined by $f^{-1}(n) = m_n$ for selected $m_n \in F^{-1}(\varepsilon_N^*(n))$ is a star homomorphism such that $f^{-1} \circ f \stackrel{w}{=} I_M$ and $f \circ f^{-1} \stackrel{w}{=} I_N$.

Proof Since f is a weak-isomorphism by Lemma 3.5, F is an isomorphism and has an inverse. For every $n_1, n_2 \in N$ we have

$$f^{-1}(n_1 + n_2) = \{ m_c | m_c \in F^{-1}(\varepsilon_N^*(c)), \ c \in n_1 + n_2 \}.$$
(5)

On the other hand,

$$f^{-1}(n_1) + f^{-1}(n_2) = m_{n_1} + m_{n_2}$$

$$\subseteq F^{-1}(\varepsilon_N^*(n_1)) + F^{-1}(\varepsilon_N^*(n_2))$$

$$= F^{-1}(\varepsilon_N^*(n_1 + n_2)).$$
(6)

From Eq. (5) and Eq. (6) we obtain $\varepsilon_M^*(f^{-1}(n_1+n_2)) = \varepsilon_M^*(f^{-1}(n_1) + f^{-1}(n_2))$ (notice that for every $n_1, n_2 \in N, n_1 + n_2 \subseteq \varepsilon_N^*(n)$ for some $n \in n_1 + n_2$).

Similarly, we obtain $\varepsilon_M^*(f^{-1}(rn)) = \varepsilon_M^*(rf^{-1}(n))$.

Finally, for every $m \in M$ we have

$$\begin{split} f^{-1} \circ f(m) &\in F^{-1}(\varepsilon_N^*(f(m))) \\ &= F^{-1}(F(\varepsilon_M^*(m))), \\ &= \varepsilon_M^*(m) \end{split}$$

and for every $n \in N$,

$$f \circ f^{-1}(n) = f(m_n)$$
, where $m_n \in F^{-1}(\varepsilon_N^*(n))$,
but $f(m_n) \in \varepsilon_N^*(n)$.

Definition 4.6 Letting f be a weak-isomorphism, the f^{-1} defined in Lemma 4.5 is called the inverse of f. It is clear that this inverse is not necessarily unique.

Theorem 4.7 Let M_1 , M_2 , and M be three H_v -modules and the sequence

$$\omega_{M_1} \longrightarrow M_1 \xrightarrow{\phi} M \xrightarrow{\psi} M_2 \longrightarrow \omega_{M_2} \tag{7}$$

is exact:

(i) If there exists a star homomorphism $\phi': M \longrightarrow M_1$ ($\psi': M_2 \longrightarrow M$) such that $\phi' \phi \stackrel{w}{=} I_{M_1}$ ($\psi \psi' \stackrel{w}{=} I_{M_2}$), then the sequence (7) is star isomorph with the sequence

$$\omega_{M_1} \longrightarrow M_1 \xrightarrow{\lambda_1} M_1 \sqcap M_2 \xrightarrow{P_2} M_2 \longrightarrow \omega_{M_2}.$$
(8)

(ii) If the sequences (7) and (8) are isomorph, then there exist star homomorphisms $\phi': M \longrightarrow M_1$ and $\psi': M_2 \longrightarrow M$ such that $\phi' \phi \stackrel{w}{=} I_{M_1}, \ \psi \psi' \stackrel{w}{=} I_{M_2}$.

Proof (i) We define $\alpha: M \longrightarrow M_1 \sqcap M_2$ by $\alpha(x) = (\phi'(x), \psi(x))$. It is easy to see that α is a star homomorphism. Since for every $m_1 \in M_1$ we have $\phi'\phi(m_1) \in \varepsilon^*_{M_1}(m_1)$ and $\psi\phi(m_1) \in \omega_{M_1}$, the following

diagram is star commutative with both exact rows.

$$\begin{array}{c|c} \omega_{M_1} \longrightarrow M_1 & \stackrel{\phi}{\longrightarrow} M & \stackrel{\psi}{\longrightarrow} M_2 \longrightarrow \omega_{M_2} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & &$$

Now let there exist the star homomorphism $\psi': M_2 \longrightarrow M$ such that $\psi\psi' \stackrel{w}{=} I_{M_2}$. We define the mapping $\beta: M_1 \times M_2 \longrightarrow M$ by $\beta((m_1, m_2)) = m_{m_1, m_2}$ where m_{m_1, m_2} is a member of $\phi(m_1) + \psi'(m_2)$ (according to the choice axiom). We show that β is a star homomorphism. We have: $\varepsilon^*(\beta((a_1, a_2) + (a'_1, a'_2))) = \varepsilon^*(\beta((t_1, t_2)), where t_1 \in a_1 + a'_1 \text{ and } t_2 \in a_2 + a'_2$. and

$$\begin{aligned} \varepsilon^*(\beta((a_1, a_2))) \oplus \varepsilon^*(\beta((a_1^{'}, a_2^{'}))) &= \varepsilon^*(\phi(a_1) + \psi^{'}(a_2)) \oplus \varepsilon^*(\phi(a_1^{'}) + \psi^{'}(a_2^{'})) \\ &= \varepsilon^*(\phi(a_1) + \psi^{'}(a_1^{'}) + \phi(a_2) + \psi^{'}(a_2^{'})) \\ &= \varepsilon^*(\phi(t_1)) \oplus \varepsilon^*(\psi^{'}(t_2) \\ &= \varepsilon^*(\phi(t_1) + \psi^{'}(t_2)) \\ &= \varepsilon^*(\beta((t_1, t_2)), \end{aligned}$$

where $t_1 \in a_1 + a'_1$ and $t_2 \in a_2 + a'_2$. Thus, β is a star homomorphism. One can show that the following diagram is star commutative:

$$\begin{split} \omega_{M_1} & \longrightarrow M_1 \xrightarrow{\phi} M \xrightarrow{\psi} M_2 \longrightarrow \omega_{M_2} \\ & & \uparrow^{1_{M_1}} & \uparrow^{\beta} & \uparrow^{1_{M_2}} \\ \omega_{M_1} & \longrightarrow M_1 \xrightarrow{\lambda_1} M_1 \sqcap M_2 \xrightarrow{P_2} M_2 \longrightarrow \omega_{M_2} \end{split}$$

(*ii*) By hypothesis there exist weak-isomorphisms $\alpha: M_1 \longrightarrow M_1, \ \beta: M \longrightarrow M_1 \sqcap M_2$, and $\gamma: M_2 \longrightarrow M_2$ that commute the following diagram:

By Lemma 4.5, there exists star homomorphism $\alpha^{-1}: M_1 \longrightarrow M_1$ such that $\alpha^{-1} \circ \alpha \stackrel{w}{=} I_{M_1}$. Now we define $\phi': M \longrightarrow M_1$ by $\phi' = \alpha^{-1} P_1 \beta$. Consequently, ϕ' is a star homomorphism and

$$\phi'\phi = \alpha^{-1}P_1\beta\phi = \alpha^{-1}P_1\lambda_1\alpha = \alpha^{-1}\mathbf{1}_{M_1}\alpha \stackrel{w}{=} I_{M_1}.$$

1131

VAZIRI and GHADIRI/Turk J Math

Similarly, by hypothesis, there exist weak-isomorphisms

 $\alpha: M_1 \longrightarrow M_1, \ \beta: M_1 \sqcap M_2 \longrightarrow M$, and $\gamma: M_2 \longrightarrow M_2$ such that the following diagram is commutative:

$$\begin{array}{c|c} \omega_{M_1} \longrightarrow M_1 \xrightarrow{\lambda_1} M_1 \sqcap M_2 \xrightarrow{P_2} M_2 \longrightarrow \omega_{M_2} \\ & & &$$

By Lemma 4.5, there exists star homomorphism $\gamma^{-1}: M_2 \longrightarrow M_2$ such that $\gamma \circ \gamma^{-1} \stackrel{w}{=} I_{M_2}$ Now we define $\psi': M_2 \longrightarrow M$ by $\psi' = \beta \lambda_2 \gamma^{-1}$. Obviously ψ' is a star homomorphism and

$$\psi\psi' = \psi\beta\lambda_2\gamma^{-1} = \gamma P_2\lambda_2\gamma^{-1} = \gamma \mathbf{1}_{M_2}\gamma^{-1} \stackrel{w}{=} I_{M_2}.$$

An exact sequence in Theorem 4.7 is called a split sequence.

References

- [1] Corsini P. Prolegomena of Hypergroup Theory. 2nd ed. Tricesimo, Italy: Aviani, 1993.
- [2] Corsini P, Leoreanu V. Applications of Hyperstructure Theory. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2003.
- [3] Davvaz B. H_v-module of fractions. In: Proceedings of the 8th Algebra Seminar of the Iranian Mathematical Society, 17–18 December 1996; Tehran, Iran. Tehran, Iran; University of Tehran, 1996, pp. 37-46.
- [4] Davvaz B. Remarks on weak hypermodules. B Korean Math Soc 1999; 36: 599-608.
- [5] Davvaz B. Approximations in H_v -modules. Taiwanese J Math 2002; 6: 499-505.
- [6] Davvaz B. A brief survey of the theory of H_v-structures. In: Proceedings of the 8th International Congress on Algebraic Hyperstructures and Applications; 1–9 September 2002; Samothraki, Greece. Athens, Greece: Spanidis Press, 2003, pp. 39-70.
- [7] Davvaz B, Ghadiri M. Weak equality and exact sequences in H_v -modules. Southeast Asian Bull Math 2001; 25: 403-411.
- [8] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. San Diego, CA, USA: International Academic Press, 2007.
- [9] Davvaz B, Vougiouklis T. n-ary H_v-modules with external n-ary P-hyperoperation. U Politeh Buch Ser A 2014; 76: 141-150.
- [10] Ghadiri M, Davvaz B. Direct system and direct limit of H_v -modules. Iran J Sci Technol A 2004; 28: 267-275.
- [11] Marty F. Sur une generalization de la notion de groupe. In: Proceedings of the 8th Congress des Mathematiciens; 1934; Stockholm, Sweden. pp. 45-49 (in French).
- [12] Taghavi A, Vougiouklis T, Hosseinzadeh R. A note on operators on normed finite dimensional weak hypervector spaces. U Politeh Buch Ser A Appl Math Phy 2012; 74: 103-108.
- [13] Vaziri Y, Ghadiri M, Davvaz B. The M[-] and [-]M functor and five short lemma in H_v-modules. Turk J Math 2016; 40: 397-410.
- [14] Vougiouklis T. The fundamental relation in hyperrings. The general hyperfield. In: Algebraic Hyperstructures and Applications (Xanthi, 1990). Teaneck, NJ, USA: World Science Publishing, 1991, pp. 203-211.

VAZIRI and GHADIRI/Turk J Math

- [15] Vougiouklis T. H_v -vector spaces. In: Proceedings of the 5th International Congress on Algebraic Hyperstructures and Applications; 4–10 July 1993; Iasi, Romania. Palm Harbor, FL, USA: Hadronic Press, 1994, pp. 181-190.
- [16] Vougiouklis T. Hyperstructures and Their Representations. Palm Harbor, FL, USA: Hadronic Press, 1994.