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Abstract: The aim of writing this paper is given in the title. We want to show that not only the ideals but also

the ideal elements play an essential role in studying the structure of some ordered semigroups. We first prove that

a ∨e -semigroup S is a semilattice of left simple ∨e -semigroups if and only if it is decomposable into some pairwise

disjoint left simple ∨e -subsemigroups of S indexed by a semilattice Y . Then we give an example of a semilattice of

left simple ∨e -semigroups that leads to a characterization of the semilattices of left simple and the chains of left simple

∨e -semigroups in terms of left ideal elements.

Key words: ∨e -semigroup, left (right) ideal element, left (right) regular, semilattice (chain) of left simple ∨e -
semigroups

1. Introduction and prerequisities

It is well known that the ideals of ordered semigroups play an essential role in studying their structure. Our aim

is to show the role of the ideal elements in studying some ordered semigroups. An ordered groupoid (shortly

po -groupoid) is an ordered set (S,≤) with a multiplication “.” that is compatible with the ordering (that is,

a ≤ b implies ac ≤ bc and ca ≤ cb for every c ∈ S ). The concept of the left (resp. right) ideal element of a

po -groupoid S has been introduced in [1] as an element a of S such that xa ≤ a (resp. ax ≤ a) for every

x ∈ S . An element that is both a left and a right ideal element is called an ideal element. An ordered groupoid

in which the multiplication is associative is called an ordered semigroup (po -semigroup) [1,3]. Every ordered

set S such that, for any a, b ∈ S , the sup{a, b} exists in S is called an upper semilattice (or a ∨-semilattice).

If S is a ∨-semigroup, a subset T of S is called a subsemigroup of S if, for every a, b ∈ T , we have ab ∈ T

and a ∨ b ∈ T . If the ∨ -subsemigroup T of S has a greatest element, say f , then we say that T is a ∨e-
subsemigroup of S . If S and T are two ∨e-semigroups, by a homomorphism of S into T we clearly mean any

mapping φ : S → T such that φ(xy) = φ(x)φ(y) and φ(x∨y) = φ(x)∨φ(y) for every x, y ∈ S . A ∨ -semigroup

is a semigroup S and at the same time a ∨ -semilattice such that a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc

for every a, b, c ∈ S [1,3]. As one can easily see, every ∨ -semigroup is a po -semigroup. By a ∨e-semigroup we

mean a ∨ -semigroup possessing a greatest element usually denoted by e (i.e. e ≥ a for all a ∈ S ).

We consider a ∨e-semigroup S and introduce the concept of a congruence on S as an equivalence relation

σ on S such that (a, b) ∈ σ implies (ac, bc) ∈ σ, (ca, cb) ∈ σ and (a ∨ c, b ∨ c) ∈ σ for every c ∈ S . By a
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semilattice congruence on S , we mean a congruence σ on S such that (a2, a) ∈ σ and (ab, ba) ∈ σ for all

a, b ∈ S . A ∨e-semigroup S is said to be a semilattice of ∨e -semigroups of a given type, say T , if there exists

a semilattice congruence σ on S such that the σ -class (x)σ of S containing x is a ∨e -subsemigroup of S

of type T for every x ∈ S . We first prove that a ∨e-semigroup S is a semilattice of ∨e -semigroups of type

T if and only if it is decomposable into pairwise disjoint ∨e -subsemigroups Sα of S of type T , indexed by

a set Y that is semilattice under two operations “.” and “∨” satisfying SαSβ ⊆ Sαβ and Sα ∨ Sβ ⊆ Sα∨β

∀ α, β ∈ Y , where Sα ∨ Sβ is the set {a ∨ b | a ∈ Sα, b ∈ Sβ} . Then we prove that if a semigroup (S, .) is a

semilattice of left simple semigroups, then the set of nonempty subsets of S with the multiplication induced by

the multiplication on S and the inclusion relation is a semilattice of left simple ∨e -semigroups. This being an

example of a semilattice of left simple semigroups leads to a characterization of the semilattices of left simple

and the chains of left simple ∨e -semigroups. A ∨e-semigroup S is said to be a chain of left simple semigroups

if there exists a semilattice congruence σ on S such that the σ -class (x)σ is a left simple ∨e-subsemigroup

of S for every x ∈ S and the set S/σ of all σ -classes of S endowed with the order relation (x)σ ≤ (y)σ ⇔
(x)σ = (xy)σ is a chain. We prove that a ∨e -semigroup S is a semilattice of left simple ∨e-semigroups if

and only if S is left regular and the left ideal elements of S are two-sited, equivalently, if the set of left ideal

elements of S endowed with the operation “.” of S is a semilattice (idempotent and commutative semigroup).

We also prove that a ∨e-semigroup S is a semilattice of left simple ∨e -semigroups if and only if for any two left

ideal elements a and b of S the element ab is the infimum of the elements a and b . Finally, we characterize

the chain of left simple ∨e-semigroups in terms of left ideal elements. Characterizations of ordered semigroups

that are semilattices of left simple semigroups using left ideals have been studied in [6,7]. A characterization

of the chains of right simple semigroups in ordered semigroups in terms of right ideals has been given in [5].

In the present paper, the left (right) ideal elements instead of left (right) ideals play the essential role. The

Theorem 7 in [8] can be also obtained either as an application of the Theorem 6 in [6] (see [6; Corollary 8]) or

as an application of the Theorem 9 of the present paper.

For the sake of completeness, let us give the following definitions regarding the nonordered semigroups

needed in Theorem 7: If (S, .) is a semigroup, a nonempty subset A of S is called a left (resp. right) ideal

of S if SA ⊆ A (resp. AS ⊆ A). We denote by P(S) the set of (all) nonempty subsets of S and by L(A)

the left ideal of S generated by A . An equivalence relation σ on S is called semilattice congruence if, for any

a, b, c ∈ S , (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ ; (a2, a) ∈ σ and (ab, ba) ∈ σ . A semigroup (S, .) is

called a semilattice of semigroups of type T if S is the union of a semilattice Ω of semigroups Sα (α ∈ Ω),

where each Sα is of type T [2]. This is equivalent to saying that there exists a semilattice congruence σ on S

such that the σ -class (x)σ of S containing x is a subsemigroup of S of type T for every x ∈ S . A semigroup

S is called left (resp. right) simple if S is the only left (resp. right) ideal of S , that is, if T is a left (resp.

right) ideal of S , then T = S . A semigroup that is idempotent (that is, a2 = a ∀ a ∈ S ) and commutative is

called semilattice. For further information we refer to [1,4,6] (for po-semigroups) and to [2] (for semigroups).

2. On semilattices of semigroups of type T

A ∨e -semigroup is a semigroup S and at the same time a ∨ -semilattice having a greatest element usually

denoted by “e” such that

a(b ∨ c) = ab ∨ ac and (a ∨ b) = ac ∨ bc

for every a, b, c ∈ S .
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Definition 1. Let S be a ∨e-semigroup. An equivalence relation σ on S is called congruence if (a, b) ∈ σ

implies (ac, bc) ∈ σ, (ca, cb) ∈ σ and (a ∨ c, b ∨ c) ∈ σ for every c ∈ S .

Proposition 2. Let S be a ∨e-semigroup and σ a congruence on S. Then the set S/σ of all σ -classes of S

endowed with the operations

(x)σ.(y)σ = (xy)σ and (x)σ ∨ (y)σ = (x ∨ y)σ

is a ∨e-semigroup.

Proof. Since σ is a congruence on S , the operations “ .” and “∨” on S/σ are well defined. The operation “ .”

is associative and so (S/σ, .) is a semigroup. The operation “∨” is idempotent, that is (x)σ ∨ (x)σ = (x)σ for

all x ∈ S , commutative, and associative; thus the set S/σ endowed with the relation

(x)σ ≤ (y)σ ⇔ (x ∨ y)σ = (y)σ

is an ordered set such that sup{(x)σ, (y)σ} = (x ∨ y)σ for all x, y ∈ S ; in other words, S/σ is an upper

semilattice. If e is the greatest element of S , then the class (e)σ is the greatest element of S/σ . Moreover, for

all x, y, z ∈ S , we have

(x)σ.
(
(y)σ ∨ (z)σ

)
= (x)σ.(y ∨ z)σ =

(
x(y ∨ z)

)
σ
= (xy ∨ xz)σ

= (xy)σ ∨ (xz)σ = (x)σ.(y)σ ∨ (x)σ.(z)σ.

Similarly we get
(
(x)σ ∨ (y)σ

)
.(z)σ = (x)σ.(z)σ ∨ (y)σ.(z)σ and so S/σ is a ∨e -semigroup. 2

Definition 3. Let S be a ∨e -semigroup. A congruence σ on S is called semilattice congruence if (a2, a) ∈ σ

and (ab, ba) ∈ σ for every a, b ∈ S .

We can easily prove that if σ is a semilattice congruence on S , then the σ -class (x)σ of S containing x

(x ∈ S) is a subsemigroup of S .

Definition 4. A ∨e-semigroup S is said to be a semilattice of ∨e-semigroups of a given type, say T , if there

exists a semilattice congruence σ on S such that the σ -class (x)σ of S containing x is a ∨e -subsemigroup of

S of type T for every x ∈ S .

The next Theorem characterizes the semilattices of ∨e-semigroups of type T and so can be applied to

semilattices of left simple ∨e -semigroups.

Theorem 5. Let S be a ∨e-semigroup. The following are equivalent:

1. There exists a semilattice congruence σ on S such that the σ -class (x)σ is a ∨e-subsemigroup of S of

type T for every x ∈ S .

2. There exists a ∨e-semigroup Y that is a semilattice (i.e. idempotent and commutative semigroup) under

two operations “.” and “∨” and a homomorphism φ : S → Y such that the set φ−1({α}) is a ∨e-
subsemigroup of S of type T for every α ∈ Y .

3. There exists a semilattice Y under two operations “.” and “∨” and a family {Sα}α∈Y of ∨e-subsemigroups

of S of type T such that
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Sα ∩ Sβ = ∅ ∀ α, β ∈ Y , α ̸= β ;

S =
∪

α∈Y

Sα ;

SαSβ ⊆ Sαβ ∀ α, β ∈ Y ;

Sα ∨ Sβ ⊆ Sα∨β ∀ α, β ∈ Y , where Sα ∨ Sβ := {a ∨ b | a ∈ Sα, b ∈ Sβ} .

Proof. 1 =⇒ 2. Let σ be a semilattice congruence on S such that (x)σ is a ∨e-subsemigroup of S of type T
for every x ∈ S . As we have already seen, the set Y := S/σ endowed with the operation “.” (resp. “∨”) defined

in Proposition 2 is a semigroup and (Y,∨) is a semilattice (i.e. idempotent and commutative). The semigroup

(Y, .) is also a semilattice. Indeed: Let x, y ∈ S . Since (x2, x) ∈ σ , we have (x)σ.(x)σ = (x2)σ = (x)σ and so

(S/σ, .) is idempotent. Since (xy, yx) ∈ σ , we have (x)σ.(y)σ = (xy)σ = (yx)σ = (y)σ.(x)σ and so (S/σ, .) is

commutative. For the mapping φ : S → Y | x → (x)σ (of the ∨e-semigroup S into the ∨e -semigroup Y ), and

any x, y ∈ S , we have φ(xy) = (xy)σ = (x)σ(y)σ = φ(x).φ(y) and

φ(x ∨ y) = (x ∨ y)σ = (x)σ ∨ (y)σ = φ(x) ∨ φ(y).

Let now α ∈ Y . Then α = (x)σ for some x ∈ S , and φ−1({α}) = (x)σ . Indeed: If t ∈ φ−1({α}), then t ∈ S ,

φ(t) = α . Since t ∈ S , we have φ(t) = (t)σ . Since (t)σ = α = (x)σ , we have t ∈ (x)σ . If now t ∈ (x)σ ,

then t ∈ S , φ(t) = (t)σ = (x)σ = α and so t ∈ φ−1({α}). Since (x)σ is a ∨e-subsemigroup of S of type T ,

φ−1({α}) is a ∨e -subsemigroup of S of type T as well.

2 =⇒ 3. We put φ−1({α}) for each α ∈ Y. Then {Sα}α∈Y is a family of ∨e -subsemigroups of S of

type T . Moreover, the following assertions are satisfied:

(a) Let α, β ∈ Y , α ̸= β . Then φ−1({α}) ∩ φ−1({β}) = ∅ . Indeed, if
t ∈ φ−1({α})∩ ∈ φ−1({β}), then φ(t) = α , φ(t) = β and so α = β , which is impossible.

(b) S =
∪

α∈Y

φ−1({α}). Indeed: If α ∈ Y , then {α} ⊆ Y , so φ−1({α)} ⊆ S , and
∪

α∈Y

φ−1({α}) ⊆ S . If

x ∈ S , then for the element α := φ(x) ∈ Y , we have x ∈ φ−1({α}) ⊆
∪

α∈Y

φ−1({α}).

(c) Let α, β ∈ Y . Then φ−1({α})φ−1({β}) ⊆ φ−1({αβ}). Indeed: If t = xy , for some x ∈ φ−1({α}),
y ∈ φ−1({β}), then φ(t) = φ(xy) = φ(x)φ(y) = αβ ; thus t ∈ φ−1({αβ}).

(d) Let α, β ∈ Y , a ∈ φ−1({α}) and b ∈ φ−1({β}). Then a∨ b ∈ φ−1({α∨β}). Indeed, since φ(a) = α ,

φ(b) = β , we have α ∨ β = φ(a) ∨ φ(b) = φ(a ∨ b) and so a ∨ b ∈ φ−1({α ∨ β}).
3 =⇒ 1. We define a relation σ on S as follows:

σ := {(x, y) ∈ S × S | ∃ α ∈ Y : x, y ∈ Sα}.

(i) σ is a semilattice congruence on S . In fact: σ is clearly reflexive and symmetric. Let (x, y) ∈ σ ,

(y, z) ∈ σ . Suppose α ∈ Y such that x, y ∈ Sα and β ∈ Y such that y, z ∈ Sβ . Since y ∈ Sα ∩ Sβ , we have

α = β , x, z ∈ Sα and (x, z) ∈ σ and so σ is transitive. Let (x, y) ∈ σ and z ∈ S . If α ∈ Y such that x, y ∈ Sα

and β ∈ Y such that z ∈ Sβ , then xz, yz ∈ SαSβ ⊆ Sαβ and x ∨ z, y ∨ z ∈ Sα ∨ Sβ ⊆ Sα∨β , where αβ ∈ Y

and α ∨ β ∈ Y and so (xz, yz) ∈ σ and (x ∨ z, y ∨ z) ∈ σ . Similarly (zx, zy) ∈ σ . If x ∈ S and α ∈ Y such

that x ∈ Sα , then x2 ∈ SαSα ⊆ Sα2 = Sα . Since x2, x ∈ Sα , α ∈ Y , we have (x2, x) ∈ σ . If x, y ∈ S and

α, β ∈ Y such that x ∈ Sα , y ∈ Sβ , then xy ∈ SαSβ ⊆ Sαβ and yx ∈ SβSα ⊆ Sβα = Sαβ . Since xy, yx ∈ Sαβ

and αβ ∈ Y , we have (xy, yx) ∈ σ .
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(ii) Let x ∈ S . Then (x)σ is a ∨e -subsemigroup of S of type T . In fact: Since x ∈ S , x ∈ Sα for

some α ∈ Y . We have (x)σ = Sα . Indeed: If y ∈ (x)σ , then (y, x) ∈ σ and so there exists β ∈ Y such that

y, x ∈ Sβ . Since x ∈ Sα ∩ Sβ , we have α = β , and y ∈ Sα . If y ∈ Sα , then y, x ∈ Sα (α ∈ Y ), then (x, y) ∈ σ

and y ∈ (y)σ = (x)σ . 2

3. On semilattices and chains of left simple ∨e-semigroups

We deal here with a decomposition of left simple ∨e-semigroups into left simple components using the left ideal

elements.

Definition 6. [4] An element a of a ∨e-semigroup S is called a left (resp. right) ideal element if ea ≤ a (resp.

ae ≤ a). A ∨e -semigroup S is called left simple if for every left ideal element a of S we have a = e .

Theorem 7. If a semigroup (S, .) is a semilattice of left simple semigroups, then the ∨e-semigroup (P(S), .,⊆)

is a semilattice of left simple ∨e-semigroups.

Proof. Let σ be a semilattice congruence on (S, .) such that (x)σ is a left simple subsemigroup of (S, .) for

every x ∈ S . The set P(S) of all subsets of S with the multiplication on P(S) induced by the multiplication

of S and the inclusion relation forms a ∨e-semigroup (where S is the greatest element of P(S)). That is,

(P(S), .,⊆) is a ∨e -semigroup. Let L be the equivalence relation on P(S) defined by

L := {(A,B) ∈ P(S)×P(S) | L(A) = L(B)}.

First of all, we prove that SX ∪ X = SX , equivalently, X ⊆ SX for every X ⊆ S . In fact, let X ⊆ S and

x ∈ X . The set SX ∩ (x)σ is a left ideal of ((x)σ, .). This is because it is a nonempty subset of (x)σ (as

x2 ∈ SX ∩ (x)σ) and

(x)σ(SX ∩ (x)σ) ⊆ (x)σSX ∩ (x)2σ ⊆ S2X ∩ (x)σ ⊆ SX ∩ (x)σ .

Since ((x)σ, .) is left simple, we have SX ∩ (x)σ = (x)σ ; thus x ∈ SX . Hence we have

L = {(A,B) ∈ P(S)× P(S) | SA = SB}.

The following assertions are satisfied:

(1) L is a semilattice congruence on (P(S), .,⊆). In fact:

Let (A,B) ∈ L and C ∈ P(S). Since SA = SB , we have SAC = SBC and so (AC,BC) ∈ L . Since

S(A∪C) = SA∪SC = SB ∪SC = S(B ∪C), we have (A∪C,B ∪C) ∈ L . We also have (CA,CB) ∈ L , that

is S(CA) = S(CB). Indeed: it is enough to prove that SC = SCS . Then we have

S(CA) = (SC)A = (SCS)A = (SC)(SA) = (SC)(SB)

= (SCS)B = (SC)B = S(CB).

We have SC = SCS . In fact: Let x ∈ S , y ∈ C . The set SCS ∩ (xy)σ is a left ideal of (xy)σ . This is because

∅ ≠ SCS ∩ (xy)σ ⊆ (xy)σ (as xy2 ∈ SCS , xy2 ∈ (xy2)σ = (x)σ(y
2)σ = (x)σ(y)σ = (xy)σ) and

(xy)σ(SCS ∩ (xy)σ) ⊆ (xy)σSCS ∩ (xy)2σ ⊆ S2CS ∩ (xy)σ

⊆ SCS ∩ (xy)σ.
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Since (xy)σ is left simple, we have SCS ∩ (xy)σ = (xy)σ and so xy ∈ SCS , and SC ⊆ SCS . On the other

hand, CS ⊆ SC . Indeed: Let x ∈ C , y ∈ S . The set SC ∩ (xy)σ is a left ideal of (xy)σ . This is because

∅ ≠ SC ∩ (xy)σ ⊆ (xy)σ (since yx ∈ SC, yx ∈ (xy)σ) and

(xy)σ(SC ∩ (xy)σ) ⊆ (xy)σSC ∩ (xy)2σ ⊆ S2C ∩ (xy)σ ⊆ SC ∩ (xy)σ .

Thus we get SC∩(xy)σ = (xy)σ , and xy ∈ SC . Since CS ⊆ SC , we have SCS ⊆ S2C ⊆ SC , and SC = SCS .

Let A ∈ P(S). Then (A2, A) ∈ L , that is SA2 = SA . In fact: Let x ∈ S , y ∈ A . The set SA2 ∩ (xy)σ is a

left ideal of (xy)σ . Indeed,

∅ ̸= SA2 ∩ (xy)σ ⊆ (xy)σ (since xy2 ∈ SA2 , xy2 ∈ (xy)σ) and

(xy)σ(SA
2 ∩ (xy)σ) ⊆ (xy)σSA

2 ∩ (xy)2σ ⊆ S2A2 ∩ (xy)σ ⊆ SA2 ∩ (xy)σ .

Then SA2 ∩ (xy)σ = (xy)σ , and xy ∈ SA2 . Thus we have SA ⊆ SA2 ⊆ SA , and SA2 = SA .

Let A,B ∈ P(S). Then (AB,BA) ∈ L , that is S(AB) = S(BA). In fact: Let x ∈ S , a ∈ A , b ∈ B . The set

SBA ∩ (xab)σ is a left ideal of (xab)σ . Indeed,

∅ ̸= SBA ∩ (xab)σ ⊆ (xab)σ (since xba ∈ SBA , xba ∈ (xba)σ)) and

(xab)σ(SBA ∩ (xab)σ) ⊆ (xab)σSBA ∩ (xab)2σ ⊆ SBA ∩ (xab)σ .

Then SBA ∩ (xab)σ = (xab)σ , and xab ∈ SBA . Thus we have SAB ⊆ SBA . By symmetry, we get

SBA ⊆ SAB ; thus S(AB) = S(BA).

(2) (A)L is a left simple ∨e-subsemigroup of (P(S), .,⊆) for every A ∈ P(S).
In fact: Let A ∈ P(S) and X,Y ∈ (A)L . Since XLA , Y LA , we have XY LAY , AY LA2 and then XY LA2 .

Since XY LA2 and A2LA , we have XY LA and so XY ∈ (A)L , and (A)L is a subsemigroup of P(S). Again

since XLA , Y LA , we have (X ∪Y )L(A∪Y ) and (A∪Y )L(A∪A) = A ; then (X ∪Y )LA , and X ∪Y ∈ (A)L

and so (A)L is a ∨ -subsemigroup of P(S). The set SA is the greatest element of (A)L . In fact: First of all,

SA ∈ (A)L , that is S(SA) = SA . Indeed: Let x ∈ S . The set S2 ∩ (x)σ is a left ideal of (x)σ . This is because

∅ ̸= S2 ∩ (x)σ ⊆ (x)σ (since x2 ∈ S2 , x2 ∈ (x)σ) and (x)σ(S
2 ∩ (x)σ) ⊆ (x)σS

2 ∩ (x)2σ ⊆ S2 ∩ (x)σ , then

S2 ∩ (x)σ = (x)σ , and x ∈ S2 ; thus S2 = S and so S(SA) = SA . Moreover, X ⊆ SA for every X ∈ (A)L .

Indeed, if X ∈ (A)L , then SX = SA , from which X ⊆ X ∪ SX = SX = SA .

Finally, (A)L is left simple. In fact: Let L be a left ideal element of (A)L . Then L = SA . Indeed: Since

L ∈ (A)L , we have LLA , then SL = SA . On the other hand,

L ⊆ L ∪ SL = SL = SL2 (since LLL2)

= (SL)L = (SA)L

⊆ L (since L is a left ideal of (A)L);

thus we have L = SL = SA . 2

We are ready now to study the semilattices of left simple ∨e -semigroups. We give some properties that

characterize the semilattices of left simple ∨e-semigroups. Then we apply our results to semigroups.

Definition 8. [4] A ∨e -semigroup S is called left (resp. right) regular if a ≤ ea2 (resp. a ≤ a2e) for every

a ∈ S . It is called left (resp. right) duo if the left (resp. right) ideal elements of S are two-sided.

In the following, l(a) denotes the left ideal element of S generated by a (a ∈ S ); as one can easily prove,

this is the element ea∨a . The right ideal element of S generated by a , denoted by r(a), is the element ae∨a .

We denote by Fl (resp. Fr ) the set of (all) left (resp. right) ideal elements of S (cf. also [4]).
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Theorem 9. Let S be a ∨e-semigroup. The following are equivalent:

(i) S is a semilattice of left simple ∨e-semigroups.

(ii) S is left regular and left duo.

(iii) For every a, b ∈ Fl , the inf{a, b}(:= a ∧ b) exists in S , and we have a ∧ b = ab .

(iv) (Fl, .) is a semilattice.

Proof. (i) =⇒ (ii). Let σ be a semilattice congruence on S such that (y)σ is a left simple ∨e-subsemigroup

of S for every y ∈ S . Let x ∈ S and f the greatest element of (x)σ . Since f, x2 ∈ (x)σ , we have fx2 ∈ (x)σ .

Since f(fx2) = f2x2 ≤ fx2 , fx2 is a left ideal element of (x)σ . Since (x)σ is left simple, we have fx2 = f .

Thus we have x ≤ f = fx2 ≤ ex2 , and S is left regular. Let now a be a left ideal element of S and f the

greatest element of (a)σ . Since fa ≤ ea ≤ a , the element a is a left ideal element of (a)σ . Since (a)σ is left

simple, we have a = f . Since ea ≤ a ≤ ea2 ≤ ea , we have ea = a ; then (a)σ = (ea)σ = (ae)σ . Since ae ∈ (a)σ ,

we get ae ≤ f = a , and a is a right ideal element of S .

(ii) =⇒ (iii). Let a, b ∈ Fl . Since a ∈ Fl ⊆ Fr , we have ab ≤ ae ≤ a . Since b ∈ Fl , we have ab ≤ eb ≤ b .

Let now t ∈ S such that t ≤ a and t ≤ b . Since S is left regular, we have t ≤ et2 ≤ eab ≤ ab . Thus the

element ab is the infimum of the elements a and b in S .

(iii) =⇒ (iv). Since e ∈ Fl , Fl is a nonempty subset of S . Let now a, b ∈ Fl . Then e(ab) = (ea)b ≤ ab

and so ab ∈ Fl , and Fl is a subsemigroup of S . Moreover, by (iii), inf{a, b} = ab and inf{b, a} = ba . Since

inf{a, b} = inf{b, a} , we have ab = ba and so Fl is commutative. By (iii), we also get a = inf{a, a} = a2 and

so Fl is idempotent. Thus (Fl, .) is a semilattice.

(iv) =⇒ (i). We consider the equivalence relation on S defined as follows:

L := {(x, y) ∈ S × S | l(x) = l(y)}.

We remark that l(x) = ex for every x ∈ S . Indeed, let x ∈ S . Since l(x) is a left ideal element of S , by (iv),

we have

l(x) = (l(x))2 = (ex ∨ x)(ex ∨ x) = exex ∨ xex ∨ ex2 ∨ x2

≤ ex ≤ ex ∨ x = l(x),

and so l(x) = ex . Thus we have

L = {(x, y) ∈ S × S | ex = ey}.

Then we have the following:

(1) L is a semilattice congruence on S .

In fact: Let (a, b) ∈ L , c ∈ S . Since ea = eb , we have (ea)c = (eb)c ; then e(ac) = e(bc), and (ac, bc) ∈ L . On

the other hand, by (iv), we have

e(ca) ≤ ecl(a) = (ec)ea = (ec)eb = ((ec)e)b = (e(ec))b

= e2cb ≤ e(cb),
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by symmetry, e(cb) ≤ e(ca); thus e(ca) = e(cb) and (ca, cb) ∈ L . Moreover, since e(a∨ c) = ea∨ ec = eb∨ ec =

e(b ∨ c), we get (a ∨ c, b ∨ c) ∈ L .

Let now a, b ∈ S . Since ea ∈ Fl , by (iv), we have ea = (ea)2 . Then we have

ea = (ea)(ea) = ((ea)e)a = (e(ea))a = e2a2 ≤ ea2 ≤ ea,

and so ea2 = ea and (a2, a) ∈ Fl . Also

e(ab) = (eab)(eab) ≤ eb(ea)e = ebe(ea) (since ea, e ∈ Fl)

≤ (eb)ea = e(eb)a ≤ e(ba),

by symmetry e(ba) ≤ e(ab); then (ab, ba) ∈ L .

(2) (x)L is a left simple ∨e-subsemigroup of S for every x ∈ S .

In fact: Let x ∈ S . The (nonempty set) (x)L is a ∨ -subsemigroup of S . Indeed: Let a, b ∈ (x)L . Since aLx ,
bLx , we have abLxb , xbLx2 . Since x2Lx , we get abLx , and ab ∈ (x)L . On the other hand, aLx and bLx
imply a ∨ bLx ∨ b and x ∨ bLx2 ; besides, we have x2Lx and so we get a ∨ bLx and a ∨ b ∈ (x)L. The element

ex is the greatest element of (x)L . Indeed: Since e ∈ Fl , by (iv), we have e2 = e . Then e(ex) = e2x = ex

and so (ex, x) ∈ L and ex ∈ (x)L . If a ∈ (x)L , then aLx i.e. ea = ex and so a ≤ l(a) = ea = ex . Moreover

(x)L is left simple. Indeed: Let a be a left ideal element of (x)L . Since a ∈ (x)L , we have aLx ; then ea = ex .

Since aLa2 , we have

a ≤ l(a) = ea = ea2 = (ea)a = (ex)a.

Since a is a left ideal element of (x)L and ex the greatest element of (x)L , we have (ex)a ≤ a . Then we have
a = ea = ex . 2

The characterization of a semigroup that is both left regular and left duo as a semilattice of simple

semigroups given in [8] can be also obtained as an application of the Theorem 9 of the present paper.

Corollary 10. ([8; the Theorem]) Let (S, .) be a semigroup. The following are equivalent:

(i) S is a semilattice of left simple semigroups.

(ii) S is left regular and every left ideal of S is two-sided.

(iii) For all left ideals A,B of S , we have A ∩B = AB .

(iv) The set of left ideals of S is a semilattice.

Proof. (i) =⇒ (ii). Let (S, .) be a semilattice of left simple semigroups. By Theorem 7, the ∨e-semigroup

(P(S), .,⊆) is a semilattice of left simple ∨e-semigroups. By Theorem 9(i)⇒(ii), the ∨e-semigroup (P(S), .,⊆)

is left regular and every left ideal element of (P(S), .,⊆) is two-sided. Then the semigroup (S, .) is left regular

and every left ideal of (S, .) is two-sided.

(ii) =⇒ (iii). Let (S, .) be left regular and every left ideal of S is two-sided. Then (P(S), .,⊆) is left

regular and every left ideal element of P(S) is two-sided. By Theorem 9(ii)⇒(iii), for all left ideal elements

A,B of P(S) we have inf{A,B} = AB . Then for all left ideals A,B of S we have inf{A,B} = AB . Clearly,

inf{A,B} = A ∩B .
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(iii) =⇒ (iv). Suppose for all left ideals A,B of S we have A∩B = AB . Then for all left ideal elements

A,B of P(S) we have inf{A,B} = A ∩ B = AB . By Theorem 9(iii)⇒(iv), the set of left ideal elements of

P(S) is a semilattice. Then the set of left ideal elements of S is a semilattice.

(iv) =⇒ (i). Suppose the set of left ideals of S is a semilattice. Then the set of left ideal elements of

P(S) is a semilattice. According to the proof of Theorem 9(iv)⇒(i), the relation L on P(S) defined by

L := {(A,B) | L(A) = L(B)}

is equal to

L = {(A,B) | SA = SB}

and it is a semilattice congruence on P(S) such that (A)L is a left simple ∨e -subsemigroup of P(S) for every

A ∈ P(S). We consider the relation LS on S defined by

LS := {(a, b) | ({a}, {b}) ∈ L}.

One can easily prove that LS is a semilattice congruence on S and that the set (a)LS
is a subsemigroup of S

for every a ∈ S . Moreover, the class (a)LS is a left simple subsemigroup of S . Indeed: Let L be a left ideal of

(a)LS
and x ∈ (a)LS

. Take an element z ∈ L (L ̸= ∅). We prove that x = (tz)z for some t ∈ S and also that

tz ∈ (a)LS
. Then we have x ∈ (a)LS

L ⊆ L , and the proof is complete.

Since x ∈ (a)LS
, we have (x, a) ∈ LS ; then ({x}, {a}) ∈ L and so Sx = S{x} = S{a} = Sa . Since z ∈ (a)LS

and (a)LS
is a subsemigroup of S , we have z2 ∈ (a)LS

; then (z2, a) ∈ LS , ({z2}, {a}) ∈ L and so S{z2} = S{a}
and Sz2 = Sa . Since {x} ∈ P(S) and L is a semilattice congruence on P(S), we have ({x}2, {x}) ∈ L ; then

L({x2}) = L({x} , that is {x2} ∪ S{x2} = {x} ∪ S{x} . Thus we get x ∈ x ∪ Sx = x2 ∪ Sx2 ⊆ Sx . Therefore,

we have x ∈ Sx = Sa = Sz2 and so x = (tz)z for some t ∈ S . Moreover, since LS is a semilattice congruence

on S , we have

tz ∈ (t)LS
(z)LS

= (t)LS
(z2)LS

= (tz2)LS
= (x)LS

= (a)LS
,

and so tz ∈ (a)LS . 2

Next, we characterize the chains of left simple ∨e -semigroups in terms of left ideal elements.

Definition 11. A ∨e-semigroup S is called a chain of left simple semigroups if there exists a semilattice

congruence σ on S such that the σ -class (x)σ is a left simple ∨e-subsemigroup of S for every x ∈ S and the

set S/σ := {(x)σ | x ∈ S} endowed with the relation

(x)σ ≤ (y)σ ⇐⇒ (x)σ = (xy)σ

is a chain. (Recall that, since σ is a semilattice congruence on S , the relation “≤” is an order relation on

S/σ ).

Theorem 12. Let S be a ∨e-semigroup. The following are equivalent:

(i) S is a chain of left simple ∨e-semigroups.

(ii) The set Fl of the left ideal elements of S endowed with the relation

⪯:= {(a, b) | a, b ∈ Fl, a = ab = ba}

is a chain.
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Proof. (i) =⇒ (ii). Let σ be a semilattice congruence on S such that (x)σ is a left simple ∨e-subsemigroup of

S for every x ∈ S , and (S/σ,≤) is a chain. Since S is a semilattice of left simple ∨e -semigroups, by Theorem

9(i)⇒(iv), (Fl, .) is a semilattice. Then we have the following:

(1) (Fl,⪯) is an ordered set. Indeed: If a ∈ Fl , then a = a2 and so (a, a) ∈⪯ . If (a, b) ∈⪯ and

(b, a) ∈⪯ , then a = ab = ba and b = ba = ab and so a = b . If (a, b) ∈⪯ and (b, c) ∈⪯ , then a = ab = ba and

b = bc = cb ; then

ac = (ab)c = a(bc) = ab = a and ca = c(ba) = (cb)a = ba = a ,

and so a = ac = ca , and (a, c) ∈⪯ .

(2) (Fl,⪯) is a chain. Indeed: Let a, b ∈ Fl . As (a)σ, (b)σ ∈ S/σ and (S/σ,≤) is a chain, we have

(a)σ = (ab)σ or (b)σ = (ba)σ . Let (a)σ = (ab)σ and f the greatest element of (ab)σ . Since a, ab ∈ (ab)σ ,

fa ≤ ea ≤ a and f(ab) = (fa)b ≤ ab , the elements a and ab are left ideal elements of (ab)σ . Since (ab)σ is

left simple, we have ab = f = a . Since Fl is a semilattice, we get ab = ba ; thus we have a = ab = ba and

(a, b) ∈⪯ . If (b)σ = (ba)σ then, by symmetry, we obtain (b, a) ∈⪯ .

(ii) =⇒ (i). (Fl, .) is a semilattice. In fact: Since e ∈ Fl (: ee ≤ e), the set Fl is a nonempty subset

of S . If a, b ∈ Fl , then e(ab) = (ea)b ≤ ab and so ab ∈ Fl . If a ∈ Fl , then (a, a) ∈⪯ and so a2 = a and if

a, b ∈ Fl , then (a, b) ∈⪯ or (b, a) ∈⪯ , that is a = ab = ba or b = ba = ab and so ab = ba . Thus (Fl, .) is a

commutative and idempotent semigroup, which means that it is a semilattice.

According to the proof of (iv) ⇒ (i) of the Theorem 9, the relation

L = {(a, b) ∈ S × S | ea = eb}

is a semilattice congruence on S and (x)L is a left simple ∨e -subsemigroup of S for every x ∈ S . It remains

to prove that the set S/L endowed with the order relation “≤” is a chain. Let now x, y ∈ S . Since ex, ey ∈ Fl

and (Fl,⪯) is a chain, we have (ex, ey) ∈⪯ or (ey, ex) ∈⪯ . If (ex, ey) ∈⪯ , then ex = exey (= eyex). Since

ex, e ∈ Fl and (Fl, .) is a semilattice, we have

exey = (ex)ey = e(ex)y = e2xy = exy,

and so ex = exy ; then (x, xy) ∈ L and (x)L = (xy)L . If (ey, ex) ∈⪯ , by symmetry, we get (y)L = (yx)L =

(xy)L . Hence we have (x)L = (xy)L or (y)L = (xy)L , and (S/L,≤) is a chain. 2

The right analogues of the above results also hold.

Problem. Using a computer find the (nonisomorphic) left regular and left duo ∨e -semigroups of order 5.
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