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Abstract: In this paper, we utilize Nevanlinna value distribution theory to study the uniqueness problem that a

meromorphic function and its difference operator share two sets with weight k . Our results extend the previous results.
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1. Introduction and notation

In this paper, the term ‘meromorphic function’ always means meromorphic in the whole complex plane C .

Let f(z) be a nonconstant meromorphic function, and we use the standard notation in Nevanlinna’s theory of

meromorphic functions such as T (r, f),m(r, f), N(r, f), and N(r, f) (see, e.g., [2,6]). The notation S(r, f) is

defined to be any quantity satisfying S(r, f) = o{T (r, f)} as r → +∞ , possibly outside a set of r of finite

measure. In addition, we use Nk(r, 1/f) to denote the counting function for the zeros of f(z) with multiplicity

m counted m times if m ≤ k and k + 1 times if m > k .

We say that f and g share a CM (IM), if f(z) − a and g(z) − a have the same zeros with the same

multiplicities (ignoring multiplicities).

We also need the following definitions in this paper.

Definition 1 [3] Let k be a positive integer or infinity. For a ∈ Ĉ (= C∪ {∞}) we denote by Ef (a, k) the set

of all a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k+1 times if m > k .

Definition 2 [3] Let k be a positive integer or infinity. If for a ∈ Ĉ , Ef (a, k) = Eg(a, k) , we say that f, g

share the value a with weight k .

From these two definitions, we note that f, g share a CM or IM if and only if f, g share the value a

with weight ∞ or 0, respectively.

Definition 3 [3] For S ⊂ Ĉ , we define Ef (S, k) as Ef (S, k) =
∪

a∈S Ef (a, k) , where k is a positive integer

or infinity.

In this paper, we assume that S1 = {1, ω, · · · , ωn−1} and S2 = {∞} , where ωn = 1 and n is a positive

integer.
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Investigation of the uniqueness of meromorphic functions sharing sets is an important subfield of unique-

ness theory. Yi [7], Li and Yang [5], and Yi and Yang [8] proved several results on the uniqueness problems of

two meromorphic functions when they share two sets around 1995. In 2006, Lahiri and Banerjee [4] considered

these problems with the idea of weighted sharing of sets.

In what follows, c always means a nonzero constant. For a meromorphic function f(z), we denote its

shift and difference operator by f(z + c) and ∆cf := f(z + c) − f(z), respectively. Recently, many papers

mainly deal with some uniqueness questions for a meromorphic function that shares values or common sets with

shift or its difference operator. We recall the following two results proved by Zhang [9] and Chen [1].

In 2010, Zhang [9] proved the following results on the relation between f(z) and its shift f(z + c) when

they share two sets.

Theorem A Let c ∈ C . Suppose that f(z) is a nonconstant meromorphic function with finite order such that

Ef(z)(Sj ,∞) = Ef(z+c)(Sj ,∞), (j = 1, 2) . If n ≥ 4 , then f ≡ tf(z + c) , where tn = 1 .

Recently, Chen [1] considered the relation between f(z) and its operator ∆cf , and obtained the following

result.

Theorem B Let c ∈ C . Suppose that f(z) is a nonconstant meromorphic function with finite order such that

Ef(z)(S1, 2) = E∆cf (S1, 2) and Ef(z)(S2,∞) = E∆cf (S2,∞) . If n ≥ 7 , then ∆cf ≡ tf(z) , where tn = 1 and

t ̸= −1 .

From Theorem B, Chen [1] got two corollaries as follows.

Corollary A Let c ∈ C . Suppose that f(z) is a nonconstant meromorphic function with finite order such that

Ef(z)(S1,∞) = E∆cf (S1,∞) and Ef(z)(S2,∞) = E∆cf (S2,∞) . If n ≥ 7 , then ∆cf ≡ tf(z) , where tn = 1

and t ̸= −1 .

Corollary B Let c ∈ C . Suppose that f(z) is a nonconstant entire function with finite order such that

Ef(z)(S1,∞) = E∆cf (S1,∞) . If n ≥ 5 , then ∆cf ≡ tf(z) , where tn = 1 and t ̸= −1 .

It is natural to ask the following questions about Theorem B:

(1) Is the condition “f(z) has finite order” necessary?

(2) Can the assumption “n ≥ 7” can be replaced by a weaker one?

(3) Theorem B just considers the function shares two sets with weight 2, and what will happen if the

function shares the set with weight 1, and, in general, what will happen if the function shares the set with

weight k , where k is a positive number or infinity.

In this paper we shall investigate the above problems and give an affirmative answer to the question.

Theorem 1 Let c ∈ C and k be a positive number or infinity. Suppose that f(z) is a nonconstant meromorphic

function such that Ef(z)(S1, k) = E∆cf (S1, k) and Ef(z)(S2,∞) = E∆cf (S2,∞) . If n ≥ 7 when k = 1 or n ≥ 5

when k ≥ 2 then ∆cf ≡ tf(z) , where tn = 1 and t ̸= −1 .

From Theorem 1, the following corollary follows directly.
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Corollary 1 Let c ∈ C and k be a positive number or infinity. Suppose that f(z) is a nonconstant meromorphic

function such that Ef(z)(S1,∞) = E∆cf (S1,∞) and Ef(z)(S2,∞) = E∆cf (S2,∞) . If n ≥ 5 , then ∆cf ≡ tf(z) ,

where tn = 1 and t ̸= −1 .

For the entire function, we also get the following result.

Theorem 2 Let c ∈ C and k be a positive number or infinity. Suppose that f(z) is a nonconstant entire

function such that Ef(z)(S1, k) = E∆cf (S1, k) . If n ≥ 6 when k = 1 or n ≥ 5 when k ≥ 2 , then ∆cf ≡ tf(z) ,

where tn = 1 and t ̸= −1 .

2. Preliminary results

For the proof of Theorem 1 and Theorem 2, we need the following results.

Lemma 1 [6] Let f be a meromorphic functions in C , and let n be a positive number. Then

T (r, fn) = nT (r, f) + S(r, f).

Lemma 2 [6] Let f be a meromorphic functions in C , and let k be a positive number. Then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f).

Lemma 3 Let F and G be two nonconstant meromorphic functions defined in C , and let k be a positive

number or infinity. If EF (1, k) = EG(1, k) and EF (∞,∞) = EG(∞,∞) , then one of the following cases occurs:

(i). T (r, F ) + T (r,G) ≤2{N(r, F ) +N2(r, 1/F ) +N(r,G) +N2(r, 1/G)}

+

[
1

k

]
{N (k+1(r,

1

F − 1
) +N (k+1(r,

1

G− 1
)}+ S(r, F ) + S(r,G).

(ii). F ≡ G or FG ≡1.

Proof Let

ψ(z) =
F ′′

F ′ − 2
F ′

F − 1
− G′′

G′ + 2
G′

G− 1
. (2.1)

Since EF (1, k) = EG(1, k), by a simple computation, we see that if z0 is a simple zero of F (z)− 1 and

G(z)− 1, then ψ(z0) = 0.

Next we shall consider two cases.

Case 1. ψ(z) ̸≡ 0. Then

N1)(r,
1

F − 1
) = N1)(r,

1

G− 1
) ≤ N(r,

1

ψ
) ≤ T (r, ψ) +O(1)

≤ N(r, ψ) + S(r, F ) + S(r,G),

(2.2)

where N1)(r,
1

F−1 ) is the counting function that only counts simple zeros of F (z)− 1 in {z :| z |≤ r} .
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From (2.1), EF (1, k) = EG(1, k) and EF (∞,∞) = EG(∞,∞), we can easily verify that possible poles

of ψ occur at: (1) multiple zeros of F and G ; (2) the zeros of F − 1 and G − 1 with multiplicities ≥ k + 1;

(3) the zeros of F ′ that are not the zeros of F (F − 1); (4) the zeros of G′ that are not the zeros of G(G− 1).

Since all poles of ψ are simple, then we get

N(r, ψ) ≤ N (2(r,
1

F
) +N (2(r,

1

G
) +N0(r,

1

F ′ ) +N0(r,
1

G′ )

+
1

2
{N (k+1(r,

1

F − 1
) +N (k+1(r,

1

G− 1
)}+ S(r, F ) + S(r,G),

(2.3)

where N0(r,
1
F ′ ) only counts the zeros of F ′ that are not those of F (F − 1).

On the other hand, by the second fundamental theorem, we have

T (r, F ) ≤ N(r,
1

F
) +N(r, F ) +N(r,

1

F − 1
)−N0(r,

1

F ′ ) + S(r, F ), (2.4)

and

T (r,G) ≤ N(r,
1

G
) +N(r,G) +N(r,

1

G− 1
)−N0(r,

1

G′ ) + S(r,G). (2.5)

It is easy to show that

N(r,
1

F − 1
) +N(r,

1

G− 1
) = N1)(r,

1

F − 1
) +

1

2

{
N2(r,

1

F − 1
) +N2(r,

1

G− 1
)

}
. (2.6)

Combining (2.4)–(2.6), we obtain

2{T (r, F ) + T (r,G)} ≤ 2{N(r, F ) +N(r,
1

F
) +N(r,G) +N(r,

1

G
)}

+ 2N1)(r,
1

F − 1
) +N2(r,

1

F − 1
) +N2(r,

1

G− 1
)

− 2N0(r,
1

F ′ )− 2N0(r,
1

G′ ) + S(r, F ) + S(r,G).

(2.7)

Then from (2.2), (2.3), and (2.7), we get

2{T (r, F ) + T (r,G)} ≤2{N(r, F ) +N2(r,
1

F
) +N(r,G) +N2(r,

1

G
)}

+N (k+1(r,
1

F − 1
) +N (k+1(r,

1

G− 1
)

+N2(r,
1

F − 1
) +N2(r,

1

G− 1
) + S(r, F ) + S(r,G).

(2.8)

If k ≥ 2, then

N2(r,
1

F − 1
) +N (k+1(r,

1

F − 1
) ≤ N(r,

1

F − 1
) ≤ T (r, F ) +O(1). (2.9)
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N2(r,
1

G− 1
) +N (k+1(r,

1

G− 1
) ≤ N(r,

1

G− 1
) ≤ T (r,G) +O(1). (2.10)

Combining (2.8)–(2.10), we get

T (r, F ) + T (r,G) ≤ 2{N(r, F ) +N2(r,
1

F
) +N(r,G) +N2(r,

1

G
)}+ S(r, F ) + S(r,G).

If k = 1, note that

N2(r,
1

F − 1
) ≤ T (r, F ) +O(1). (2.11)

N2(r,
1

G− 1
) ≤ T (r,G) +O(1). (2.12)

Combining (2.8), (2.11), and (2.12), we get

T (r, F ) + T (r,G) ≤ 2{N(r, F ) +N2(r, 1/F ) +N(r,G) +N2(r, 1/G)}

+N (k+1(r,
1

F − 1
) +N (k+1(r,

1

G− 1
) + S(r, F ) + S(r,G).

Case 2. ψ(z) ≡ 0. We deduce from (2.1) that

F ≡ AG+B

CG+D
, (2.13)

where A,B,C,D are finite complex numbers satisfying AD − BC ̸= 0, and from (2.13) we have T (r, F ) =

T (r,G)

Next we consider three cases.

Case 1.1. AC ̸= 0. From (2.13), we have N(r, 1/(F−A/C)) = N(r,G). Then by the second fundamental

theorem and EF (∞,∞) = EG(∞,∞), we obtain

T (r, F ) ≤ N(r, F ) +N(r,
1

F − A
C

) +N(r,
1

F
) + S(r, F )

≤ N(r, F ) +N(r,G) +N(r,
1

F
) + S(r, F ),

which reveals (i) of Lemma 3.

Case 1.2. A ̸= 0, C = 0. Then F ≡ (AG+B)/D . We consider two subcases.

Case 1.2.1. B ̸= 0. Then by the second fundamental theorem,

T (r, F ) ≤ N(r, F ) +N(r,
1

F − B
D

) +N(r,
1

F
) + S(r, F )

≤ N(r, F ) +N(r,
1

G
) +N(r,

1

F
) + S(r, F ),

which reveals (i) of Lemma 3.

1159



DENG et al./Turk J Math

Case 1.2.2. B = 0. Then F ≡ A
DG . Since EF (1, k) = EG(1, k), if F (z) ̸= 1, then by the second

fundamental theorem

T (r, F ) ≤ N(r, F ) +N(r,
1

F − 1
+N(r,

1

F
) + S(r, F )

≤ N(r, F ) +N(r,
1

F
) + S(r, F ),

which reveals (i) of Lemma 3.

If there exists a point z0 such that F (z0) = G(z0) = 1. Thus A
D = 1, which yields F ≡ G .

Case 1.3. A = 0, C ̸= 0, Then F ≡ B
CG+D . We can similarly prove that D = 0, BC = 1, and thus

FG ≡ 1.

By the above discussion, Case (i) or (ii) must occur. This completes the proof of Lemma 3.

2

3. Proof of Theorem 1 and Theorem 2

Since the proofs of Theorem 1 and Theorem 2 are similar, we only prove Theorem 1.

Denote g = ∆cf . By the condition that Ef(z)(S1, k) = E∆cf (S1, k), we see that fn and gn share 1

with weight k , that is Efn(1, k) = Egn(1, k). Since Ef(z)(∞,∞) = E∆cf (∞,∞), we also have Efn(∞,∞) =

Egn(∞,∞).

We suppose that

T (r, fn) + T (r, gn) ≤ 2{N(r, f) + 2N(r, 1/f) +N(r, g) + 2N(r, 1/g)}

+

[
1

k

]{
N (k+1(r,

1

fn − 1
) +N (k+1(r,

1

gn − 1
)

}
+ S(r).

(3.1)

Set

ϕ =
(fn)′

fn(fn − 1)
− (gn)′

gn(gn − 1)
. (3.2)

If ϕ ̸≡ 0. Let z0 be a pole of f ; then z0 is a pole of g , and so z0 is a zero of ϕ with multiplicity at least

n− 1, and so we get

N(r, f) = N(r, g) ≤ 1

n− 1
N(r,

1

ϕ
) ≤ 1

n− 1
N(r, ϕ) + S(r). (3.3)

where S(r) = S(r, f) + S(r, g)

From (3.2), Efn(1, k) = Egn(1, k) and Ef (∞,∞) = Eg(∞,∞), we can easily verify that possible poles

of ϕ occur at: (1) zeros of f and g ; (2) the zeros of fn − 1 and gn − 1 with multiplicities ≥ k + 1. Thus we

have

N(r, ϕ) ≤ N(r,
1

f
) +N(r,

1

g
) +

1

2
N (k+1(r,

1

fn − 1
) +

1

2
N (k+1(r,

1

gn − 1
) + S(r).
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Noticing that

N (k+1(r,
1

fn − 1
) ≤ 1

k
N(r,

1

f ′
), N (k+1(r,

1

gn − 1
) ≤ 1

k
N(r,

1

g′
).

With Lemma 2, it is easy to obtain

N(r, ϕ) ≤ N(r,
1

f
) +N(r,

1

g
) +

1

2k
N(r,

1

f ′
) +

1

2k
N(r,

1

g′
) + S(r)

≤ N(r,
1

f
) +N(r,

1

g
) +

1

2k
(N(r,

1

f
) +N(r, f)) +

1

2k
(N(r,

1

g
) +N(r, g)) + S(r).

(3.4)

From (3.3) and (3.4), we get

N(r, f) = N(r, g) ≤ k

(n− 1)k − 1

{
N(r,

1

f
) +N(r,

1

g
) +

1

2k
N(r,

1

f
) +

1

2k
N(r,

1

g
)

}
+ S(r). (3.5)

On the other hand, from (3.1) and Lemma 1, we have

nT (r, f) + nT (r, g) ≤ 2{N(r, f) + 2N(r, 1/f) +N(r, g) + 2N(r, 1/g)}

+

[
1

k

]{
1

k
(N(r,

1

f
) +N(r, f)) +

1

k
(N(r,

1

g
) +N(r, g))

}
+ S(r).

(3.6)

When k = 1, n ≥ 7, from (3.6), we get

nT (r, f) + nT (r, g) ≤ 5N(r,
1

f
) + 3N(r, f) + 5N(r,

1

g
) + 3N(r, g) + S(r). (3.7)

By (3.5) and (3.7), we obtain

(n− 5){T (r, f) + T (r, g)} ≤ 9

n− 2

{
N(r,

1

f
) +N(r,

1

g
)

}
+ S(r)

≤ 9

n− 2
{T (r, f) + T (r, g)}+ S(r),

a contradiction.

When k ≥ 2, n ≥ 5, from (3.6), we get

nT (r, f) + nT (r, g) ≤ 4

{
N(r,

1

f
) +N(r,

1

f
)

}
+ 2

{
N(r, f) +N(r, g)

}
+ S(r). (3.8)

By (3.5) and (3.8), we obtain

(n− 4){T (r, f) + T (r, g)} ≤ 2(k + 1)

(n− 1)k − 1

{
N(r,

1

f
) +N(r,

1

g
)

}
+ S(r)

≤ 2(k + 1)

(n− 1)k − 1
{T (r, f) + T (r, g)}+ S(r).
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Noticing that k ≥ 2, n ≥ 5, a contradiction.

Therefore, by Lemma 3, we get either fn ≡ gn or fngn ≡ 1.

If ϕ ≡ 0. It follows from (3.2) that

fn =
Agn +B

Cgn +D
, (3.9)

where A,B,C,D are finite complex numbers satisfying AD−BC ̸= 0, and from (3.9) we have T (r, f) =

T (r, g)

Next we consider three cases.

Case 1. AC ̸= 0. From (3.9) and Efn(∞,∞) = Egn(∞,∞), we have N(r, 1/(fn −A/C)) = N(r, gn) =

N(r, g) = N(r, f). Then by the second fundamental theorem, we obtain

nT (r, f) ≤ N(r, fn) +N(r,
1

fn − A
C

) +N(r,
1

fn
) + S(r, f)

≤ N(r, f) +N(r, f) +N(r,
1

f
) + S(r, f),

which contradicts n ≥ 5.

Case 2. A ̸= 0, C = 0. Then fn ≡ (Agn +B)/D . We consider two subcases.

Case 2.1. B ̸= 0. Then by the second fundamental theorem,

nT (r, f) ≤ N(r, fn) +N(r,
1

fn − B
D

) +N(r,
1

fn
) + S(r, f)

≤ N(r, f) +N(r,
1

g
) +N(r,

1

g
) + S(r, g),

which contradicts n ≥ 5.

Case 2.2. B = 0. Then fn ≡ A
Dg

n . Since Efn(1, k) = Egn(1, k), by the second fundamental theorem

that there must exist a point z0 such that fn(z0) = gn(z0) = 1. Thus A
D = 1, which yields fn ≡ gn .

Case 3. A = 0, C ̸= 0. Then fn ≡ B
Cgn+D . We can similarly prove that D = 0, BC = 1, and thus

fngn ≡ 1.

As discussed above, we get if n ≥ 7 when k = 1; n ≥ 5 when k ≥ 2; then fn ≡ gn or fngn ≡ 1. That

is fn ≡ (∆cf)
n or fn(∆cf)

n ≡ 1

If fn(∆cf)
n ≡ 1. That is

fn(z)[f(z + c)− f(z)]n ≡ 1. (3.10)

From (3.10) and Ef(z)(∞,∞) = E∆cf (∞,∞), we obtain f(z) ̸= 0 and f(z) ̸= ∞ , and so f(z) = eh(z) ,

where h(z) is a nonconstant entire function.

By (3.10), we get

f(z)[f(z + c)− f(z)] ≡ t, (3.11)

where tn = 1.

From (3.11) and f(z) = eh(z) , we obtain
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eh(z)[eh(z+c) − eh(z)] ≡ t.

That is

eh(z)h(z+c) − e2h(z) ≡ t.

Since eh(z)h(z+c) ̸= 0, we easily get e2h(z) ̸= −t , and obviously e2h(z) ̸= 0,∞ . Then by Picard Theorem,

we get e2h(z) ≡ C1 ; then h ≡ C2 , where C1 and C2 are two constants, a contradiction.

Therefore, we get fn ≡ (∆cf)
n . Then there exists a constant t ∈ C such that ∆cf ≡ tf(z).

This completed the proof of Theorem 1.
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