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Abstract: We compute the depth and Stanley depth for the quotient ring of the path ideal of length 3 associated to

a n -cyclic graph, given some precise formulas for the depth when n ̸≡ 1 (mod 4), tight bounds when n ≡ 1 (mod 4),

and for Stanley depth when n ≡ 0, 3 (mod 4), tight bounds when n ≡ 1, 2 (mod 4). We also give some formulas for the

depth and Stanley depth of a quotient of the path ideals of length n− 1 and n .
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1. Introduction

Let S = K[x1, . . . , xn] be a polynomial ring in n variables over a field K and M a finitely generated Zn -

graded S -module. For a homogeneous element u ∈ M and a subset Z ⊆ {x1, . . . , xn} , uK[Z] denotes the

K -subspace of M generated by all the homogeneous elements of the form uv , where v is a monomial in K[Z] .

The Zn -graded K -subspace uK[Z] is said to be a Stanley space of dimension |Z| if it is a free K[Z] -module,

where, as usual, |Z| denotes the number of elements of Z . A Stanley decomposition of M is a decomposition

of M as a finite direct sum of Zn -graded K -vector spaces

D : M =

r⊕
i=1

uiK[Zi]

where each uiK[Zi] is a Stanley space of M . The number sdepthS (D) = min{|Zi| : i = 1, . . . , r} is called the

Stanley depth of decomposition D and the quantity

sdepth (M) := max{sdepth (D) | D is a Stanley decomposition of M}

is called the Stanley depth of M . Stanley [13] conjectured that

sdepth (M) ≥ depth (M)

for all Zn -graded S -modules M . This conjecture proves to be false, in general, for M = S/I and M = J/I ,

where I ⊂ J ⊂ S are monomial ideals; see [6].

Herzog et al. [8] introduced a method to compute the Stanley depth of a factor of a monomial ideal,

which was later developed into an effective algorithm by Rinaldo [12], implemented in CoCoA [5]. However, it
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is difficult to compute this invariant, even in some very particular cases. For instance, in [1] Biró et al. proved

that sdepth (m) = ⌈n
2 ⌉ where m = (x1, . . . , xn) is the graded maximal ideal of S and ⌈n

2 ⌉ denotes the smallest

integer ≥ n
2 . For an introduction to Stanley depth, we refer the reader to [7].

Let In,m and Jn,m be the path ideals of length m associated to the n -line, respectively n -cyclic,

graph. Cimpoeaş [3] proved that depth (S/Jn,2) = ⌈n−1
3 ⌉ and when n ≡ 0 (mod 3) or n ≡ 2 (mod 3),

sdepth (S/Jn,2) = ⌈n−1
3 ⌉ and when n ≡ 1 (mod 3), ⌈n−1

3 ⌉ ≤ sdepth (S/Jn,2) ≤ ⌈n
3 ⌉ . In [4], he also showed

that sdepth (S/In,m) = depth (S/In,m) = n + 1 − ⌊ n+1
m+1⌋ − ⌈ n+1

m+1⌉, where ⌊ n+1
m+1⌋ denotes the biggest integer

≤ n+1
m+1 . Using similar techniques, we prove that sdepth (S/Jn,3) = n − ⌊n

4 ⌋ − ⌈n
4 ⌉ for n ≡ 0 (mod 4) or

n ≡ 3 (mod 4) and n− ⌊n
4 ⌋ − ⌈n

4 ⌉ ≤ sdepth (S/Jn,3) ≤ n+ 1− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ≡ 1 (mod 4) or n ≡ 2 (mod 4).

Also, we prove that depth (S/Jn,3) = n− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ̸≡ 1 (mod 4) and n− ⌊n
4 ⌋ − ⌈n

4 ⌉ ≤ depth (S/Jn,3) ≤
n+1−⌊n

4 ⌋−⌈n
4 ⌉ for n ≡ 1 (mod 4). In Proposition 2.14, we prove that sdepth (Jn,3/In,3) = n+1−⌊n

4 ⌋−⌈n
4 ⌉

for all n ≥ 4. In the third section, we prove that sdepth ( S
Jn,n−1

) = depth ( S
Jn,n−1

) = n − 2 and n − 3 ≤

sdepth ( S
Jn,n−2

), depth ( S
Jn,n−2

) ≤ n− 2.

2. Depth and Stanley depth of the quotient of the path ideal with length 3

In this section, we will give some formulas for the depth and Stanley depth of quotient of the path ideals

of length 3. We first recall some definitions about graphs and their path ideals in order to make this paper

self-contained. However, for more details on the notions, we refer the reader to [16, 17].

Definition 2.1 Let G = (V,E) be a graph with vertex set V = {x1, . . . , xn} and edge set E . Then G = (V,E)

is called an n-line graph, denoted by Ln , if its edge set is given by E = {xixi+1 | 1 ≤ i ≤ n − 1} .
Similarly, if n ≥ 3 , then G = (V,E) is called an n-cyclic graph, denoted by Cn , if its edge set is given

by E = {xixi+1 | 1 ≤ i ≤ n− 1} ∪ {xnx1} .

Definition 2.2 Let G = (V,E) be a graph with vertex set V = {x1, . . . , xn} . A path of length m in G is an

alternating sequence of vertices and edges w = {xi, ei, xi+1, . . . , xi+m−2, ei+m−2, xi+m−1} , where ej = xjxj+1

is the edge joining xj and xj+1 . A path of length m may also be denoted {xi, . . . , xi+m−1} , the edges being

evident from the context.

Definition 2.3 Let G = (V,E) be a graph with vertex set V = {x1, . . . , xn} . Then the path ideal of length m

associated to G is the squarefree monomial ideal I = (xi · · ·xi+m−1 | {xi, . . . , xi+m−1} is a path of length m in G)

of S .

In this paper, we set n ≥ 3 and consider the n-line graph Ln and n -cyclic graph Cn ; their path ideals

of length m are denoted by Im,n and Jm,n , respectively. Thus, we obtain that

Im,n = (xi · · ·xi+m−1 | 1 ≤ i ≤ n−m+ 1),

and

Jm,n = Im,n + (xn−m · · ·xnx1, xn−m+1 · · ·xnx1x2, . . . , xnx1 · · ·xm−1).
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Definition 2.4 Let (S,m) be a local ring (or a Noetherian graded ring with (S0,m0) local) and M a finite

generated S -module with the property that mM ⊊ M (or a finite generated graded S -module with the property

that (m0 ⊕
∞⊕
i=1

Si)M ⊊ M ). Then the depth of M is defined as

depth (M) = min{i | Ext i(S/m,M) ̸= 0}

(or depth (M) = min{i | Ext i(S/(m0 ⊕
∞⊕
i=1

Si),M) ̸= 0}).

We recall the well-known depth lemma; see, for instance, [16, Lemma 1.3.9 ] or [15, Lemma 3.1.4 ].

Lemma 2.5 (Depth lemma) Let 0 → L → M → N → 0 be a short exact sequence of modules over a local ring

S , or a Noetherian graded ring with S0 local; then:

(i) depth (M) ≥ min{depth (L), depth (N)} ;

(ii) depth (L) ≥ min{depth (M), depth (N) + 1} ;

(iii) depth (N) ≥ min{depth (L)− 1, depth (M)} .

Most of the statements of the above depth lemma are wrong if we replace depth by Stanley depth. Some

counterexamples are given in [11, Example 2.5 and 2.6 ]. Rauf [11] proved the analog of Lemma 2.5 (i) for

Stanley depth.

Lemma 2.6 Let 0 → L → M → N → 0 be a short exact sequence of finitely generated Zn -graded S -modules.

Then
sdepth (M) ≥ min{sdepth (L), sdepth (N)}.

In [3], Cimpoeaş computed depth and Stanley depth for S/Jn,2 .

Lemma 2.7 (1) depth (S/Jn,2) = ⌈n−1
3 ⌉ ;

(2) sdepth (S/Jn,2) = ⌈n−1
3 ⌉ for n ≡ 0 (mod 3) or n ≡ 2 (mod 3) ;

(3) ⌈n−1
3 ⌉ ≤ sdepth (S/Jn,2) ≤ ⌈n

3 ⌉ for n ≡ 1 (mod 3) .

In [4], Cimpoeaş computed depth and Stanley depth for S/In,m , which generalizes [9, Lemma 2.8 ] and

[14, Lemma 4 ].

Lemma 2.8 sdepth (S/In,m) = depth (S/In,m) = n + 1 − ⌊ n+1
m+1⌋ − ⌈ n+1

m+1⌉ . In particular, sdepth (S/In,2) =

depth (S/In,2) = ⌈n
3 ⌉ .

Using these lemmas, we are able to prove the main result of this section.

Theorem 2.9 (1) depth (S/Jn,3) ≥ n− ⌊n
4 ⌋ − ⌈n

4 ⌉ ;

(2) sdepth (S/Jn,3) ≥ n− ⌊n
4 ⌋ − ⌈n

4 ⌉ .
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Proof These two results can be shown by similar arguments, so we only prove that sdepth (S/Jn,3) ≥
n− ⌊n

4 ⌋ − ⌈n
4 ⌉ . Let St be the polynomial ring in t variables over a field. The case n = 3 is trivial. The cases

n = 4 and n = 5 follow from Examples 2.10 and 2.11, respectively.

We may assume that n ≥ 6. Let k = ⌊n
4 ⌋ and φ(n) = n− ⌊n

4 ⌋ − ⌈n
4 ⌉ . One can easily see that

φ(n) =

{
n− 2k, if n ≡ 0 (mod 4);
n− 2k + 1, otherwise.

We denote ui = xixi+1xi+2 for 1 ≤ i ≤ n − 2, un−1 = xn−1xnx1 , and un = xnx1x2 . Set L0 = Jn,3 ,

L1 = (L0 : xn) and U1 = (L0, xn). Notice that L0 = (u1, . . . , un), L1 = (u2, . . . , un−4,
un−2

xn
, un−1

xn
, un

xn
), and

U1 = (u1, . . . , un−3, xn). Since S/U1 ≃ Sn−1/In−1,3 , we obtain sdepth (S/U1) = φ(n) by Lemma 2.8.

We set Lj+1 = (Lj : x4j) and Uj+1 = (Lj , x4j) where 1 ≤ j ≤ k − 3. One can easily check that:

Lj+1 = (
u2

x4
,
u3

x4
,
u4

x4
,
u6

x8
, . . . ,

u4(j−1)

x4(j−1)
,
u4j−2

x4j
, . . . ,

u4j

x4j
, u4j+2, . . . , un−4,

un−2

xn
,
un−1

xn
,
un

xn
),

and

Uj+1 = (
u2

x4
,
u3

x4
,
u4

x4
,
u6

x8
, . . . ,

u4(j−1)−2

x4(j−1)
, . . . ,

u4(j−1)

x4(j−1)
, x4j , u4j+1, . . . , un−4,

un−2

xn
,
un−1

xn
,
un

xn
),

where x0 = 1 and uj = 0 for j ≤ 0.

We consider the following three cases:

(1). If n = 4k or n = 4k− 1, we denote Lj+1 = (Lj : x4j) and Uj+1 = (Uj , x4j) for j = k− 2, k− 1. We

conclude Lk ≃ Jn−k,2S , Uk = (x4(k−1), Vk) where Vk = (u2

x4
, u3

x4
, u4

x4
, u6

x8
, . . . ,

u4(k−2)

x4(k−2)
, un−2

xn
, un−1

xn
, un

xn
). Note that

Vk ≃
{

In−k−2,2, if n = 4k;
In−k−1,2, if n = 4k − 1.

Thus, by Lemmas 2.7, 2.8, and [8, Lemma 3.6], it follows that

sdepth (S/Lk) = k + sdepth (Sn−k/Jn−k,2) = k + k = φ(n),

and

sdepth (
S

Uk
) =

{
(k + 1) + sdepth ( Sn−k−2

In−k−2,2
) = (k + 1) + k = 1 + φ(n), if n = 4k;

k + sdepth ( Sn−k−1

In−k−1,2
) = k + k = φ(n), if n = 4k − 1.

(2). If n = 4k − 2, we denote Lk−1 = (Lk−2 : x4(k−2)), Uk−1 = (Lk−2, x4(k−2)), Lk = (Lk−1 :

x4(k−1)−1), and Uk = (Uk−1, x4(k−1)−1). We have Lk ≃ Jn−k,2S , Uk = (x4(k−1)−1, Vk) where Vk =

(u2

x4
, u3

x4
, u4

x4
, u6

x8
, . . . ,

u4(k−2)

x4(k−2)
, un−2

xn
, un−1

xn
, un

xn
) ≃ In−k,2S . Thus, by Lemma 2.8 and [8, Lemma 3.6], we obtain

sdepth (S/Uk) = (k − 1) + sdepth (Sn−k/In−k,2) = (k − 1) + k = φ(n).

Applying Lemma 2.7 and [8, Lemma 3.6], we get

sdepth (S/Lk) = k + sdepth (Sn−k/Jn−k,2) ≥ k + (k − 1) = φ(n),
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and
sdepth (S/Lk) = k + sdepth (Sn−k/Jn−k,2) ≤ k + k = 1 + φ(n).

(3). If n = 4k − 3, we denote Lk−1 = (Lk−2 : x4(k−2)−1), Uk−1 = (Lk−2, x4(k−2)−1),

Lk = (Lk−1 : x4(k−1)−2), and Uk = (Uk−1, x4(k−1)−2). We have Lk ≃ Jn−k,2S , Uk = (x4(k−1)−2, Vk) where

Vk = (u2

x4
, u3

x4
, u4

x4
, u6

x8
, . . . ,

u4(k−3)

x4(k−3)
,
u4(k−2)−2

x4(k−2)−1
,
u4(k−2)−1

x4(k−2)−1
, un−2

xn
, un−1

xn
, un

xn
) ≃ In−k,2S . Therefore, by Lemmas 2.7, 2.8,

and [8, Lemma 3.6], we have

sdepth (S/Lk) = k + sdepth (Sn−k/Jn−k,2) = k + (k − 1) = 1 + φ(n),

and
sdepth (S/Uk) = (k − 1) + sdepth (Sn−k/In−k,2) = (k − 1) + (k − 1) = φ(n).

This shows that φ(n) ≤ sdepth (S/Lk) ≤ 1 + φ(n) and sdepth (S/Uk) ≥ φ(n) (∗).
Consider the following short exact sequences:

0 −→ S
L1

−→ S
L0

−→ S
U1

−→ 0

0 −→ S
L2

−→ S
L1

−→ S
U2

−→ 0

...
...

...

0 → S
Lk−1

→ S
Lk−2

→ S
Uk−1

→ 0

0 −→ S
Lk

−→ S
Lk−1

−→ S
Uk

−→ 0.

By Lemma 2.6 and (∗), we have

sdepth (
S

Jn,3
) = sdepth (

S

L0
) ≥ min{sdepth ( S

L1
), sdepth (

S

U1
)}

≥ min{sdepth ( S
L2

), sdepth (
S

U2
), sdepth (

S

U1
)}

≥ · · ·

≥ min{sdepth ( S

Lk
), sdepth (

S

Uk
), sdepth (

S

Uk−1
), . . . , sdepth (

S

U1
)}

≥ min{φ(n), sdepth ( S

Uk−1
), . . . , sdepth (

S

U2
), sdepth (

S

U1
)}.

To show sdepth ( S
Jn,3

) ≥ φ(n), it is enough to prove the claim below.

Claim: sdepth (S/Uj+1) ≥ φ(n) for all 1 ≤ j ≤ k − 2.

For any 1 ≤ j ≤ k − 3, we set Vj+1 = (un−2

xn
, un−1

xn
, un

xn
, u2

x4
, . . . ,

u4(j−1)−2

x4(j−1)
, . . . ,

u4(j−1)

x4(j−1)
) and Wj+1 =

(u4j+1, . . . , un−4) where x0 = 1 and uj = 0 for j ≤ 0. We have S
Uj+1

≃ S/Vj+1⊕S/Wj+1

x4j(S/Vj+1⊕S/Wj+1)
. Since x4j is

regular on S/Vj+1 ⊕ S/Wj+1 , by [10, Theorem 1.1] and [2, Theorem 1.3], we have

sdepth (
S

Uj+1
) = sdepth (

S

Vj+1
⊕ S

Wj+1
)− 1 ≥ sdepth (

S

Vj+1
) + sdepth (

S

Wj+1
)− n− 1.
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On the other hand, Vj+1 ≃ I3j+1,2S , Wj+1 ≃ In−4(j+1)+2,3S . Thus, by Lemma 2.8, we have

sdepth (S/Vj+1) = [n− (3j + 1)] + ⌈3j + 1

3
⌉ = n− 2j

and

sdepth (S/Wj+1) = [4(j + 1)− 2] + [n− 4(j + 1) + 3]− ⌊n− 4(j + 1) + 3

4
⌋

− ⌈n− 4(j + 1) + 3

4
⌉

= n+ 1− ⌊n− 4j − 1

4
⌋ − ⌈n− 4j − 1

4
⌉

= n+ 1 + 2j − ⌊n− 1

4
⌋ − ⌈n− 1

4
⌉.

By some simple computations, we conclude that

sdepth (S/Uj+1) ≥ (n− 2j) + (n+ 1 + 2j)− ⌊n− 1

4
⌋ − ⌈n− 1

4
⌉ − n− 1

= n− ⌊n− 1

4
⌋ − ⌈n− 1

4
⌉ ≥ φ(n).

If n ̸= 4k−3, we have Vk−1 = (un−2

xn
, un−1

xn
, un

xn
, u2

x4
, . . . ,

u4(k−3)−2

x4(k−3)
, . . . ,

u4(k−3)

x4(k−3)
) and Wk−1 = (u4(k−2)+1, . . . , un−4).

It follows from similar arguments as above.

If n = 4k−3, we have Vk−1 = (un−2

xn
, un−1

xn
, un

xn
, u2

x4
, . . . ,

u4(k−3)−2

x4(k−3)
, . . . ,

u4(k−3)

x4(k−3)
) and Wk−1 = (u4(k−2), . . . , un−4).

Note that Vk−1 ≃ I3(k−2)+1,2S and Wk−1 ≃ In−4(k−1)+3,3S . Thus, by Lemma 2.8, we obtain

sdepth (S/Vk−1) = (n− (3(k − 2) + 1)) + ⌈3(k − 2) + 1

3
⌉ = n− 2k + 4 = 2k + 1

and

sdepth (S/Wk−1) = (4(k − 1)− 3) + (n− 4(k − 1) + 4)− ⌊n− 4(k − 1) + 4

4
⌋

− ⌈n− 4(k − 1) + 4

4
⌉

= n+ 1− ⌊n− 4k + 8

4
⌋ − ⌈n− 4k + 8

4
⌉

= n+ 1− ⌊5
4
⌋ − ⌈5

4
⌉ = n− 2.
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One can easily see that S
Uk−1

≃ S/Vk−1⊕S/Wk−1

x4(k−2)−1(S/Vk−1⊕S/Wk−1)
. Since xx4(k−2)−1

is regular on S/Vk−1⊕S/Wk−1 ,

by [10, Theorem 1.1] and [2, Theorem 1.3], we have

sdepth (
S

Uk−1
) = sdepth (

S

Vk−1
⊕ S

Wk−1
)− 1

≥ sdepth (
S

Vk−1
) + sdepth (

S

Wk−1
)− n− 1

= 2k + 1 + (n− 2)− n− 1

= 2k − 2 = φ(n).

This completes the proof. 2

Example 2.10 Let J4,3 = (x1x2x3, x2x3x4, x3x4x1, x4x1x2) ⊂ S = K[x1, . . . , x4] . Note that 4−⌊ 4
4⌋−⌈ 4

4⌉ = 2 .

Set L1 = (J4,3 : x4) and U1 = (J4,3, x4) . Since L1 = (x1x2, x2x3, x3x1) = J3,2S and U1 = (x1x2x3, x4) ,

thus S/U1 = K[x1, x2, x3]/(x1x2x3) . By Lemmas 2.7, 2.8, and [8, Lemma 3.6], we have sdepth (S/L1) =

depth (S/L1) = 1 + ⌈ 3−1
3 ⌉ = 2 and sdepth (S/U1) = 2 . Applying Lemma 2.6 to the short exact sequence

0 −→ S/L1 −→ S/J4,3 −→ S/U1 −→ 0,

we obtain depth ( S
J4,3

) = 2 and sdepth ( S
J4,3

) ≥ 2 . By [2, Proposition 2.7], it follows that sdepth ( S
J4,3

) ≤

sdepth (S/L1) = 2 . Thus, sdepth (S/J4,3) = 2 .

Example 2.11 Let J5,3 = (x1x2x3, x2x3x4, x3x4x5, x4x5x1, x5x1x2) ⊂ S = K[x1, . . . , x5] . Note that 5−⌊ 5
4⌋−

⌈ 5
4⌉ = 2 . Set L1 = (J5,3 : x5) and U1 = (J5,3, x5) . Since L1 = (x3x4, x4x1, x1x2) ≃ I4,2S and U1 =

(x1x2x3, x2x3x4, x5) , thus S/U1 = S4/I4,3 , and by Lemma 2.8 and [8, Lemma 3.6], we have sdepth (S/L1) =

depth (S/L1) = 1 + ⌈ 4
3⌉ = 3 and sdepth (S/U1) = 5 − ⌊ 5

4⌋ − ⌈ 5
4⌉ = 2 . Using Lemmas 2.5 and 2.6 on the short

exact sequence

0 −→ S/L1 −→ S/J5,3 −→ S/U1 −→ 0,

we obtain depth (S/J5,3) ≥ 2 and sdepth (S/J5,3) ≥ 2 .

As a consequence of Theorem 2.9, one has the following results.

Corollary 2.12 (1) sdepth (S/Jn,3) ≤ n+ 1− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ≡ 1 (mod 4) or n ≡ 2 (mod 4) ;

(2) sdepth (S/Jn,3) = n− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ≡ 0 (mod 4) or n ≡ 3 (mod 4) .

Proof Set φ(n) = n− ⌊n
4 ⌋ − ⌈n

4 ⌉ . From the proof of Theorem 2.9, we see that sdepth (S/Lk) ≤ 1 + φ(n) for

n ≡ 1 (mod 4) or n ≡ 2 (mod 4), and otherwise sdepth (S/Lk) = φ(n). These are direct consequences of [2,

Proposition 2.7]. 2

Corollary 2.13 (1) depth (S/Jn,3) ≤ n+ 1− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ≡ 1 (mod 4) ,

(2) depth (S/Jn,3) = n− ⌊n
4 ⌋ − ⌈n

4 ⌉ for n ̸≡ 1 (mod 4) .
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Proof Set φ(n) = n − ⌊n
4 ⌋ − ⌈n

4 ⌉ . Replacing the Stanley depth by depth in the proof of Theorem 2.9, we

see that depth (S/Lk) = 1 + φ(n) for n ≡ 1 (mod 4), and otherwise depth (S/Lk) = φ(n). These are direct

consequences of [11, Corollary 1.3]. 2

Proposition 2.14 sdepth (Jn,3/In,3) = n+ 1− ⌊n
4 ⌋ − ⌈n

4 ⌉ for all n ≥ 4 .

Proof One can easily check that J4,3/I4,3 ≃ x1x3x4K[x1, x3, x4]⊕x1x2x4K[x1, x2, x4] . Thus, sdepth (J4,3/I4,3) =

3, as required. Similarly, for n = 5, we have J5,3/I5,3 ≃ x1x4x5K[x1, x4, x5] ⊕ x1x2x5K[x1, x2, x5] ⊕
x1x2x4x5K[x1, x2, x4, x5] ; for n = 6, we have J6,3/I6,3 ≃ x1x5x6K[x1, x3, x5, x6] ⊕ x1x2x6K[x1, x2, x4, x6] ⊕
x1x2x5x6K[x1, x2, x5, x6]; and for n = 7, we get J7,3/I7,3 ≃ x1x6x7K[x1, x3, x4, x6, x7]⊕x1x2x7K[x1, x2, x4, x5, x7]⊕
x1x2x6x7K[x1, x2, x4, x6, x7] .

Now, assume n ≥ 8, and let u ∈ Jn,3 be a monomial such that u /∈ In,3 . It follows that u = x1xn−1xnv1

or u = x1x2xnv2 , with v1 ∈ K[x1, . . . , xn−3, xn−1, xn] and v2 ∈ K[x1, x2, x4, . . . , xn] . We can write v1 =

xα
1 x

β
n−1x

γ
nw with w ∈ K[x2, . . . , xn−3] . Since u /∈ In,3 , it follows that w /∈ (x2x3, x3x4x5, . . . , xn−5xn−4xn−3).

Similarly, we can write v2 = xα
1x

β
2x

γ
nw with w ∈ K[x4, . . . , xn−1] . Since u /∈ In,3 , it follows that w /∈

(x4x5x6, . . . , xn−4xn−3xn−2, xn−2xn−1). Therefore, we have the S -module isomorphism:

Jn,3/In,3 ≃ x1x2xn(
K[x4, . . . , xn−2]

(x4x5x6, . . . , xn−4xn−3xn−2)
)[x1, x2, xn]

⊕ x1xn−1xn(
K[x3, . . . , xn−3]

(x3x4x5, . . . , xn−5xn−4xn−3)
)[x1, xn−1, xn]

⊕ x1x2xn−1xn(
K[x4, . . . , xn−3]

(x4x5x6, . . . , xn−5xn−4xn−3)
)[x1, x2, xn−1, xn].

Therefore, by Lemma 2.8 and [8, Lemma 3.6], we obtain

sdepth (
Jn,3
In,3

) = min {3+(n−4)−⌊n− 4

4
⌋−⌈n− 4

4
⌉, 4+(n−5)−⌊n− 5

4
⌋ − ⌈n− 5

4
⌉}

= min {n+ 1− ⌊n
4
⌋ − ⌈n

4
⌉, n+ 1− ⌊n− 1

4
⌋ − ⌈n− 1

4
⌉}

= n+ 1− ⌊n
4
⌋ − ⌈n

4
⌉.

2

3. Depth and Stanley depth of the quotient of the path ideal of length n− 1 or n− 2

In this section, we will give some formulas for depth and Stanley depth of the quotient of the path ideal of

length n− 1 or n− 2.

Proposition 3.1 sdepth (S/Jn,n−1) = depth (S/Jn,n−1) = n− 2 .

Proof We apply induction on n . The case n = 3 follows from Lemma 2.7. Assume now that n ≥ 4. Since

Jn,n−1 = (
n−1∏
i=1

xi,
n∏

i=2

xi, (
n∏

i=3

xi)x1, . . . , (
n∏

i=k

xi)(
k−2∏
i=1

xi), . . . , xn

n−2∏
i=1

xi), we obtain

(Jn,n−1 : xn) = (
n−2∏
i=1

xi,
n−1∏
i=2

xi, (
n−1∏
i=3

xi)x1, . . . , (
n−1∏
i=k

xi)(
k−2∏
i=1

xi), . . . , xn−1

n−3∏
i=1

xi) = Jn−1,n−2S ,
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(Jn,n−1, xn) = (
n−1∏
i=1

xi, xn). Hence, we get S/(Jn,n−1 : xn) = (Sn−1/Jn−1,n−2)[xn] . Using the induction

hypothesis and [8, Lemma 3.6], we conclude

sdepth (S/(Jn,n−1 : xn)) = 1 + sdepth (Sn−1/Jn−1,n−2) = n− 2,

and
depth (S/(Jn,n−1 : xn)) = 1 + depth (Sn−1/Jn−1,n−2) = n− 2.

On the other hand, we obtain sdepth (S/(Jn,n−1, xn)) = n− 2 by [10, Theorem 1.1]. By applying Lemmas 2.5

and 2.6 to the exact sequence

0 −→ S/(Jn,n−1 : xn)
·xn−→ S/Jn,n−1 −→ S/(Jn,n−1, xn) −→ 0,

we obtain depth (S/Jn,n−1) ≥ n−2 and sdepth (S/Jn,n−1) ≥ n−2. Therefore, it follows that sdepth (S/Jn,n−1) =

n− 2 by [2, Proposition 2.7]. 2

Proposition 3.2 (1) n− 3 ≤ sdepth (S/Jn,n−2) ≤ n− 2 ,

(2) n− 3 ≤ depth (S/Jn,n−2) ≤ n− 2 .

Proof The case n = 3 is trivial. The case n = 4 follows from Lemma 2.7. We may assume that n ≥ 5. Set

L0 = Jn,n−2 , Lj = (Lj−1 : xn−j+1) and Uj = (Lj−1, xn−j+1) for all 1 ≤ j ≤ n− 4. We conclude that

L0 = (
n−2∏
i=1

xi,
n−1∏
i=2

xi,
n∏

i=3

xi, (
n∏

i=4

xi)x1, . . . , (
n∏

i=k

xi)(
k−3∏
i=1

xi), . . . , xn

n−3∏
i=1

xi),

L1 = (
n−1∏
i=3

xi, (
n−1∏
i=4

xi)x1, . . . , (
n−1∏
i=k

xi)(
k−3∏
i=1

xi), . . . , xn−1

n−4∏
i=1

xi,
n−3∏
i=1

xi), and U1 = (
n−2∏
i=1

xi,
n−1∏
i=2

xi, xn). Since

S/U1 = Sn−1/In−1,n−2 , we obtain sdepth (S/U1) = depth (S/U1) = n−3 by Lemma 2.8. For any 1 ≤ j ≤ n−4,

by some simple computations, one can see that

Lj = (

n−j∏
i=3

xi, (

n−j∏
i=4

xi)x1, . . . , (

n−j∏
i=k

xi)(
k−3∏
i=1

xi), . . . , xn−j

n−j−3∏
i=1

xi,

n−j−2∏
i=1

xi),

and Uj = (Uj−1, xn−j+1) = (
n−j−1∏
i=1

xi, xn−j+1). In particular, Ln−4 = (x3x4, x4x1, x1x2) and S/Ln−4 ≃

(S4/I4,2)[x5, . . . , xn] . Therefore, by Lemma 2.8 and [8, Lemma 3.6], we get sdepth (S/Ln−4) = depth (S/Ln−4) =

(n− 4) + 5− ⌊ 5
3⌋ − ⌈ 5

3⌉ = n− 2. On the other hand, we obtain sdepth (S/Uj) = depth (S/Uj) = n− 2 by [10,

Theorem 1.1]. By applying Lemmas 2.5 and 2.6 on the exact sequences

0 −→ S/Lj
·xn−j+1−→ S/Lj−1 −→ S/Uj −→ 0 for 1 ≤ j ≤ n− 4,

we conclude depth (S/Jn,n−2) ≥ n− 3 and sdepth (S/Jn,n−2) ≥ n− 3.

On the other hand, by [10, Theorem 1.1] and [2, Proposition 2.7], we have depth (S/Jn,n−2) ≤ depth (S/Ln−4)

and sdepth (S/Jn,n−2) ≤ sdepth (S/Ln−4). This completes the proof. 2
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[14] Ştefan A. Stanley depth of powers of the path ideal. Preprint. ArXiv:1409.6072V1 [math. AC].

[15] Vasconcelos WV. Arithmetic of Blowup Algebras. London Mathematical Society Lecture Note Series, Vol. 195.

Cambridge, UK: Cambridge University Press, 1994.

[16] Villarreal RH. Monomial Algebras. New York, NY, USA: Marcel Dekker, 2001.

[17] Zhu GJ. Depth and Stanley depth of the edge ideals of some m -line graphs and m -cyclic graphs with a common

vertex. Romanian Journal of Math and Computer Science 2015; 5: 118-129.

1183

http://dx.doi.org/10.1016/j.jcta.2009.07.008
http://dx.doi.org/10.1016/j.jcta.2009.07.008
http://dx.doi.org/10.1007/978-3-642-38742-5_1
http://dx.doi.org/10.1016/j.jalgebra.2008.01.006
http://dx.doi.org/10.1016/j.jalgebra.2008.01.006
http://dx.doi.org/10.1080/00927870903286900
http://dx.doi.org/10.1080/00927870902829056
http://dx.doi.org/10.1007/BF01394054
http://dx.doi.org/10.1017/CBO9780511574726
http://dx.doi.org/10.1017/CBO9780511574726

	Introduction
	Depth and Stanley depth of the quotient of the path ideal with length 3
	Depth and Stanley depth of the quotient of the path ideal of length n-1 or n-2

