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Abstract: In this paper, we study the Ricci soliton in the Riemannian products M = Rn × B and warped products

M = R×f B of the Euclidean space and Riemannian manifolds, and the gradient Ricci soliton in the warped products

M = S1 ×f B of 1-dimensional circle and Riemannian manifolds. Moreover, we introduce the concept of the generalized

Ricci soliton and we suggest the method of construction of the Riemannian manifold (M, g) with a Ricci soliton g .

Finally, we also study the Lorentzian warped products with the Ricci soliton.
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1. Introduction

The concept of a Ricci soliton was introduced by Hamiliton [7], which is both a generalization of the Einstein

metric and a special solution of the Ricci flow.

A Riemannian metric g on a complete Riemannian manifold M is called a Ricci soliton if there exists a

smooth vector field X such that the Ricci tensor satisfies the following equation:

Ric+
1

2
LXg = ρg (1.1)

for some constant ρ , where LX is the Lie derivative with respect to X [2, 3, 5, 6, 9]. It is said that (M, g)

or M is a Ricci soliton if the metric g on M is a Ricci soliton. The Ricci soliton is called shrinking if ρ > 0,

steady if ρ = 0, and expanding if ρ < 0. The metric of a Ricci soliton is useful in not only physics but also

mathematics, and it is often referred to as quasi-Einstein [4]. If X = ∇h for some function h on M , then M

is called a gradient Ricci soliton. In this case, equation (1.1) can be rewritten as:

Ric+Hess h = ρg, (1.2)

and h is called a potential function. It is well known that when ρ ≤ 0 all compact solitons are necessarily

Einstein [6], and a Ricci soliton on a compact manifold has a constant curvature in 2 dimensions [7] as well

as in 3 dimensions [8]. Moreover, a Ricci soliton on a compact manifold is a gradient Ricci soliton [9, 14] and

Vaghef and Razavi [15] studied the stability of compact Ricci solitons under Ricci flow.
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In [12], we studied the gradient Ricci soliton in the warped product space and obtained the criterion for

the base space of the warped product space with a gradient Ricci soliton to be a gradient Ricci soliton or an

Einstein space by taking the derivative twice of the warping function. However, there are no such criteria or

methods of construction of a Ricci soliton for the Riemannian products or warped products as far as we know.

Thus, it is natural to consider the case of noncompact Riemannian products or warped product spaces with a

Ricci soliton.

From this point of view, we study the Riemannian product space M = Rn×Bm with a Ricci soliton and

obtain the fact that M is a Ricci soliton if and only if B is a Ricci soliton. Furthermore, we get a necessary

condition for the base space to be a Ricci soliton in the warped products R×f B with a Ricci soliton. Moreover,

we introduce a generalized Ricci soliton with the Ricci soliton warping function f , and using Theorem 3.7 we

can suggest the method of construction of the warped products R×f B to admit a Ricci soliton. Precisely, we

proved that if B is a generalized Ricci soliton with the Ricci soliton warping function f , then M = R ×f Bm

is a Ricci soliton.

On the other hand, Kenmotsu [10] gave a characterization of the warped product space L ×f CEn

by tensor equations. By use of the almost contact structure on L ×f CEn introduced by Kenmotsu [10] and

combining our theorems, we see that the warped product space M = R×f B with Ricci soliton for the structure

vector is, in fact, Einstein and also B is Einstein, where B is a Kaehler manifold and f = cet for a constant c .

In the consideration of the warped product space M = S1(k) ×f B with a gradient Ricci soliton, we studied

the relationship of the warping function f and the Einstein metric on B . Moreover, we clarify the function h

appearing in equation (1.2) for the warped products M = S1 ×f B .

Finally, we study the Lorentzian warped product space R ×f B with a Ricci soliton and obtain the

necessary condition of the base space to be a Ricci soliton. For the converse of this case, we can construct

the Lorentzian warped product space R ×f B admitting a Ricci soliton when the base space is a generalized

Lorentzian Ricci soliton with a Lorentzian Ricci soliton warping function f . Consequently, it is possible to

construct a Ricci soliton on the Riemannian product space or the warped product space by use of our results,

and not only the Riemannian case but also the Lorentzian case.

2. Ricci solitons in Riemannian product manifolds

Let (B, g) be an m-dimensional Riemannian manifold with a metric g and let M = Rn×B be the Riemannian

product manifold with the metric g̃ =

(
δuv 0
0 gab

)
, where the range of indices u, v, w, · · · is {1, 2, · · · , n}

and the range of indices a, b, c, · · · is {n+ 1, · · · , n+m} .

Then the Ricci curvature tensors S̃ and S of M and B , respectively, are given by S̃ab = Sab and the

others are zero.

Suppose that B is a Ricci soliton. If we take ρ̃ = ρ and a covector field Ũ = (ξ̃u, ξ̃a) on M by

ξ̃u = ρtu, ξ̃a = ξa on B , then we obtain

S̃ab = Sab = ρgab − 1
2 (∇aξb +∇bξa) = ρ̃g̃ab − 1

2 (∇̃aξ̃b + ∇̃bξ̃a),

S̃au = 0 = − 1
2 (∇̃aξ̃u + ∇̃uξ̃a),

S̃uv = 0 = ρ̃δuv − 1
2 (∇̃uξ̃v + ∇̃v ξ̃u).

(2.1)

Hence, we can see that if B is a Ricci soliton, then M = Rn ×B is a Ricci soliton.
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Conversely, if M = Rn ×B is a Ricci soliton, then there exists a covector field Ṽ on M such that

S̃ij = ρ̃ g̃ij −
1

2
(∇̃iξ̃j + ∇̃j ξ̃i)

for some constant function ρ̃ on M , where ξ̃i is a dual component of smooth vector field Ṽ on M and the

range of indices i, j, k, · · · is {1, 2, 3, · · · , n, n+ 1, · · · , n+m} . Thus, we have

Sab = S̃ab = ρ̃gab − 1
2 (∂aξ̃b + ∂bξ̃a − 2

{
c
ab

}
ξ̃c),

∂aξ̃u + ∂uξ̃a = 0,

ρ̃δuv − 1
2 (∂uξ̃v + ∂v ξ̃u) = 0.

(2.2)

From the third equation of (2.2) with the case u = v , we obtain

ξ̃u = ρ̃xu + hu
(u), (2.3)

where hu
(u) is a function on M having no xu -variable. The third equation of (2.2) with the case u ̸= v and

(2.3) give rise to

∂uh
v
(v) = −∂vh

u
(u), (2.4)

which means that ∂uh
v
(v) is a function on M having no xu -variable and xv -variable. Thus, we can put

H(u,v) = ∂uh
v
(v). Integrating this equation and using (2.3), we get

hu
(u) = −H(u,v)xv + ku(v), (2.5)

where ku(v) is a function on M having no xv -variable. Then from equations (2.3) and (2.5), we obtain

ξ̃u = ρ̃xu −
∑
u̸=v

H(u,v)xv +Ku
(1,2,··· ,n), (u ̸= v). (2.6)

On the other hand, the second equation of (2.2) and (2.6) give

ξ̃a = −
n∑

u=1

∂aK
u
(1,2,··· ,n)xu + La

(1,2,··· ,n) (2.7)

and the first equation of (2.2) gives

Sab − ρ̃gab = −1

2
(∂aξ̃b + ∂bξ̃a − 2

{
c
ab

}
ξ̃c).

Hence, if we consider equations (2.6) and (2.7), we see that

Ṽ = (ρ̃x1 −
∑
1̸=v

H(1,v)xv +K1
(1,2,··· ,n), · · · , ρ̃xn −

∑
n ̸=v

H(n,v)xv +Kn
(1,2,··· ,n),
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−
n∑

u=1

∂n+1K
u
(1,2,··· ,n)xu + Ln+1

(1,2,··· ,n), · · · ,−
n∑

u=1

∂n+mKu
(1,2,··· ,n)xu + Ln+m

(1,2,··· ,n)).

If we take V = (ξn+1, · · · , ξn+m) such that ξa = La
(1,2,··· ,n) , then we get

Sab − ρgab = −1

2
(∇aL

b
(1,2,··· ,n) +∇bL

a
(1,2,··· ,n))

for ρ = ρ̃ , because V is a smooth vector field on B and Sab − ρgab is independent of Rn . Hence, we can state

that if M = Rn ×B is a Ricci soliton, then B is a Ricci soliton. Thus, we have:

Theorem 2.1 M = Rn ×B is a Ricci soliton if and only if B is a Ricci soliton.

3. Ricci solitons in warped product manifolds

Consider the warped product space M = R ×f B with g̃ =

(
1 0
0 f2g

)
, where f : R → R+ is a warping

function and g is a Riemannian metric on B . Then the Ricci curvature tensors S̃ and S of M and B

respectively are given by [1, 11, 12]

S̃ab = Sab − ff11gab − (m− 1)f2
1 gab,

S̃a1 = 0,

S̃11 = −mf11
f ,

(3.1)

where f1 = df
dt , f11 = d2f

dt2 ,m = dimB , and the range of indices a, b, c, · · · is {2, 3, · · · ,m+ 1} .

Let ξ̃i be the dual components of ξ̃i for any vector field W̃ = (ξ̃1, · · · , ξ̃m+1) on M ; then the covariant

derivatives are given by

∇̃aξ̃b = ∂aξ̃b −
{

e
ab

}
ξ̃e + ff1gabξ̃1,

∇̃aξ̃1 = ∂aξ̃1 − f1
f ξ̃a,

∇̃1ξ̃a = ∂1ξ̃a − f1
f ξ̃a,

∇̃1ξ̃1 = ∂1ξ̃1,

(3.2)

where ∇̃ and ∇ are operators of the covariant derivatives on M and B , respectively.

Suppose that M = R ×f B is a Ricci soliton. Then there exists a vector field Ṽ on M such that

S̃ij = ρ̃g̃ij − 1
2 (∇̃iξ̃j + ∇̃j ξ̃i) for some constant function ρ̃ on M , where ξ̃i are dual components of smooth

vector field Ṽ on M and the range of indices i, j, k, · · · is {1, 2, 3, · · · ,m+ 1} . Thus, we have

S̃ab = ρ̃f2gab − 1
2 (∇̃aξ̃b + ∇̃bξ̃a),

S̃a1 = −1
2 (∇̃aξ̃1 + ∇̃1ξ̃a) = − 1

2 (∂aξ̃1 + ∂1ξ̃a − 2f1
f ξ̃a),

S̃11 = ρ̃− 1
2 (∇̃1ξ̃1 + ∇̃1ξ̃1) = ρ̃− ∂1ξ̃1,

(3.3)

where ρ is a constant on M .
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Using equations (3.1) and (3.3), we obtain

Sab − ff11gab − (m− 1)f2
1 gab = ρ̃f2gab − 1

2 (∇̃aξ̃b + ∇̃bξ̃a),

∂aξ̃1 + ∂1ξ̃a = 2f1
f ξ̃a,

∂1ξ̃1 = ρ̃+ mf11
f .

(3.4)

Assuming that ξ̃1 = ξ̃1(t), then from the second equation of (3.4), we have ∂1ξ̃a = 2f1
f ξ̃a. This means

that ∂1(lnξ̃a) = 2∂1lnf . Thus, we can put ξ̃a = f2Ca, where Ca is a function on B . Moreover, we have

∇̃bξ̃a = f2(∇bCa) + ff1gabξ̃1(t). (3.5)

Hence, the first equation of (3.4) and (3.5) give rise to

Sab = {ff11 + (m− 1)f2
1 + ρ̃f2 − ff1ξ̃1(t)}gab −

f2

2
{∇a(Cb) +∇b(Ca)}. (3.6)

If we take ξb ≡ f2Cb on B , then we see that f2

2 {∇aCb +∇bCa} = 1
2 (∇aξb +∇bξa). Since the coefficient

of gab in (3.6) is a constant on B , we have:

Theorem 3.1 If M = R×f B is a Ricci soliton with ξ̃1 = ξ̃1(t) , then B is a Ricci soliton.

In particular, if we consider the case that B is Kaehler manifold and f = cet for a constant c , then M = R×fB

admits an almost contact metric structure (ϕ, ξ, η, g̃) such that [10]

(∇Xϕ)Y = −η(Y )ϕX − g̃(X,ϕY )ξ,
∇Xη = X − η(X)ξ.

(3.7)

Letting M be a Ricci soliton for a structure vector ξ , then S̃ + 1
2Lξ g̃ = ρg̃ for a constant ρ . Since

Lξ g̃ = 2(g̃−η⊗η) in M , S̃ = (ρ−1)g+η⊗η; that is, M is η -Einstein with constant coefficients. The following

is well known [10].

Lemma 3.2 Let M be an almost contact Riemannian manifold satisfying (3.7). If M is η -Einstein with

constant coefficients, then M is Einstein.

From Lemma 3.2 and the above mentioned particular case, we can state:

Theorem 3.3 Let B be a Kaehler manifold and f = cet for a constant c . If M = R ×f B is a Ricci soliton

for a structure vector ξ of an almost contact structure (ϕ, ξ, η, g̃) that is induced on M , then M is Einstein.

Related to the Riemannian manifold with a gradient Ricci soliton, we proved [12]:

Theorem 3.4 Let M = R×f B be a gradient Ricci soliton and f ′′(t) ̸= 0 . Then B is Einstein.

Since Einstein is a generalization of the gradient Ricci soliton, if we combine Theorems 3.3 and 3.4, then

we have:
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Theorem 3.5 Under the same assumptions as in Theorem 3.3, B is Einstein.

On the other hand, for the converse of Theorem 3.1, we introduce the following definition as a general-

ization of the Ricci soliton.

Definition 3.6 A Riemannian manifold B with a Riemannian metric g is called a generalized Ricci soliton

if there exist smooth covector fields V = (η1) and U = (ηa) on R and B , respectively, and a positive smooth

function f on R such that

(3.8) Sab = {ff11 + (m− 1)f2
1 + ρf2 − ff1η1(t)}gab −

f2

2
(∇aηb +∇bηa)

for some constant ρ . In this case, we call f the Ricci soliton warping function. We easily see that the generalized

Ricci soliton with f2 = 1 becomes a Ricci soliton.

Now let g be a generalized Ricci soliton on B . From equation (3.8), we have:

S̃ =

(
S̃11 S̃1a

S̃a1 S̃ab

)
=

(
−mf11

f 0

0 (ρf2 − ff1η1(t))gab − f2

2 (∇aηb +∇bηa)

)
.

If we take ρ̃ = ρ , η̃1 =
∫
(ρ+ mf11

f )dt with a real integral constant and η̃a = f2ηa , then we obtain

∇̃1η̃1 = ρ̃+
mf11
f

, ∇̃aη̃1 = −ff1ηa, ∇̃1η̃a = ff1ηa, ∇̃aη̃b = f2(∇aηb) + ff1η̃1gab.

Therefore, we see that

ρ̃g̃ − 1
2LX g̃ =

(
−mf11

f 0

0 ρf2gab − 1
2 (f

2(∇aηb +∇bηa) + 2ff1gabη̃1)

)
.

Thus, we have S̃ = ρ̃g̃ − 1
2LX g̃ , and so R×f B is a Ricci soliton.

Theorem 3.7 If B is a generalized Ricci soliton with a Ricci soliton warping function f , then M = R ×f B

is a Ricci soliton.

By use of Theorem 3.7, we can construct Riemannian manifolds (M, g) with Ricci soliton g .

4. Gradient Ricci solitons in the warped product spaces M = S1(k)×f B

Consider the warped product space M = S1(k) ×f B of the S1(k) and the Riemannian manifold B with the

metric g̃ =

(
g 0
0 f2ḡ

)
, where g and ḡ are the metrics on S1(k) and an m -dimensional Riemannian space

B , respectively. For a local coodinate system u1 = t of S1(k) and the metric tensor g has the component

g11 = 1 + t2

k2−t2 . Similarly, for a local coordinate system (ux) of B , the metric tensor ḡ has the components

ḡxy . Then, with respect to the local coordinate system (t, ux) of M , the metric g̃ has the components g̃ij .

Throughout this paper, the range of indices are as follows:

x, y, z, · · · = 2, 3, · · · ,m+ 1 and i, j, k, · · · = 1, 2, · · · ,m+ 1.
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Let ∇̃,∇ , and ∇̄ be the covariant derivatives with respect to g̃, g , and ḡ , respectively. Then

{
1̃
11

}
=

t
k2−t2 ,

{
x̃
y1

}
= f1

f δxy ,

{
1̃
yz

}
= −ff1 ¯gyz ,

{
x̃
yz

}
=

{
x̄
yz

}
, and the others are

zero, where f1 = df
dt , f

1 = f1g
11 . Hence, we have R̃111

1 = R111
1 = 0, R̃1x1

y = 1
f (∇1f1)δ

y
x , R̃xyz

w =

R̄xyz
w − ||f1||2(ḡtzδwx − ḡxzδ

w
y ), and the others are zero. Thus, for the components of Ricci curvature tensors

S̃ , S , and S̄ of M , S1(k), and B , respectively, we have:

S̃11 = S11 − m
f (∇1f1) = −m

f (∇1f1),

S̃1x = 0,

S̃xy = S̄xy − f(△f)ḡxy − (m− 1)||f1||2ḡxy,
(4.1)

where △f = ∇1f
1 . Now suppose that M is a gradient Ricci solution. Then we have

S̃11 = ρ̃g̃11 − ∇̃1∇̃1h = ρ̃(1 + t2

k2−t2 )− (∂1h1 − th1

k2−t2 ),

S̃1x = ρ̃g̃1x − ∇̃1∇̃xh = −∂1hx + f1
f hx,

S̃xy = ρ̃g̃xy − ∇̃x∇̃yh = ρ̃f2ḡxy − (∇̄x∇̄yh+ ff1h1ḡxy),

(4.2)

for some constant ρ̃ and some function h on M . Considering ∇1f1 = ∂1f1 − t
k2−t2 f1 , and comparing (4.1)

and (4.2), we obtain

h11 − t
k2−t2h1 = ρ̃(1 + t2

k2−t2 ) +
m
f (f11 −

t
k2−t2 f1),

∂1hx = f1
f hx,

S̄xy = {f(△f) + (m− 1)||f1||2 + ρ̃f2 − ff1h1}ḡxy − ∇̄x∇̄yh,

(4.3)

where we put h11 = ∂1h1 and f11 = ∂1f1 .

Supposing that hx ̸= 0, then we have ∂1hx

hx
= f1

f . Hence, lnhx = ln f + Cx(u
2, · · · , um+1), where Cx is

some function on B . Therefore, we have hx = feCx(u
2,··· ,um+1) and that h = fD(u2, ·, um+1) + E(t), where

D(u2, ·, um+1) and E(t) are some functions on B and S1(k), respectively. Here, D(u2, ·, um+1) is not constant

because hx ̸= 0. Thus, we have

h1=f1D(u2, ·, um+1) + E1(t),
h11=f11D(u2, ·, um+1) + E11(t).

(4.4)

Substituting (4.4) to the first equation of (4.3) leads to

{(k2 − t2)f11 − tf1}D(u2, ·, um+1) = ρ̃k2 +
m

f
{(k2 − t2)f11 − tf1} − (k2 − t2)E11(t) + tE1(t). (4.5)

The right-hand side of (4.5) is a function of t and the function D(u2, ·, um+1) is independent of t and

nonconstant. Thus, we have

(k2 − t2)f11 − tf1 = 0. (4.6)

The general solution of (4.6) is f = αsin−1 t
k + β. Hence, we can state that if f ̸= αsin−1 t

k + β, then hx = 0,

and h is of the form h = h(t), ∇̄x∇̄yh = 0, and hence we see that S̄xy = A(t)ḡxy from the third equation of
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(4.3), where A(t) = f(∇f)+ (m− 1)||f1||2+ ρ̃f2− ff1h1 is constant on B . We conclude that B is an Einstein

space. Thus, we have:

Theorem 4.1 If the warped product space M = S1(k)×f B is a gradient Ricci soliton and f ̸= αsin−1 t
k + β,

then B is an Einstein space.

On the other hand, from (4.5) and (4.6), we have

(k2 − t2)E11(t)− tE1(t) = ρ̃k2. (4.7)

If we put z = E1(t), then we obtain

√
k2 − t2 z′ − t√

k2 − t2
z =

ρ̃k2√
k2 − t2

. (4.8)

Since the left-hand side of (4.8) is equal to (
√
k2 − t2 z)′ , equation (4.8) leads to

(
√
k2 − t2 z)′ =

ρ̃k2√
k2 − t2

, (4.9)

that is, √
k2 − t2 z = ρ̃k2

∫
1√

k2 − t2
dt. (4.10)

Hence, we get

E1 = z =
ρ̃k2√
k2 − t2

sin−1 t

k
= ρ̃k2(sin−1 t

k
)′sin−1 t

k
,

so that

E(t) =
ρ̃k2

2
(sin−1 t

k
)2. (4.11)

Therefore, the function h becomes

h = fD(u1, · · · , um+1) +E(t) = (αsin−1 t
k + β)D(u2, · · · , um+1) + c

2 (sin
−1 t

k )
2 , where D(u2, · · · , um+1)

is nonconstant and independent of t , and α and β are constants.

For the construction of the model space of the warped product space M = S1(k) ×f B with gradient

Ricci soliton, we consider f(t) = αsin−1 t
k + β and h = h(t) as a potential function (1.2). Then the following

relations have to hold:

∇̃1h1 =
ρ̃k2

k2 − t2
, (4.12)

S̄xy − (m− 1)
α2

k2
ḡ = ρ2(αsin−1 t

k
+ β)2ḡ − ∇̃x∇̃yh, (4.13)

where h1 = ∂th and m = dimB .
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Since ∇̃1h1 = ∂1h1 − t
k2−t2h1 , equation (4.12) is rewritten as

∂1h1 −
t

k2 − t2
h1 =

ρ̃k2

k2 − t2
. (4.14)

If we put z = h1 , then we get

√
k2 − t2z′ − t√

k2 − t2
z =

ρ̃k2√
k2 − t2

, (4.15)

which is the same type as (4.8). Hence, we obtain h(t) = ρ̃k2

2 (sin−1 t
k )

2 , so if we take the fiber B as an Einstein

manifold with the scalar curvature

m((m− 1)
α2

k2
+ ρ̃2(αsin−1 t

k
+ β)2), (4.16)

then relation (4.13) is satisfied. Hence, we have:

Theorem 4.2 Let f = αsin−1 t
k + β and B be an Einstein manifold with scalar curvature (4.16). Then the

warped product space S1(k)×fB admits a gradient Ricci soliton having the potential function h = ρ̃k2

2 (sin−1 t
k )

2 .

Hence, if we use Theorem 4.2, then we can construct a Riemannian manifold with gradient Ricci soliton

in the warped product space.

5. Ricci solitons in Lorentzian warped product spaces

The metric in the Lorentzian warped product space M = R ×f B is given by g̃ =

(
−1 0
0 f2g

)
, where

f : R → R+ is a warping function, and g is the Riemannian metric on B . It is well known that

{
1̃
ab

}
=

ff1gab ,

{
ã
b1

}
= f1

f δab ,

{
ã
bc

}
=

{
a
bc

}
, and the others are zero, where the range of indices a, b, c, · · · is

{2, 3, · · · ,m+ 1} and m = dimB .

The curvatures K̃ and K of M and B are given by K̃dcb
a = Kdcb

a + f2
1 (δ

a
dgcb − δac gdb), K̃1ab

1 =

ff11gab , K̃b11
a = − f11

f δab , and the others are zero. Moreover, the Ricci curvature tensors S̃ and S of M and

B , respectively, are reduced to [11, 13]

S̃ab = Sab + ff11gab + (m− 1)f2
1 gab,

S̃a1 = 0,

S̃11 = −mf11
f .

(5.1)

Suppose that M = R×f B is a Lorentzian Ricci soliton. Then there exists a vector field Ṽ on M such

that

S̃ij = ρ̃g̃ij −
1

2
(∇̃iξ̃j + ∇̃j ξ̃i)
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for some constant ρ̃ on M , where ξ̃i are dual components of smooth vector field Ṽ on M . Thus, we have

S̃ab = ρ̃f2gab − 1
2 (∇̃aξ̃b + ∇̃bξ̃a),

S̃a1 = − 1
2 (∂aξ̃1 + ∂1ξ̃a − 2f1

f ξ̃a),

S̃11 = −ρ̃− ∂1ξ̃1,

(5.2)

where ρ is a constant on M .

From equations (5.1) and (5.2), we obtain

Sab + ff11gab + (m− 1)f2
1 gab = ρ̃f2gab − 1

2 (∇̃aξ̃b + ∇̃bξ̃a),

∂aξ̃1 + ∂1ξ̃a = 2f1
f ξ̃a,

∂1ξ̃1 = −ρ̃+ mf11
f .

(5.3)

The third equation of (5.3) gives

ξ̃1 = −ρ̃t+

∫
mf11
f

dt. (5.4)

Assuming that ξ̃1 = ξ̃1(t) and considering the second equation of (5.3) and (5.4), we have ∂1ξ̃a = 2f1
f ξ̃a.

Thus, we can have ξ̃a = f2Ca, where Ca is a function on B . Moreover, we have

∇̃bξ̃a = f2(∇bCa)− ff1gabξ̃1(t). (5.5)

Hence, the first equation of (5.3) and (5.5) give rise to

Sab = {−ff11 − (m− 1)f2
1 + ρ̃f2 + ff1ξ̃1(t)}gab −

f2

2
{∇a(Cb) +∇b(Ca)}. (5.6)

If we take ξb ≡ f2Cb on B , then we see that B is a Ricci soliton from equation (5.6). Thus, we have:

Theorem 5.1 If M = R×f B is a Ricci soliton with ξ̃1 = ξ̃1(t) , then B is a Ricci soliton.

For the converse of Theorem 5.1, we introduce the following definition as a generalization of the Ricci

soliton.

Definition 5.2 A Riemannian manifold B with a Riemannian metric g is called a generalized Lorentzian

Ricci soliton if there exist smooth covector fields V = (η1) and U = (ηa) on R and B , respectively, and a

positive smooth function f on R such that

Sab = {−ff11 − (m− 1)f2
1 + ρf2 + ff1η1(t)}gab −

f2

2
(∇aηb +∇bηa) (5.7)

for some constant ρ . In this case, we call f the Ricci soliton warping function. We easily see that the

generalized Lorentzian Ricci soliton with f2 = 1 becomes a Ricci soliton.

1374



LEE et al./Turk J Math

Now let B be a generalized Lorentzian Ricci soliton. Then we have, from equation (5.7),

S̃ =

(
−mf11

f 0

0 (ρf2 + ff1η1(t))gab − f2

2 (∇aηb +∇bηa)

)
.

If we take ρ̃ = ρ , η̃1 =
∫
(−ρ+ mf11

f )dt with a real integral constant and η̃a = f2ηa , then we obtain

∇̃1η̃1 = −ρ̃+
mf11
f

, ∇̃aη̃1 = −ff1ηa, ∇̃1η̃a = ff1ηa, ∇̃aη̃b = f2(∇aηb)− ff1η̃1gab.

Therefore, we see that

ρ̃g̃ − 1

2
LX g̃ =

(
−mf11

f 0

0 ρf2gab − 1
2 (f

2(∇aηb +∇bηa)− ff1gabη̃1)

)
.

Thus, we have S̃ = ρ̃g̃ − 1
2LX g̃ , and so R×f B is a Ricci soliton.

Theorem 5.3 If B is a generalized Lorentzian Ricci soliton with a Lorentzian Ricci soliton warping function

f , then M = R×f B is a Lorentzian Ricci soliton.
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