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1. Introduction

The Jensen inequality is one of the most important inequalities in mathematical analysis and its applications.

Recently, Pečarić et al. [6] established conditions on a real Stieltjes measure dλ , not necessarily positive,

under which the Jensen inequality and its reverse hold for a continuous convex function. These inequalities are

characterized via the Green function G : [α, β]× [α, β] → R defined by

G(t, s) =

{
(t−β)(s−α)

β−α for α ≤ s ≤ t,
(s−β)(t−α)

β−α for t ≤ s ≤ β.
(1)

The corresponding result reads as follows: let g : [a, b] → [α, β] be a continuous function, and let λ : [a, b] → R

be a continuous function or a function of a bounded variation such that λ(a) ̸= λ(b), and
∫ b
a
g(x)dλ(x)∫ b
a
dλ(x)

∈ [α, β] .

Then the following statements are equivalent:

(i) For every continuous convex function φ : [α, β] → R the following inequality holds:

φ

(∫ b
a
g(x)dλ(x)∫ b
a
dλ(x)

)
≤
∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

. (2)

(ii) For all s ∈ [α, β] the following inequality holds:

G

(∫ b
a
g(x)dλ(x)∫ b
a
dλ(x)

, s

)
≤
∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

. (3)
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In addition, statements (i) and (ii) are also equivalent by changing the sign in both inequalities (2) and (3).

Hence, the Jensen inequality (2) and its reverse are characterized via relation (3). It should be noticed here

that in the case of a positive measure dλ , where λ is increasing and bounded, the inequality (2) reduces to the

classical integral Jensen inequality.

There are several reverses of the Jensen inequality, one of the most significant of which is the Lah–

Ribarič inequality. We single out the corresponding result for a real Stieltjes measure dλ also derived in [6]:

let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] , and let λ : [a, b] → R be a

continuous function or a function of a bounded variation such that λ(a) ̸= λ(b). Then the following statements

are equivalent:

(i) For every continuous convex function φ : [α, β] → R the following inequality holds:

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

≤ M − g

M −m
φ(m) +

g −m

M −m
φ(M), (4)

where g =
∫ b
a
g(x)dλ(x)∫ b
a
dλ(x)

.

(ii) For all s ∈ [α, β] the following inequality holds:

∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

≤ M − g

M −m
G(m, s) +

g −m

M −m
G(M, s). (5)

Motivated by [6], Jakšić et al. [4] obtained several reverses of (2) also characterized via the Green

function. In particular, they showed that if (5) holds, then for every continuous convex function φ : [α, β] → R
the following inequality holds:∫ b

a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g) ≤ (M − g)(g −m)

M −m

(
φ′
−(M)− φ′

+(m)
)
, (6)

provided that g([a, b]) ⊆ [m,M ] ⊆ (α, β) and g ∈ [m,M ] .

The main objective of the present paper is to establish several refinements and reverses of inequalities

(2) and (4). These more accurate relations will also be characterized via the Green function. In particular, we

are going to show that the inequality (6) also holds if the same inequality holds with a Green function G(x, ·)
instead of a continuous convex function φ(x).

The paper is divided into four sections, as follows: after this introduction, in Section 2, we give our main

results. We give two improved forms of the Jensen inequality (2) and an improved form of the Lah–Ribarič

inequality (4), all of which are characterized via the same inequality, but with a Green function instead of

an arbitrary continuous convex function. As an application, we utilize established inequalities to construct

some classes of exponentially convex functions and some Cauchy-type means. More precisely, in Section 3

we give mean value theorems arising from improved inequalities, which is the crucial step in obtaining the

corresponding Cauchy-type means. Finally, combining our improved Jensen-type inequalities and a general

exponential convexity method developed in [3], in Section 4 we obtain several classes of exponentially convex

functions.
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2. Main results

In this section we give improved versions of the Jensen inequality (2) and the Lah–Ribarič inequality (4); that is,

we give the corresponding refinements and reverses. As we have already mentioned, these more accurate relations

are also characterized by the Green formula. Contrary to (6), these new improvements are characterized via the

same inequality, but with a Green function (1) instead of an arbitrary continuous convex function. Obviously,

the Green function is continuous and convex in each variable. Roughly speaking, we are going to show that if

the corresponding refinement or the reverse holds for the Green function with a fixed variable, then it holds for

every continuous convex function.

The crucial step in establishing our results is the fact that every function φ : [α, β] → R , φ ∈ C2([α, β]) ,

can be represented as

φ(x) =
β − x

β − α
φ(α) +

x− α

β − α
φ(β) +

∫ β

α

G(x, s)φ′′(s)ds, (7)

where the function G is defined by (1), which can be easily shown by integrating by parts (see also [8]).

Now our first result is an improvement of inequality (2). In particular, we show that the inequality (6)

holds under a different condition also including the Green function. In order to shorten the notation, throughout

this paper we use the notation g =
∫ b
a
g(x)dλ(x)∫ b
a
dλ(x)

.

Theorem 2.1 Let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] ⊆ (α, β) , and let

λ : [a, b] → R be a continuous function or a function of a bounded variation such that λ(a) ̸= λ(b) . If g ∈ [α, β] ,

then the following two statements are equivalent:

(i) The inequality ∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g) ≤ (M − g)(g −m)

M −m

(
φ′
−(M)− φ′

+(m)
)

(8)

holds for every continuous convex function φ : [α, β] → R .

(ii) The inequality ∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s) ≤ (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s)) (9)

holds for all s ∈ [α, β] , where the function G is defined by (1).

In addition, the statements (i) and (ii) are also equivalent if we change the sign of inequality in both relations

(8) and (9).

Proof The first implication (i) ⇒ (ii) is trivial since the function G(·, s) is continuous and convex on [α, β] ,

for every fixed value s ∈ [α, β] .

Now we show that (ii) ⇒ (i). We first prove that the statement (ii) implies the relation (8) for the case

of a convex function φ : [α, β] → R such that φ ∈ C2([α, β]) . Namely, since φ ∈ C2([α, β]) , utilizing the

representation formula (7), it follows that

φ′(x) =
φ(β)− φ(α)

β − α
+

∫ β

α

G′
x(x, s)φ

′′(s)ds,
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so the difference between the left-hand side and the right-hand side of the inequality (8) can be rewritten in the

following form:∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g)− (M − g)(g −m)

M −m
(φ′(M)− φ′(m))

=

∫ β

α

[∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s)− (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s))

]
φ′′(s)ds. (10)

Now, since φ is in addition convex, it follows that φ′′(s) ≥ 0 for all s ∈ [α, β] . Therefore, with the assumption

(ii), it follows that the right-hand side of relation (10) is not greater than zero. This means that (8) holds for a

convex function φ ∈ C2([α, β]) .

Furthermore, it should be noticed that it is not necessary to demand the existence of the second derivative

of the function φ (see [7, p. 172] and references therein). The differentiability condition can be directly

eliminated by using the fact that it is possible to approximate uniformly a continuous convex function by

convex polynomials.

The remaining part of the theorem referring to relations with a reversed sign of inequality is proved in

the same way. 2

Remark 2.2 Observe that in the statement of Theorem 2.1 the interval [m,M ] belongs to the interior of the

interval [α, β] . This condition assures finiteness of the one-sided derivatives in (8). Without this assumption,

these derivatives might be infinite.

Remark 2.3 If g ∈ [m,M ] , the inequality (8) represents the reverse of (2), while the inequality with the

reversed sign represents the refinement of the Jensen inequality (2).

Theorem 2.1 refers to a convex function φ . The same conclusion can be drawn for the case of a concave

function.

Remark 2.4 Suppose that the assumptions as in Theorem 2.1 are fulfilled. Then the following statements are

equivalent:

(i’) The reverse inequality in (8) holds for every continuous concave function φ : [α, β] → R .

(ii’) The inequality (9) holds for all s ∈ [α, β] .

In addition, the statements (i’) and (ii’) are also equivalent by changing the sign of inequality in the corresponding

relations.

Now we give another type of improvement of the Jensen inequality (2), which is characterized again via

the Green function, but this time without one-sided derivatives.

Theorem 2.5 Let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] , and let λ : [a, b] → R
be a continuous function or a function of a bounded variation such that λ(a) ̸= λ(b) . If g ∈ [α, β] , then the

following two statements are equivalent:
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KRNIĆ et al./Turk J Math

(i) The inequality∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g) ≤ max

{
M − g

M −m
,
g −m

M −m

}
·
[
φ(m) + φ(M)− 2φ

(
m+M

2

)]
(11)

holds for every continuous convex function φ : [α, β] → R .

(ii) The inequality∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s) ≤ max

{
M − g

M −m
,
g −m

M −m

}
·
[
G(m, s) +G(M, s)− 2G

(
m+M

2
, s

)]
(12)

holds for all s ∈ [α, β] , where the function G is defined by (1).

Furthermore, the statements (i) and (ii) are also equivalent with the reversed sign of inequality in (11) and (12).

Proof The proof is analogous to the proof of Theorem 2.1. We only prove the implication (ii) ⇒ (i). Namely,

if φ ∈ C2([α, β]) is convex, then, utilizing (7), the difference between the left-hand side and the right-hand side

of the inequality (11) can be rewritten in the following form:∫ b

a
φ (g(x)) dλ(x)∫ b

a
dλ(x)

− φ (g)−max

{
M − g

M −m
,
g −m

M −m

}
·
[
φ(m) + φ(M)− 2φ

(
m+M

2

)]

=

∫ β

α

[∫ b

a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s) −max

{
M − g

M −m
,
g −m

M −m

}
·
[
G(m, s) +G(M, s)− 2G

(
m+M

2
, s

)]]
φ′′(s)ds.

(13)

Now, since φ is convex, the inequality (12) implies that the right-hand side of (13) is not greater than zero. In

addition, the differentiability condition can be omitted by the same argumentation as in the proof of Theorem

2.1. This means that (11) holds. 2

Remark 2.6 Provided that g ∈ [m,M ] , the inequality (11) represents the reverse of the Jensen inequality (2),

while the inequality with the reversed sign represents its refinement.

Remark 2.7 It was shown in [4] that the inequality (11) is also valid provided that (5) holds.

Our next theorem yields the refinement and the reverse of the Lah–Ribarič inequality (4).

Theorem 2.8 Let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] ⊆ (α, β) , and let

λ : [a, b] → R be a continuous function or a function of a bounded variation such that λ(a) ̸= λ(b) . Then the

following two statements are equivalent:

(i) The inequality

M − g

M −m
φ(m) +

g −m

M −m
φ(M)−

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

≤ (M − g)(g −m)

M −m

(
φ′
−(M)− φ′

+(m)
)

(14)

holds for every continuous convex function φ : [α, β] → R .
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(ii) The inequality

M − g

M −m
G(m, s) +

g −m

M −m
G(M, s)−

∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

≤ (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s))

(15)

holds for all s ∈ [α, β] , where the function G is defined by (1).

The statements (i) and (ii) are also equivalent if we change the sign of inequality in both relations (14) and (15).

Proof The proof follows the lines of the proof of Theorem 2.1. We only prove that (ii) implies (i). Let

φ ∈ C2([α, β]) be a convex function. Then, utilizing the representation formula (7), the difference between the

left-hand side and the right-hand side of inequality (14) can be transformed in the following way:

M − g

M −m
φ(m) +

g −m

M −m
φ(M)−

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− (M − g)(g −m)

M −m
(φ′(M)− φ′(m))

=

∫ β

α

[
M − g

M −m
G(m, s) +

g −m

M −m
G(M, s)−

∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

− (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s))

]
φ′′(s)ds. (16)

Now, due to convexity of φ and taking into account that (ii) holds, it follows that the right-hand side of (16) is

not greater than zero. This means that (14) holds for a convex function φ ∈ C2([α, β]) . Now, in the same way

as in Theorem 2.1, the differentiability condition can be directly eliminated by using the fact that it is possible

to approximate uniformly a continuous convex function by convex polynomials. 2

Remark 2.9 It should be noticed here that in the previous theorem g does not have to belong to the interval

[α, β] . In the case when g ∈ [m,M ] , the inequality (14) represents the reverse of the Lah–Ribarič inequality

(4), while the inequality with the reversed sign represents its refinement.

Remark 2.10 Theorems 2.5 and 2.8 refer to a convex function φ . The case of the concave function is treated

in the same way as in Remark 2.4.

3. Mean-value theorems

The improved Jensen-type inequalities derived in Section 2 can be utilized in obtaining some means of Cauchy

type. The crucial step in this direction is to establish mean-value theorems arising from Theorems 2.1, 2.5, and

2.8. The starting point in this direction is to construct the corresponding functionals as the differences between

the right-hand sides and the left-hand sides of inequalities (8), (11), and (14).

As in the previous section, let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] ⊆
(α, β), and let λ : [a, b] → R be a continuous function or a function of a bounded variation such that λ(a) ̸= λ(b).

Motivated by inequalities (8), (11), and (14), for g, λ and for a continuous convex function φ : [α, β] → R , we
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define three functionals:

A1(g, λ, φ) =

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g)− (M − g)(g −m)

M −m

(
φ′
−(M)− φ′

+(m)
)
,

A2(g, λ, φ) =

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g)−max

{
M − g

M −m
,
g −m

M −m

}
·
[
φ(m) + φ(M)− 2φ

(
m+M

2

)]
,

A3(g, λ, φ) =
M − g

M −m
φ(m) +

g −m

M −m
φ(M)−

∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− (M − g)(g −m)

M −m

(
φ′
−(M)− φ′

+(m)
)
,

where g ∈ [α, β] for A1(g, λ, φ) and A2(g, λ, φ).

Taking into account Theorems 2.1, 2.5, and 2.8, it follows that:

• A1(g, λ, φ) ≤ 0 if for all s ∈ [α, β] the inequality (9) holds, and A1(g, λ, φ) ≥ 0 if for all s ∈ [α, β] the

reverse inequality in (9) holds;

• A2(g, λ, φ) ≤ 0 if for all s ∈ [α, β] the inequality (12) holds, and A3(g, λ, φ) ≥ 0 if for all s ∈ [α, β] the

reverse inequality in (12) holds;

• A3(g, λ, φ) ≤ 0 if for all s ∈ [α, β] the inequality (15) holds, and A2(g, λ, φ) ≥ 0 if for all s ∈ [α, β] the

reverse inequality in (15) holds.

In the sequel we give two mean value theorems of Lagrange and Cauchy type for each of the functionals

Ai(g, λ, φ), i = 1, 2, 3.

Theorem 3.1 Let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] ⊆ (α, β) . Further-

more, let φ : [α, β] → R , φ ∈ C2([α, β]) , λ : [a, b] → R be a continuous function or a function of bounded

variation such that λ(a) ̸= λ(b) , and let ϕ0(t) = t2 .

If for all s ∈ [α, β] the inequality (9) holds or if for all s ∈ [α, β] the reverse inequality in (9) holds, then

there exists ξ ∈ [α, β] such that

A1(g, λ, φ) =
1

2
φ′′(ξ)A1(g, λ, ϕ0). (17)

If for all s ∈ [α, β] the inequality (12) holds or if for all s ∈ [α, β] the reverse inequality in (12) holds, then

there exists ξ ∈ [α, β] such that

A2(g, λ, φ) =
1

2
φ′′(ξ)A2(g, λ, ϕ0). (18)

If for all s ∈ [α, β] the inequality (15) holds or if for all s ∈ [α, β] the reverse inequality in (15) holds, then

there exists ξ ∈ [α, β] such that

A3(g, λ, φ) =
1

2
φ′′(ξ)A3(g, λ, ϕ0). (19)
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Proof We show the relation (17). Following the assumptions of the theorem, we have that the function φ′′ is

continuous and

∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s)− (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s))

does not change the sign on [α, β] . Moreover, utilizing the relation (10) and the integral mean-value theorem,

it follows that there exists ξ ∈ [α, β] such that∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g)− (M − g)(g −m)

M −m
(φ′(M)− φ′(m))

= φ′′(ξ)

∫ β

α

[∫ b
a
G (g(x), s) dλ(x)∫ b

a
dλ(x)

−G (g, s)− (M − g)(g −m)

M −m
(G′

x(M, s)−G′
x(m, s))

]
ds. (20)

Now a straightforward calculation yields∫ β

α

G(t, s)ds =

∫ t

α

(t− β)(s− α)

β − α
ds+

∫ β

t

(s− β)(t− α)

β − α
ds =

1

2
(t− α)(t− β)

and ∫ β

α

G′
x(t, s)ds =

∫ t

α

s− α

β − α
ds+

∫ β

t

s− β

β − α
ds = t− 1

2
(α+ β).

Finally, calculating the integral on the right side of (20), we have∫ b
a
φ (g(x)) dλ(x)∫ b
a
dλ(x)

− φ (g)− (M − g)(g −m)

M −m
(φ′(M)− φ′(m))

= φ′′(ξ)

[∫ b
a

∫ β
α
G (g(x), s) dsdλ(x)∫ b

a
dλ(x)

−
∫ β

α

G (g, s) ds
(M − g)(g −m)

M −m

∫ β

α

(G′
x(M, s)−G′

x(m, s)) ds

]

=
1

2
φ′′(ξ)

[∫ b
a
(g(x))

2
dλ(x)∫ b

a
dλ(x)

− g 2 − 2(M − g)(g −m)

]

=
1

2
φ′′(ξ)A1(g, λ, ϕ0),

which proves the relation (17).

To prove relations (18) and (19), we proceed in the same way except that we utilize relations (13) and

(16) instead of (10). 2

Theorem 3.2 Let g : [a, b] → [α, β] be a continuous function such that g([a, b]) ⊆ [m,M ] ⊆ (α, β) . Further-

more, let φ,ψ : [α, β] → R , φ,ψ ∈ C2([α, β]) , and λ : [a, b] → R be a continuous function or a function of

bounded variation such that λ(a) ̸= λ(b) .
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If for all s ∈ [α, β] the inequality (9) holds or if for all s ∈ [α, β] the reverse inequality in (9) holds, then

there exists ξ ∈ [α, β] such that

A1(g, λ, φ)

A1(g, λ, ψ)
=
φ′′(ξ)

ψ′′(ξ)
, A1(g, λ, ψ) ̸= 0. (21)

If for all s ∈ [α, β] the inequality (12) holds or if for all s ∈ [α, β] the reverse inequality in (12) holds, then

there exists ξ ∈ [α, β] such that

A2(g, λ, φ)

A2(g, λ, ψ)
=
φ′′(ξ)

ψ′′(ξ)
, A2(g, λ, ψ) ̸= 0. (22)

If for all s ∈ [α, β] the inequality (15) holds or if for all s ∈ [α, β] the reverse inequality in (15) holds, then

there exists ξ ∈ [α, β] such that

A3(g, λ, φ)

A3(g, λ, ψ)
=
φ′′(ξ)

ψ′′(ξ)
, A3(g, λ, ψ) ̸= 0. (23)

Proof We prove (21) only. Define a function χ as a linear combination of functions φ and ψ by χ(t) =

A1(g, λ, ψ) · φ(t) − A1(g, λ, φ) · ψ(t). Applying the relation (17) to the function χ , after a straightforward

calculation we obtain that there exists ξ ∈ [α, β] such that

(
A1(g, λ, ψ)

φ′′(ξ)

2
−A1(g, λ, φ)

ψ′′(ξ)

2

)
A1(g, λ, ϕ0) = 0,

where ϕ0 stands for the quadratic function ϕ0(t) = t2 . Since A1(g, λ, ϕ0) ̸= 0 (otherwise we would have a

contradiction with A1(g, λ, ψ) ̸= 0), we get the assertion of the theorem. 2

4. Applications to exponential convexity

In this section we are going to use Theorems 2.1, 2.5, and 2.8 to construct some new classes of exponentially

convex functions as well as some interesting Cauchy-type means. These results rely on a general method of

constructing exponentially convex functions and means of Cauchy type developed in [3].

Exponentially convex functions were invented by Bernstein in [2] as a subclass of convex functions in

a given open interval. These functions have many nice properties; for example, they are analytical on their

domain. Although we need only a few of these properties we point out here that a good reference on general

results about exponential convexity is [1]. For some recent results about exponential convexity, the reader is

referred to [3] and [5].

From now on, I stands for an open interval in R . Recall that a function f : I → R is n -exponentially

convex in the Jensen sense on I if
n∑

i,j=1

pipjf

(
xi + xj

2

)
≥ 0

holds for all pi ∈ R and xi ∈ I , i = 1, . . . , n . In addition, f : I → R is n-exponentially convex if it is

n -exponentially convex in the Jensen sense and continuous on I .
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Clearly, 1-exponentially convex functions in the Jensen sense are in fact nonnegative functions. Addi-

tionally, n-exponentially convex functions in the Jensen sense are k -exponentially convex in the Jensen sense

for every k ∈ N , k ≤ n .

A function f : I → R is exponentially convex in the Jensen sense on I if it is n-exponentially convex in

the Jensen sense for all n ∈ N . A function f : I → R is exponentially convex if it is exponentially convex in

the Jensen sense and continuous.

Remark 4.1 Some examples of exponentially convex functions are (for more details, see [3]):

(i) f : R → R defined by f(x) = cekx , where c ≥ 0 and k ∈ R ;

(ii) f : R+ → R defined by f(x) = x−k , where k > 0 ;

(iii) f : R+ → R defined by f(x) = e−k
√
x , where k > 0 .

It is well known that a positive function f : I → R is log-convex in the Jensen sense on I if and only if

it is 2-exponentially convex in the Jensen sense on I , that is, if and only if the relation

ρ2f(x) + 2ρτf

(
x+ y

2

)
+ τ2f(y) ≥ 0 (24)

holds for every ρ, τ ∈ R and x, y ∈ I . If such a function is additionally continuous, then it is log-convex on I .

We need the following characterization of a convex function (see, e.g., [7, p.2]): if x1, x2, x3 ∈ I are such

that x1 < x2 < x3 , then the function f : I → R is convex if and only if the following inequality holds:

(x3 − x2) f(x1) + (x1 − x3) f(x2) + (x2 − x1) f(x3) ≥ 0 . (25)

Moreover, we utilize the following property of a convex function f : I → R (see [7, p.2]): if x1, x2, y1, y2 ∈ I

are such that x1 ≤ y1, x2 ≤ y2, x1 ̸= x2, y1 ̸= y2 , then the following inequality is valid:

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
. (26)

When dealing with functions with different degrees of smoothness, divided differences are found to be very

useful. The second-order divided difference of a function f : I → R at mutually different points y0, y1, y2 ∈ I

is defined recursively by

[yi] f = f (yi) , i = 0, 1, 2

[yi, yi+1] f =
f(yi+1)− f(yi)

yi+1 − yi
, i = 0, 1

[y0, y1, y2] f =
[y1, y2] f − [y0, y1] f

y2 − y0
. (27)

A function f : I → R is convex if and only if for every choice of three mutually different points y0, y1, y2 ∈ I ,

[y0, y1, y2]f ≥ 0 holds.

Now we use an idea from [3] to give an elegant method of producing exponentially convex functions by

applying functionals Ai , i = 1, 2, 3, defined in the previous section, to a given family of functions with the same

property.
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KRNIĆ et al./Turk J Math

In order to simplify our results, we define functionals Φi i = 1, 2, 3, by the following:

Φ1 (g, λ, φ) =

{
−A1 (g, λ, φ) , if for all s ∈ [α, β] inequality (9) holds;

A1 (g, λ, φ) , if for all s ∈ [α, β] the reverse inequality in (9) holds,

Φ2 (g, λ, φ) =

{
−A2 (g, λ, φ) , if for all s ∈ [α, β] inequality (12) holds;

A2 (g, λ, φ) , if for all s ∈ [α, β] the reverse inequality in (12) holds,

Φ3 (g, λ, φ) =

{
−A3 (g, λ, φ) , if for all s ∈ [α, β] inequality (15) holds;

A3 (g, λ, φ) , if for all s ∈ [α, β] the reverse inequality in (15) holds.

Under the appropriate assumptions on functions g , λ , and φ , as in Theorems 2.1, 2.5, and 2.8, we

now have that Φi(g, λ, φ) ≥ 0, i = 1, 2, 3, whenever they are defined. The following result yields a class of

exponentially convex functions obtained via functionals Φi(g, λ, φ), i = 1, 2, 3.

Theorem 4.2 Let Ω = {φp : p ∈ I} be a family of functions φp : [α, β] → R , φp ∈ C([α, β]) , such that the

function p 7→ [y0, y1, y2]φp is n-exponentially convex (resp. exponentially convex) in the Jensen sense on I for

every three mutually different points y0, y1, y2 ∈ [α, β] . Then the functions p 7→ Φi(g, λ, φp) , i = 1, 2, 3 , are

n-exponentially convex (resp. exponentially convex) in the Jensen sense on I . In addition, if p 7→ Φi(g, λ, φp) ,

i = 1, 2, 3 , are continuous on I , then they are n-exponentially convex (resp. exponentially convex) on I .

Proof For qj ∈ R, j = 1, . . . , n , we define the function

h(x) =

n∑
j,k=1

qjqkφ pj+pk
2

(x),

where pj , pk ∈ I, 1 ≤ j, k ≤ n , and φ pj+pk
2

∈ Ω. Clearly, h is continuous on [α, β] since it is the linear

combination of continuous functions. Since p→ [y0, y1, y2]φp is n-exponentially convex in the Jensen sense by

the assumption, for every three mutually different points y0, y1, y2 ∈ [α, β] we have

[y0, y1, y2]h =

n∑
j,k=1

qjqk[y0, y1, y2]φ pj+pk
2

≥ 0,

which implies that h is also convex on [α, β] . It follows that Φi (g, λ, h) ≥ 0 and therefore

n∑
j,k=1

qjqkΦi

(
g, λ, φ pj+pk

2

)
≥ 0.

Hence, the functions p 7→ Φi (g, λ, φp), i = 1, 2, 3, are n-exponentially convex in the Jensen sense on I . In

addition, assuming the continuity, the functions p 7→ Φi (g, λ, φp) are n -exponentially convex. 2

The following consequence of Theorem 4.2 is very useful for constructing some Cauchy-type means

expressed via functionals Φi(g, λ, φ), i = 1, 2, 3.
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Corollary 4.3 Let Ω = {φp : p ∈ I} be a family of functions φp : [α, β] → R , φp ∈ C([α, β]) , such that the

function p 7→ [y0, y1, y2]φp is 2-exponentially convex in the Jensen sense on I for every three mutually different

points y0, y1, y2 ∈ [α, β] . Then the following statements hold:

(i) If the functions p 7→ Φi(g, λ, φp) , i = 1, 2, 3 , are continuous on I, then they are 2-exponentially convex

on I . If p 7→ Φi(g, λ, φp) , i = 1, 2, 3 , are in addition positive, then they are also log-convex on I, and for

r, s, t ∈ I such that r < s < t we have

(Φi(g, λ, φs))
t−r ≤ (Φi(g, λ, φr))

t−s
(Φi(g, λ, φt))

s−r
. (28)

(ii) If the functions p 7→ Φi(g, λ, φp) , i = 1, 2, 3 are positive and differentiable on I, then for every p, q, u, v ∈ I

such that p ≤ u and q ≤ v , we have

µp,q(g,Φi,Ω) ≤ µu,v(g,Φi,Ω), (29)

where

µp,q(g,Φi,Ω) =



(
Φi(g, λ, φp)

Φi(g, λ, φq)

) 1
p−q

, p ̸= q,

exp

(
d
dpΦi(g, λ, φp)

Φi(g, λ, φp)

)
, p = q

(30)

for φp, φq ∈ Ω .

Proof (i) The first statement in (i) is an immediate consequence of Theorem 4.2, while the log-convexity is

an immediate consequence of (24). Since p 7→ Φi(g, λ, φp), i = 1, 2, 3, are positive, then considering (25) with

f(x) = logΦi(g, λ, φx) and r, s, t ∈ I , r < s < t , it follows that

(t− s) log Φi(g, λ, φr) + (r − t) log Φi(g, λ, φs) + (s− r) log Φi(g, λ, φt) ≥ 0,

which is equivalent to (28).

(ii) Since by (i) the functions p 7→ Φi(g, λ, φp), i = 1, 2, 3, are log-convex on I , that is, the functions

p 7→ log Φi(g, λ, φp), i = 1, 2, 3, are convex on I , utilizing (26) for p ≤ u, q ≤ v, p ̸= q, u ̸= v , we obtain

log Φi(g, λ, φp)− log Φi(g, λ, φq)

p− q
≤ log Φi(g, λ, φu)− log Φi(g, λ, φv)

u− v
, (31)

from which we obtain µp,q(g,Φi,Ω) ≤ µu,v(g,Φi,Ω). The cases p = q and u = v follow from (31) as the limit
cases. 2

Remark 4.4 The value [y0, y1, y2] f is independent of the order of the points y0, y1 , and y2 . This definition

may be extended to include the case in which some or all of the points coincide (see [7, p. 16]) . Taking the

limit y1 → y0 in (27) , we get

lim
y1→y0

[y0, y1, y2]f = [y0, y0, y2]f =
f(y2)− f(y0)− f ′(y0)(y2 − y0)

(y2 − y0)2
, y2 ̸= y0,
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provided that f ′ exists. Furthermore, taking the limits yi → y0, i = 1, 2 , in (27) , we get

lim
y2→y0

lim
y1→y0

[y0, y1, y2]f = [y0, y0, y0]f =
f ′′(y0)

2
,

provided that f ′′ exists. Taking into account the above discussion and assuming the differentiability of a family

φp , it is obvious that the results from Theorem 4.2 and Corollary 4.3 still hold when some or all of points

y0, y1, y2 ∈ [α, β] coincide.

To conclude the paper, we vary the choice of a family Ω = {φp : p ∈ I} , presenting several families of

functions that fulfill the conditions of Theorem 4.2 and Corollary 4.3. In such a way we are going to construct

several examples of exponentially convex functions, as well as some related Cauchy-type means.

Example 4.5 Let Ω1 = {φp : R+ → R : p ∈ R} be a family of functions defined by

φp(x) =


xp

p(p−1) , p ̸= 0, 1;

− log x, p = 0;

x log x, p = 1.

Since φ′′
p(x) = xp−2 , p ̸= 0, 1 , it follows that the function φp is convex on R+ , so that Φi(g, λ, φp) ≥ 0 ,

i = 1, 2, 3 . Due to Remark 4.1 it follows that p 7→ φ′′
p(x) is exponentially convex, and utilizing [3, Corollary

3.6.], we then have that p 7→ [y0, y1, y2]φp is exponentially convex. Therefore, a family of functions Ω1 fulfills

conditions as in Theorem 4.2, providing a class of exponentially convex functions. Namely, the mappings

p 7→ Φi(g, λ, φp) , i = 1, 2, 3 , are exponentially convex in the Jensen sense. In addition, these mappings are

obviously continuous, so they are exponentially convex.

Next, our intention is to construct some Cauchy-type means in connection with family Ω1 . For that, we

consider restrictions of functions φp on bounded interval [α, β] ⊆ R+ . Now, employing Corollary 4.3 for this

family of functions, the expressions µp,q(g,Φi,Ω1) , i = 1, 2, 3 , become

µp,q(g,Φi,Ω1) =



(
Φi(g,λ,φp)
Φi(g,λ,φq)

) 1
p−q

, p ̸= q;

exp
(

1−2p
p(p−1) −

Φi(g,λ,φ0φp)
Φi(g,λ,φp)

)
, p = q ̸= 1, 0;

exp
(
1− Φi(g,λ,φ0

2)
2Φi(g,λ,φ0)

)
, p = q = 0;

exp
(
− 1− Φi(g,λ,φ0φ1)

2Φi(g,λ,φ1)

)
, p = q = 1,

satisfying the monotonicity property as in the corollary.

Now, by virtue of Theorem 3.2, we show that µp,q(g,Φi,Ω1) , i = 1, 2, 3 , represent means of a function

g . More precisely, considering relations (21), (22), and (23) with φ = φp ∈ Ω1 and ψ = φq ∈ Ω1 , it follows

that there exist ξi ∈ [α, β] , i = 1, 2, 3 , such that ξp−qi =
Φi(g,λ,φp)
Φi(g,λ,φq)

. Since the function ξ 7→ ξp−q is invertible

for p ̸= q , we then have

α ≤
(
Φi(g, λ, φp)

Φi(g, λ, φq)

) 1
p−q

≤ β , for i = 1, 2, 3,
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that is,

α = min
t∈[a,b]

{g(t)} ≤
(
Φi(g, λ, φp)

Φi(g, λ, φq)

) 1
p−q

≤ max
t∈[a,b]

{g(t)} = β,

provided that [α, β] is the image of function g . This shows that µp,q(g,Φi,Ω1) are means of function g .

Another class of Cauchy-type means arises from the previous relation by imposing an additional parameter

r ̸= 0 . Namely, considering the previous relation with gr , p
r ,

q
r , instead of g , p , q , respectively, we have

min
t∈[a,b]

{(g(t))r} ≤
(
Φi(g

r, λ, φp)

Φi(gr, λ, φq)

) r
p−q

≤ max
t∈[a,b]

{(g(t))r} , for i = 1, 2, 3.

The previous relation establishes a generalized class of means defined by

µp,q;r(g,Φi,Ω1) =


(
µ p

r ,
q
r
(gr,Φi,Ω1)

) 1
r

, r ̸= 0;

µp,q(log g,Φi,Ω1), r = 0.

These new means are also monotone, i.e. µp,q;r(g,Φi,Ω1) ≤ µu,v;r(g,Φi,Ω1) , i = 1, 2, 3 , whenever p ≤ u, q ≤
v . This follows by virtue of the monotonicity of a class µp,q(g,Φi,Ω1) .

Example 4.6 Let Ω2 = {ψp : R → R : p ∈ R} be a family of functions defined by

ψp(x) =


1
p2 e

px, p ̸= 0;

1
2 x

2, p= 0.

Since ψ′′
p (x) = epx , it follows that ψp is convex on R and the function p 7→ ψ′′

p (x) is exponentially convex.

Furthermore, utilizing the same argumentation as in Example 4.5, we obtain that the mappings p 7→ Φi(g, λ, ψp) ,

i = 1, 2, 3 , are exponentially convex.

Now, to construct Cauchy-type means in connection with family Ω2 , we consider restrictions of func-

tions ψp on a bounded interval [α, β] ⊆ R . In this setting, the expressions µp,q(g,Φi,Ω2) , i = 1, 2, 3 , (see

Corollary 4.3) become

µp,q(g,Φi,Ω2) =



(
Φi(g,λ,ψp)
Φi(g,λ,ψq)

) 1
p−q

, p ̸= q;

exp
(

Φi(g,λ,id·ψp)
Φi(g,λ,ψp)

− 2
p

)
, p = q ̸= 0;

exp
(

1
3
Φi(g,λ,id·ψ0)
Φi(g,λ,ψ0)

)
, p = q = 0,

where id stands for an identity function. In this case the relations (21), (22), and (23) with φ = ψp ∈ Ω2 and

ψ = ψq ∈ Ω2 yield the estimate

α ≤ logµp,q(g,Φi,Ω2) ≤ β, for i = 1, 2, 3,

that is,

α = min
t∈[a,b]

{g(t)} ≤ logµp,q(g,Φi,Ω2) ≤ max
t∈[a,b]

{g(t)} = β, for i = 1, 2, 3,
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provided that [α, β] is the image of the function g . This shows that logµp,q(g,Φi,Ω2) , i = 1, 2, 3 , are means

of the function g and they are also monotone.
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[7] Pečarić JE, Proschan F, Tong YL. Convex Functions, Partial Orderings, and Statistical Applications. London, UK:

Academic Press, 1992.

[8] Widder DV. Completely convex functions and Lidstone series. T Am Math Soc 1942; 51: 387-398.

1496

http://dx.doi.org/10.1007/BF02592679
http://dx.doi.org/10.1090/S0002-9947-1942-0006356-4

	Introduction
	Main results
	Mean-value theorems
	Applications to exponential convexity

