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Abstract:A ring R is called a generalized quasinormal ring (abbreviated as GQN ring) if ea ∈ N(R) for each e ∈ E(R)

and a ∈ N(R) . The class of GQN rings is a proper generalization of quasinormal rings and NI rings. Many properties

of quasinormal rings are extended to GQN rings. For a GQN ring R and a ∈ R , it is shown that: 1) if a is a regular

element, then a is a strongly regular element; 2) if a is an exchange element, then a is clean; 3) if R is a semiperiodic

ring with J(R) ̸= N(R) , then R is commutative; 4) if R is an MVNR , then R is strongly regular.

Key words: GQN rings, (von Neumann) regular elements, NI rings, quasinormal rings, generalized GQN rings,

semiperiodic rings, exchange rings

1. Introduction

All rings considered in this paper are associative with an identity. The symbols J(R), N(R), U(R), and

E(R) will stand respectively for the Jacobson radical, the set of all nilpotent elements, the set of all invertible

elements, and the set of all idempotent elements of R . For an element a of R , we write l(a) = {x ∈ R|xa = 0}
to denote the left annihilators of a . Write Zl(R) = {a ∈ R|l(a) is an essential left ideal of R} . It is easy to

prove that Zl(R) is an ideal of R and call it the left singular ideal.

Recall that a ring R is called quasinormal [14] if for each a ∈ N(R) and e ∈ E(R), ae = 0 implies

eaRe = 0. According to [14], the class of quasinormal rings is a proper generalization of abelian rings.

A ring R is called (von Neumann) regular [3] if for every a ∈ R there exists b ∈ R such that a = aba .

A ring R is called strongly regular [8] if for every a ∈ R there exists b ∈ R such that a = a2b . A ring R is

called left quasi-duo [15] if every left ideal of R is an ideal, and R is said to be reduced if N(R) = 0. In the

last decade, the strong regularity of regular rings that satisfy certain additional conditions has been studied

by many authors. in [15, Theorem 2.7] it is shown that R is a strongly regular ring if and only if R is a left

quasi-duo regular ring; In [8, Remark 2.13] it is shown that R is a strongly regular ring if and only if R is a

reduced regular ring. In [14, Corollary 2.7] it is shown that R is a strongly regular ring if and only if R is a

quasinormal regular ring. Recall that R is said to be generalized weakly symmetric (abbreviated as GWS ) if

abc = 0 implies bac ∈ N(R). In [11, Corollary 3.2] it is shown that R is a strongly regular ring if and only if

R is a GWS regular ring. This paper will continue the research in this area.
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A ring R is called NI if N(R) forms an ideal of R and R is said to be directly finite if ab = 1 implies

ba = 1. It is well known that NI rings are directly finite. In [14, Theorem 2.4], it is shown that quasinormal

rings are directly finite.

A ring R is called a generalized quasinormal ring or GQN ring (abbreviated) if ea ∈ N(R) for each

a ∈ N(R) and e ∈ E(R). Clearly, abelian rings are GQN , but the converse is not true because R =

(
F F
0 F

)
(where F is a field) is a GQN ring that is not abelian.

Since N(R) is an ideal for an NI ring R , every NI ring is GQN , but the converse is not true by the

following example.

Let R = {
(

a b
c d

)
|a ≡ d(mod2) and b ≡ c ≡ 0(mod2), a, b, c, d ∈ Z} . Clearly, R is an abelian ring

with E(R) = {
(

0 0
0 0

)
,

(
1 0
0 1

)
} , so R is GQN . Since N(R) is not an ideal of R , R is not an NI ring.

Thus, the class of GQN rings is a proper generalization of both abelian rings and NI rings.

Following [5], an element x of R is called clean if x = u + e for some u ∈ U(R) and e ∈ E(R). The

ring R is said to be clean if all of its elements are clean. An element x of R is called exchange if there exists

e ∈ E(R) such that e ∈ xR and 1 − e ∈ (1 − x)R . The ring R is said to be exchange if all of its elements

are exchange. Clearly, clean elements are exchange, but the converse is not true unless one of the following

conditions holds: 1) R is abelian [5]; 2) R is left quasi-duo [15]; 3) R is quasinormal [14]; 4) R is weakly normal

[13]. Various weakened form conditions stimulate us to continue the study of this topic. In this paper, we first

discuss the properties of GQN inherited from abelian rings and left quasi-duo rings. Next, with the help of

GQN rings, we discuss the relations among left quasi-duo rings, exchange rings, abelian rings, and strongly

regular rings.

2. Some properties of GQN rings

Theorem 2.1 (1) The following conditions are equivalent for a ring R :

(a) R is a quasinormal ring;

(b) ae = 0 implies eaN(R)e = 0 for each a ∈ N(R) and e ∈ E(R) ;

(c) ae = 0 implies eaN(R)e = 0 for each a ∈ R and e ∈ E(R) .

(2) If R is a quasinormal ring, then R is GQN .

(3) R is a GQN if and only if ae ∈ N(R) for each a ∈ N(R) and e ∈ E(R) .

(4) Let R be a GQN ring. If a, b ∈ R and e ∈ E(R) , then ea(1− e)be ∈ N(R) .

Proof (1) (a) =⇒ (b) is clear.

(b) =⇒ (c) Let a ∈ R and e ∈ E(R) with ae = 0. Then ea ∈ N(R) and (ea)e = 0, by (b), and one

obtains e(ea)N(R)e = 0; that is, eaN(R)e = 0.

(c) =⇒ (a) Let e ∈ E(R) and x, a ∈ R . Write h = (1 − e)ae . Then h2 = 0 and h = (1 − e)he . Since

(x(1 − e))e = 0, by (c), e(x(1 − e))N(R)e = 0, and this gives ex(1 − e)he = 0, so ex(1 − e)ae = exh = 0 for

each x, a ∈ R . Thus, eR(1− e)Re = 0, by [14, Theorem 2.1], and R is quasinormal.

(2) Let e ∈ E(R) and a ∈ N(R). Since R is a quasinormal ring and (a(1−e))e = 0, ea(1−e)N(R)e = 0

by (1). Since a ∈ N(R), an = 0 for some n ≥ 1 and ai ∈ N(R) for all 1 ≤ i ≤ n . Hence, ea(1−e)aie = 0, and
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this gives eaeaie = eai+1e for all i ; it follows that (ea)i+1 = eaiea and in particular one obtains (ea)n+1 = 0,

so ea ∈ N(R). Hence, R is GQN .

(3) If ea ∈ N(R) for a ∈ R and e ∈ E(R), then we have (ea)n = 0 for n ∈ N . Hence, (ae)n+1 =

a(ea)ne = 0. This shows that ae ∈ N(R).

(4) Clearly, (1 − e)be ∈ N(R). Let g = e + ea(1 − e). Then eg = g and ge = e , so g2 = gg =

g(eg) = (ge)g = eg = g , and this implies g ∈ E(R). Since R is a GQN ring, g(1 − e)be ∈ N(R). Hence,

ea(1− e)be ∈ N(R). 2

By Theorem 2.1 and [14, Theorem 2.1], we have the following corollary.

Corollary 2.2 R is a quasinormal ring if and only if ae = 0 implies eaE(R)e = 0 for a ∈ R and e ∈ E(R) .

Proof In the proof of (c) =⇒ (a) in Theorem 2.1(1), substituting g for h , where g = e+h and h = (1− e)ae

(clearly, g2 = g ), one can finish the proof. 2

Example 2.3 Let F be a field and R = {

 F F F
0 F F
0 0 F

 . Then R is not quasinormal by [14]. Since

N(R) = {

 0 F F
0 0 F
0 0 0

 is an ideal of R , R is NI , so R is GQN . Hence, the converse of Theorem 2.1(2)

is not true in general.

An element a of a ring R is called (strongly) regular if a ∈ aRa (a ∈ a2R ∩ Ra2 ), and a is said to be

unit-regular if a = aua for some u ∈ U(R). According to [6], strongly regular =⇒ unit-regular =⇒regular. A

ring R is called regular if every element of R is regular; R is called strongly regular if every element of R is

strongly regular.

Theorem 2.4 Let R be a GQN ring and a ∈ R . If a is a regular element, then a is a strongly regular

element.

Proof Let a = aba for some b ∈ R . Write e = ba . Then

e2 = e; a = ae. (2.1)

Write h = a− ea . Then

he = h; eh = 0;h2 = 0. (2.2)

Set g = e+ h . Then

eg = e; ge = g; g2 = g. (2.3)

Let t = eb(1− e). Then

et = t; te = 0; t2 = 0. (2.4)

Since R is a GQN ring, gt ∈ N(R). Hence, there exists a positive integer m such that (gt)m = 0.
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Since gt = et + ht = t + (1 − e)ab(1 − e) and (gt)m = t((1 − e)ab(1 − e))m−1 + ((1 − e)ab(1 − e))m ,

t((1− e)ab(1− e))m−1 = 0.

If m = 1, then t = 0; that is, eb(1 − e) = 0, so eb = ebe and a = aba = (ae)ba = a(eb)a = a(ebe)a =

aeb2a2 ∈ Ra2 .

If m = 2, then t(1− e)ab(1− e) = 0, so tab(1− e) = 0 and tab = tabe . Hence, ta = taba = tabea , and

this gives eb(1− e)a = tabea and eba = ebea+ tabea . Thus, a = aeba = aebea+ atabea ∈ Ra2 .

If m > 2, then there exist c, d ∈ R such that ((1−e)ab(1−e))m−1 = ab+deab+cabe because ab ∈ E(R)

and a = aba . Hence, tab = −tdeab − tcabe and ta = taba = −tdeaba − tcabea = −tdea − tcabea , and this

implies eb(1− e)a = xea where x = −td− tcab . Thus, eba = ebea+ xea and a = aeba = aebea+ axea ∈ Ra2 .

Hence, in any case, we have a ∈ Ra2 . Similarly, by Theorem 2.1(3), one can show that a ∈ a2R . 2

Corollary 2.5 (1) R is a strongly regular ring if and only if R is a GQN regular ring.

(2) R is a strongly regular ring if and only if R is a quasinormal regular ring [14, Corollary 2.7].

(3) R is a strongly regular ring if and only if R is an NI regular ring.

(4) If R is an exchange GQN ring, then R has stable range 1.

Proof Since strongly regular rings are Abel , NI , and regular, (1) is an immediate result of Theorem 2.4.

(2) and (3) are direct corollaries of (1).

(4) It is an immediate corollary of Theorem 2.4.

Recall that a ring R is directly finite if ab = 1 implies ba = 1 for all a, b ∈ R , and R is said to be

nregular [12] if every element of N(R) is regular. A ring R is called reduced if for N(R) = 0.

Corollary 2.6 (1) GQN rings are directly finite.

(2) Quasinormal rings are directly finite [14, Theorem 2.4].

(3) NI rings are directly finite.

Proof (1) Let a, b ∈ R with ab = 1. Then a = aba . Since R is GQN , by Theorem 2.4, there exists c ∈ R

such that a = ca2 ; this gives 1 = ab = ca2b = ca and b = 1b = cab = c . Hence, ba = ca = 1, and this shows

that R is directly finite.

(2) and (3) are direct corollaries of (1). 2

Also by [14, Theorem 2.8], [12, Theorem 2.9], and Theorem 2.4, we have the following corollary.

Corollary 2.7 The following conditions are equivalent for a ring R :

(1) R is a reduced ring;

(2) R is a GQN n-regular ring;

(3) R is an NI n-regular ring;

(4) R is a quasinormal n-regular ring.

Recall that a ring R is nil -semicommutative [7] if ab ∈ N(R) implies arb ∈ N(R) for all a, b, r ∈ N(R).

[7, Proposition 2.1] implies that nil -semicommutative rings are GQN , but the converse is not true because

Abel rings need not be nil -semicommutative. The following proposition generalizes [7, Corollary 2.3 ].
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Proposition 2.8 Let R be a GQN ring and e ∈ E(R) and x ∈ R . Then:

(1) If M is a maximal left ideal of R and e /∈ M , then (1− e)R ⊆ M ;

(2) Rx+R(xe− 1) = R ;

(3) Re+R(ex− 1) = R ;

(4) If M is a maximal left ideal of R and 1− xe ∈ M , then 1− ex ∈ M ;

(5) If M is a maximal left ideal of R and 1− ex ∈ M , then 1− xe ∈ M ;

(6) If x, z ∈ R satisfy x+ z ∈ zxE(R) , then xR = zR .

Proof (1) Clearly, Re+M = R . Let 1 = ae+m for some a ∈ R and m ∈ M . Then for any z ∈ R , one has

(1− e)z = (1− e)zae+ (1− e)zm. (2.5)

For any y ∈ R , by Theorem 2.1(4), (1 − e)zaey(1 − e) ∈ N(R), so there exists m ≥ 1 such that

((1 − e)zaey(1 − e))m = 0, and this gives ((1 − e)zaey)m+1 = ((1 − e)zaey(1 − e))mzaey = 0. Thus, for each

y ∈ R , one has

(1− e)zaey ∈ N(R). (2.6)

Hence, (1− e)zae ∈ J(R) ⊆ M ; this implies (1− e)z ∈ M by equation (2.5), so (1− e)R ⊆ M .

(2) If Rx+ R(xe− 1) ̸= R , then there exists a maximal left ideal M of R containing Rx+ R(xe− 1).

Since xe− 1 ∈ M , e /∈ M , by (1), 1− e ∈ M , so x− xe = x(1− e) ∈ M . Since x ∈ M , xe ∈ M , this implies

1 = xe− (xe− 1) ∈ M , which is a contradiction. Hence, Rx+R(xe− 1) = R .

(3) If Re + R(ex − 1) ̸= R , then there exists a maximal left ideal M of R containing Re + R(ex − 1).

Since e ∈ M , 1 − e /∈ M , by (1), eR ⊆ M , so ex ∈ M . Since ex − 1 ∈ M , 1 ∈ M , which is a contradiction.

Hence, Re+R(ex− 1) = R .

(4) Since 1 − xe ∈ M , e /∈ M . By (1), (1 − e)R ⊆ M . Since 1 − xe = (1 − x) + (x − xe), 1 − x ∈ M .

Since 1− ex = (1− x) + ((1− e)x), 1− ex ∈ M .

(5) Assume that 1−ex ∈ M . If e ∈ M , then eR ⊆ M by (1), and it follows that 1 = (1−ex)+ex ∈ M ,

a contradiction. Hence, e /∈ M , also by (1), and (1− e)R ⊆ M . Since 1− ex = (1− x) + (1− e)x , 1− x ∈ M ,

this gives 1− xe = (1− x) + (x(1− e)) ∈ M .

(6) Let x+ z = zxg for some g ∈ E(R). Then x = z(xg− 1), by (2), and one has R = Rx+R(xg− 1).

Hence, R = R(xg − 1), by Corollary 2.6(1), xg − 1 is invertible, and this gives xR = z(xg − 1)R = zR . 2

The following theorem addresses how to construct more examples of GQN rings from a given GQN ring.

Theorem 2.9 The following conditions are equivalent for a ring R :

(1) R is a GQN ring;

(2) The n× n upper triangular matrix ring UTMn(R) is a GQN ring for some n ≥ 2 ;

(3) The n× n upper triangular matrix ring UTMn(R) is a GQN ring for each n ≥ 2 .

Proof (3) =⇒ (2) is trivial.

(2) =⇒ (1) Let E = e11 =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0

 ∈ S = UTMn(R). Then ESE ∼= R . Since

1501



WANG and WEI/Turk J Math

ESE is a subring of S and every subring of GQN ring S is GQN , R is GQN .

(1) =⇒ (3) Let n ≥ 2 and A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 0 · · · ann

 ∈ N(S) and

E =


e11 e12 e13 · · · e1n
0 e22 e23 · · · e2n
0 0 e33 · · · e3n
· · · · · · · · · · · · · · ·
0 0 0 · · · enn

 ∈ E(S), where S = UTMn(R). Then aii ∈ N(R) and eii ∈ E(R),

i = 1, 2, · · · , n . Since R is GQN , eiiaii ∈ N(R), i = 1, 2, · · · , n . Hence,

EA ∈


N(R) R R · · · R
0 N(R) R · · · R
0 0 N(R) · · · R
· · · · · · · · · · · · · · ·
0 0 0 · · · N(R)

 ⊆ N(S), and this shows that UTMn(R) is GQN . 2

Theorem 2.10 If R is a finite subdirect product of a family of GQN rings {Ri : i = 1, 2, · · · , n} , then R is

GQN .

Proof Let Ri = R/Ai where Ai is ideals of R with ∩n
i=1Ai = 0. Let e ∈ E(R) and a ∈ N(R). Then

ei = e + Ai ∈ E(Ri) and ai = a + Ai ∈ N(Ri) for any i . Since each Ri is GQN , eiai ∈ N(Ri); this

implies that for each i there exists mi ≥ 1 such that (ea)mi ∈ Ai . Choose m = max{m1,m2, · · · ,mn} . Then
(ea)m ∈ Ai for each i , so (ea)m ∈ ∩n

i=1Ai = 0, which implies ea ∈ N(R). Therefore, R is GQN . 2

A left ideal I of a ring R is called regular if a ∈ aIa for each a ∈ I . A ring R is called left MVNR if R

contains a regular maximal left ideal of R . Clearly, strongly regular rings are left MVNR .

Lemma 2.11 Let R be a GQN ring. If R is left MVNR , then R is reduced.

Proof Suppose that M is a regular maximal left ideal of R and suppose that a ∈ R with a2 = 0. If a /∈ M ,

then Ra + M = R . Write 1 = sa + m for some s ∈ R and m ∈ M . Clearly, a = ma . Since am ∈ M ,

am = ambam for some b ∈ M . Set e = amb . Then am = eam and e2 = e . Let h = am − ame . Then

h = e(am)(1− e). If e ∈ M , then by Proposition 2.8(1), eR ⊆ M , so h ∈ M . If e /∈ M , then by Proposition

2.8(1), 1− e ∈ M , and we also have h ∈ M . Hence, in any case, we have h ∈ M , so h = hdh for some d ∈ M .

Choose f = dh + dhd(1 − dh). Then f2 = f . Since R is a GQN ring and h2 = 0, fh ∈ N(R). Clearly,

fh = dh is an idempotent element, so dh = 0, and it follows that h = hdh = 0. Hence, am − ame = h = 0,

which implies that am = am(amb) = a(ma)mb = a2mb = 0. Therefore, a = a1 = a(sa + m) = asa . If

a ∈ M , then, certainly, a = asa for some s ∈ M . Hence, in any case, one has a = aca for some c ∈ R . Write

g = ca+ cac(1− ca). Then g2 = g . Since a2 = 0, ga ∈ N(R). Since ga = ca is an idempotent element of R ,

ca = 0 and a = aca = 0. Therefore, R is reduced. 2

Theorem 2.12 Let R be a GQN ring. If R is MVNR , then R is strongly regular.

Proof First, by Lemma 2.11, R is a reduced ring. Since reduced regular rings are strongly regular, we

only need to show that R is a regular ring. Assume that a ∈ R . If a ∈ M , we are done. If a /∈ M , then
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R = Ra + M . Write 1 = sa + m for some s ∈ R and m ∈ M . Since am ∈ M , am = amdam for some

d ∈ M . Set e = amd and g = dam . Then e2 = e , g2 = g and am = eam = amg . Since R is a reduced

ring, R is abelian , and it follows that eg = ge ; this gives amd2am = eg = ge = gamd = agmd = adam2d .

Since R is a reduced ring and a(md2am − dam2d) = 0, aR(md2am − dam2d) = 0, and this implies that

(md2am− dam2d)2 = 0, so md2am = dam2d = dammd = gmd = mgd . Similar to the proof mentioned above,

one obtains that d2am = gd = damd . Further, one has dam = amd ; that is, e = g . Since a(m−mdam) = 0

and R is reduced, ma = mdama = mga = mea = mamda , and this gives ma(1 − mda) = 0. Since R is

symmetric, m(1−mda)a = 0, and it follows that ma = m2da2 , so a = 1a = sa2 +ma = (s+m2d)a2 . Hence,

R is a strongly regular ring. 2

3. Generalized GQN rings

An idempotent element e of a ring R is called left minimal idempotent if Re is a minimal left ideal of R .

Write MEl(R) = {e ∈ E(R)|e is a left minimal idempotent of R} . A ring R is called a generalized GQN ring

if ea ∈ N(R) for all e ∈ MEl(R) and a ∈ N(R). Clearly, GQN rings are generalized GQN , but the converse

is not true. In fact, for any ring R , R[x] is a generalized GQN ring because MEl(R[x]) = ∅ , while R[x] need

not be GQN . Clearly, a ring R is a generalized GQN ring if and only if ae ∈ N(R) for all e ∈ MEl(R) and

a ∈ N(R).

Proposition 3.1 Let R be a ring. Then:

(1) If R/J(R) is a generalized GQN ring, then so is R ;

(2) If R/Zl(R) is a generalized GQN ring, then so is R .

Proof (1) Let e ∈ MEl(R). Then e /∈ J(R). Let R̄ = R/J(R) and ē = e + J(R). Then we claim that

ē ∈ MEl(R). In fact, assume that a ∈ R such that āē ̸= 0̄. Then ae ̸= 0, and it follows that Rae = Re ,

so e = bae for some b ∈ R ; this implies ē = b̄āē . Hence, ē ∈ MEl(R̄). Since R̄ is a generalized GQN ring,

x̄ē ∈ N(R̄) for all x ∈ N(R). Let n ≥ 1 satisfy (x̄ē)n = 0̄. Then we have (xe)n ∈ J(R). If (xe)n ̸= 0, then

R(xe)n = Re because Re is a minimal left ideal of R , and this implies e ∈ J(R), which is a contradiction.

Hence, (xe)n = 0, and it follows that xe ∈ N(R). Thus, R is a generalized GQN ring.

Similarly, we can show (2). 2

Proposition 3.2 Let R be a generalized GQN ring and f ∈ E(R) . If RfR = R , then fRf is generalized

GQN .

Proof Let e ∈ MEl(fRf) and choose a ∈ R such that ae ̸= 0. Since RfR = R , 1 =
∑n

i=1 sifti for

si, ti ∈ R , it follows that ae =
∑n

i=1 siftiafe , and this implies that there exists i0 ∈ {1, 2, · · · , n} such that

fti0afe ̸= 0. Since e ∈ MEl(fRf), there exists x ∈ fRf such that e = xfti0afe = (xfti0)ae , and this shows

that e ∈ MEl(R). Since R is a generalized GQN ring, ey ∈ N(R) for all y ∈ N(fRf), so ey ∈ N(fRf) for

all y ∈ N(fRf). Hence, fRf is generalized GQN . 2

Proposition 3.3 R is a generalized GQN ring if and only if the 2× 2 upper triangular matrix ring T2(R) is

a generalized GQN ring.

1503



WANG and WEI/Turk J Math

Proof Let e11 =

(
1 0
0 0

)
∈ E(T2(R)). Then T2(R)e11T2(R) = T2(R) and e11T2(R)e11 ∼= R . Hence, the

sufficiency is an immediate result of Proposition 3.2.

Now we assume that R is a generalized GQN ring and E =

(
e1 e2
0 e3

)
∈ MEl(T2(R)). Then e21 = e1 ,

e23 = e3 and e2 = e1e2 + e2e3 .

If e1 ̸= 0, then e1 ∈ MEl(R) and e3 = 0. In fact, assume that a ∈ R satisfies ae1 ̸= 0. Then AE ̸= 0

where A =

(
a 0
0 0

)
∈ T2(R). Since E ∈ MEl(T2(R)), there exists B =

(
b1 b2
0 b3

)
∈ T2(R) such that

BAE = E ; that is,

(
b1ae1 b1ae2
0 0

)
=

(
e1 e2
0 e3

)
. Hence, b1ae1 = e1 and e3 = 0, and it follows that

e1 ∈ MEl(R). Now let C =

(
c1 c2
0 c3

)
∈ N(T2(R)). Then c1, c3 ∈ N(R). Since R is a generalized GQN

ring, e1c1 ∈ N(R), this gives EC =

(
e1c1 e1c2 + e2c3
0 0

)
∈
(

N(R) R
0 N(R)

)
= N(T2(R)).

If e1 = 0, then 0 ̸= e3 ∈ MEl(R). In fact, assume that x ∈ R such that xe3 ̸= 0, and then DE ̸= 0

where D =

(
0 0
0 x

)
∈ T2(R); it follows that E = GDE for some G =

(
y1 y2
0 y3

)
∈ T2(R), and this implies

e3 = y3xe3 , so e3 ∈ MEl(R). For any C =

(
c1 c2
0 c3

)
∈ N(T2(R)), one has EC =

(
0 e2c3
0 e3c3

)
∈ N(T2(R))

because e3c3 ∈ N(R). Hence, T2(R) is a generalized GQN ring. 2

Recall that a ring R is left quasi-duo [15] if every maximal left ideal of R is an ideal, and R is said to

be MELT if every essential maximal left ideal of R is an ideal. Clearly, left quasi-duo rings are MELT , but

the converse is not true.

Proposition 3.4 R is a left quasi-duo ring if and only if R is a generalized GQN MELT ring.

Proof We first assume that R is a left quasi-duo ring. Then R is MELT . Now let a ∈ N(R) and

e ∈ MEl(R). If ea = 0, then we are done. If ea ̸= 0, then l(ea) = l(e) is a maximal left ideal of R . Since R is

a left quasi-duo ring, l(ea) is an ideal of R . Since 1− e ∈ l(ea), (1− e)a ∈ l(ea), this gives aea = eaea . Since

a ∈ N(R), there exists n ≥ 1 such that an = 0, so (ea)n+1 = anea = 0. Hence, R is generalized GQN .

Conversely, assume that R is a generalized GQN MELT ring. Let M be a maximal left ideal of R .

If M is an essential left ideal of R , then M is an ideal because R is MELT . If M is not essential, then

M = l(e) for some e ∈ MEl(R). Choose m ∈ M and b ∈ R . If mb /∈ M , then mbe ̸= 0. Write h = (1− e)be .

If h = 0, then be = ebe and mbe = mebe = 0, a contradiction. Hence, h ̸= 0 and Rh = Re . Let e = ch for

some c ∈ R . Then ec(1 − e)h = e . Write g = e + ec(1 − e). Then g ∈ MEl(R) and gh = e . Since R is a

generalized GQN ring, gh ∈ N(R), which is a contradiction. Hence, mbe = 0, and this gives mb ∈ M . Thus,

in any case, we have that M is an ideal, so R is a left quasi-duo ring. 2

The following corollary is an immediate result of Proposition 3.4.

Corollary 3.5 GQN MELT rings are left quasi-duo.

Proposition 3.6 The following conditions are equivalent for a ring R :
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(1) R is a generalized GQN ring;

(2) Ra+R(ae− 1) = R for all a ∈ R and e ∈ MEl(R) ;

(3) Ra+R(ae− 1) = R for all a ∈ R and e ∈ MEl(R) .

(1) =⇒ (2) If Ra+R(ae−1) ̸= R , then there exists a maximal left ideal M of R containing Ra+R(ae−1).

If M is essential, then Re ⊆ M , and it follows that ae ∈ M , so 1 = ae+(1−ae) ∈ M , a contradiction. Hence,

M is not essential, and this gives M = l(g) for some g ∈ MEl(R). Hence, ag = 0 and g = aeg . Since R is a

generalized GQN ring, similar to the sufficiency proof of Proposition 3.4, one can show that eg = geg , and it

follows that g = aeg = ageg = 0, a contradiction. Thus, Ra+R(ae− 1) = R .

(2) =⇒ (3) is trivial.

(3) =⇒ (1) Let a ∈ N(R) and e ∈ MEl(R). If ae /∈ N(R), then Re = Rae . Let e = cae for some c ∈ R

and h = ae− eae . If h ̸= 0, then Re = Rh . Write e = dh for some d ∈ R and g = e+ ed− ede . Then gh = e

and g ∈ MEl(R). By (3), we have Rh+R(hg−1) = R , so Rh = Rh2+R(hg−1)h = 0, a contradiction. Hence,

ae = eae , and it follows that e = cae = ceae = c2aeae = c2a2e = c2ea2e = c3aea2e = c3a3e = · · · = cnane for

all n ≥ 1. Since a ∈ N(R), e = 0, a contradiction. Hence, ae ∈ N(R); this implies R is a generalized GQN

ring. 2

4. GQN exchange rings

An element x ∈ R is said to be exchange if there exists e ∈ E(R) such that e ∈ xR and 1 − e ∈ (1 − x)R .

The ring R is said to be exchange if all of its elements are exchange. An element x ∈ R is said to be clean if

x = u + f for some u ∈ U(R) and f ∈ E(R). The ring R is said to be clean if all of its elements are clean.

In [5, Proposition 1.8] it is shown that clean rings are exchange, but the converse is not true by [4, Example

1]. In [5] it is shown that abelian exchange rings are clean; [15] showed that left quasi-duo exchange rings are

clean; [14, Proposition 4.1] showed that quasinormal exchange rings are clean. Clearly, the integral ring Z is

GQN but not exchange. The full matrix ring over a field F is exchange but not GQN. In the following, we will

study the exchange property of GQN rings.

Theorem 4.1 Let R be a GQN ring and x ∈ R . If x is exchange, then x is clean.

Proof Let e ∈ E(R) satisfy e = xa and 1 − e = (1 − x)b for some a, b ∈ R . Let y = ae and z = b(1 − e).

Then e = xy and 1−e = (1−x)z . By simple calculation we obtain that (x− (1−e))(y−z) = 1−ez− (1−e)y .

Since (ez)2 = 0 = ((1−e)y)2 , (x− (1−e))(y−z) = (1−ez)(1− (1+ez)(1−e)y). Clearly, ((1+ez)(1−e)y)2 =

(1+ez)(1−e)yz(1−e)y . Write g = 1−e+ez . Then g2 = g . Since R is a GQN ring and ((1−e)yz(1−e)y)2 = 0,

g(1 − e)yz(1 − e)y ∈ N(R); that is, (1 + ez)(1 − e)yz(1 − e)y ∈ N(R), so (1 + ez)(1 − e)y ∈ N(R), and this

implies (x− (1− e))(y − z) ∈ U(R). By Corollary 2.6(1), x− (1− e) ∈ U(R), so x is clean. 2

Theorem 4.1 implies the following corollary.

Corollary 4.2 (1) Let R be a GQN ring. If R is exchange, then R is clean.

(2) Let R be a quasinormal ring. If R is exchange, then R is clean.

(3) Let R be an NI ring. If R is exchange, then R is clean.
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Recall that a ring R is said to have stable range 1 (cf. [9]) if for any a, b ∈ R satisfying aR + bR = R ,

there exists y ∈ R such that a+ by is right invertible. It is well known that an exchange ring has stable range

1 if and only if every regular element is unit-regular.

It is well known that an exchange ring R has stable range 1 if and only if for any a, x ∈ R and e ∈ E(R),

ax+ e = 1 implies a+ ey ∈ U(R) for some y ∈ R .

Proposition 4.3 An exchange ring R has stable range 1 if and only if for every regular element a of R , there

exists u ∈ U(R) such that a− aua ∈ Zl(R) .

Proof The necessity is clear.

Now assume ax+ e = 1, where a, x ∈ R and e ∈ E(R). Then a = axa+ ea . If ea = 0, then a = axa .

By hypothesis, there exists u ∈ U(R) such that a− aua ∈ Zl(R). Let a = aua+ z for some z ∈ Zl(R). Then

1 − e = ax = auax + zx = au(1 − e) + zx and (au − e)2 = auau − aue − eau + e = au − zu − aue + e =

au(1 − e) + e − zu = 1 − e − zx − zu + e = 1 − (zx + zu). Clearly, zx + zu ∈ Zl(R). Since R is an

exchange ring, there exists g ∈ E(R) such that g ∈ (zx + zu)R ⊆ Zl(R) and 1 − g ∈ (1 − zx − zu)R ; it

follows that g ∈ Zl(R), so g = 0, and this gives 1 ∈ (1 − zx − zu)R . Write 1 = (1 − zx − zu)t for some

t ∈ R . Then 1 − zx − zu = (1 − zx − zu)t(1 − zx − zu) and 1 − (1 − zx − zu)t ∈ l(1 − zx − zu). Since

zx + zu ∈ Zl(R) and l(zx + zu) ∩ l(1 − zx − zu) = 0, l(1 − zx − zu) = 0. Hence, (1 − zx − zu)t = 1,

and it follows that 1 − zx − zu ∈ U(R); that is, au − e ∈ U(R). Let au − e = v for some v ∈ U(R).

Then a − eu−1 = vu−1 ∈ U(R). If ea ̸= 0, then a ̸= axa . Let f = ax = 1 − e and r = fa − a . Then

rx = (fa − a)x = (axa − a)x = (ax − 1)ax = −e(1 − e) = 0 and fr = f2a − fa = 0. Let a/ = a + r . Then

a/x = ax+ rx = ax = f , a/xa/ = fa/ = fa+ fr = fa = r+ a = a/ , and a/x+ e = f + e = ax+ e = 1. Since

ea/ = ea + er = efa = eaxa = e(1 − e)a = 0, by a similar proof as above, there exists w ∈ U(R) such that

a/−ew = s ∈ U(R). Since fr = 0, r = (1−f)r = er , and this leads to s = a/−ew = a+r−ew = a+e(r−w).

Therefore, R has stable range 1. 2

Theorem 2.4 and Proposition 4.3 imply the following corollary, which is a generalization of [14, Theorem

4.8].

Corollary 4.4 Exchange GQN rings have stable range 1.

A ring R is called left topologically boolean, or a left tb-ring [2] for short, if for every pair of distinct

maximal left ideals of R there is an idempotent in exactly one of them.

Theorem 4.5 Let R be a GQN exchange ring. Then R is a left tb-ring.

Proof Suppose that M and N are distinct maximal left ideals of R . Let a ∈ M\N . Then Ra + N = R

and 1 − xa ∈ N for some x ∈ R . Clearly, xa ∈ M\N . Since R is a GQN exchange ring, R is clean by

Corollary 4.2, so there exist an idempotent e ∈ E(R) and a unit u in R such that xa = e+ u . If e ∈ M , then

u = xa− e ∈ M , from which it follows that R = M , a contradiction. Thus, e /∈ M . If e /∈ N , then 1− e ∈ N

by Proposition 2.8(1) and hence u = (1− e) + (xa− 1) ∈ N . It follows that N = R , which is also not possible.

We thus have that e belongs to N only. 2

Theorem 4.6 Let R be a GQN exchange ring. Then R/P is a division ring for every left primitive ideal P

of R .
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Proof According to [10, Theorem 1], an exchange ring with only two idempotents is a local ring. Now let

a ∈ R satisfy a− a2 ∈ P . Since R is an exchange ring, idempotents can be lifted modulo P , and there exists

e ∈ E(R) such that e − a ∈ P . If eR(1 − e) ⫅̸ P , then there exists a maximal left ideal M of R such that

P = (0 : R/M) = {x ∈ R|xR ⊆ M} and eR(1 − e)R ⫅̸ M . Since R is a GQN ring, by Proposition 2.8(1),

e ∈ M , so 1− e /∈ M , and again by Proposition 2.8(1), eR ⊆ M ; this implies e ∈ P . If eR(1− e) ⊆ P , then

either e ∈ P or 1 − e ∈ P . Hence, in any case, we have either a ∈ P or 1 − a ∈ P , and it follows that R/P

has only two idempotents. Since R/P is an exchange ring, R/P is a local ring. Since R/P is a left primitive

ring, R/P is a division ring. 2

It is well known that abelian rings need not be left quasi-duo and GQN rings need not be left quasi-duo.

The following corollary shows that exchange GQN rings are left quasi-duo, which is also a corollary of [14,

Theorem 3.12].

Corollary 4.7 Let R be an exchange GQN ring. Then R is a left and right quasi-duo ring.

Proof Assume that M is a maximal left ideal of R . Write P = (0 : R/M). Then P is a left primitive ideal

of R , and this gives that R/P is a division ring by Theorem 4.6. If M is not an ideal, then there exist m ∈ M

and a ∈ R such that ma /∈ M ; it follows that ma /∈ P , so there exists b ∈ R such that 1 − bam ∈ P ⊆ M ,

and this gives 1 = (1− bam) + bam ∈ M , which is a contradiction. Hence, M is an ideal of R and R is a left

quasi-duo ring. By the proof of Proposition 2.1 of [15], one has that R/J(R) is a left quasi-duo ring. By [15,

Corollary 2.4], R/J(R) is reduced. By [14, Lemma 3.5], R is right quasi-duo. 2

Corollary 4.8 Let R be an exchange GQN ring. If every prime ideal of R is left primitive, then R is strongly

π -regular and R/J(R) is strongly regular.

Proof It follows from [15, Theorem 2.5] and Corollary 4.7. 2

Corollary 4.9 Let R be an exchange GQN ring. Then the following conditions are equivalent:

(1) Every prime ideal of R is maximal and J(R) = 0 ;

(2) Every prime ideal of R is left primitive and J(R) = 0 ;

(3) R is strongly regular.

Proof It is an immediate result of Corollary 4.8. 2

Recall that R is left (right) weakly regular if a ∈ RaRa (a ∈ aRaR) for all a ∈ R , and R is said to be a

left (right) V -ring if every simple left (right) R -module is injective. Clearly, strongly regular rings are left and

right V -rings and left (right) V -rings are left (right) weakly regular. Since left (right) quasi-duo left (right)

weakly regular rings are strongly regular, Corollary 4.7 implies the following corollary.

Corollary 4.10 Let R be an exchange GQN ring. Then the following conditions are equivalent:

(1) R is a strongly regular ring;

(2) R is a left V -ring;

(3) R is a right V -ring;

(4) R is a left weakly regular ring;

(5) R is a right weakly regular ring.
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5. GQN semiperiodic rings

Following [1], a ring R is said to be semiperiodic if for each x ∈ R\(J(R) ∪ Z(R)), there exist m,n ∈ Z , of

opposite parity, such that xn − xm ∈ N(R). Clearly, the class of semiperiodic rings contains all commutative

rings, all Jacobson radical rings, and certain non-nil periodic rings.

Lemma 5.1 Let R be a GQN ring. If R is a semiperiodic ring, then N(R) ⊆ J(R).

Proof Let a ∈ N(R) with ak = 0, and let x ∈ R . If ax ∈ J(R), then ax is right quasiregular, and if

ax ∈ Z(R), then ax is nilpotent and again ax is right quasiregular. Suppose, then, that ax /∈ J(R)∪Z(R), in

which case [1, Lemma 2.3(iii)] gives q ∈ Z+ and an idempotent e of form axy such that (ax)q = (ax)qe . Since

e = axy = eaxy = ea(1− e)xy+ eaexy = ea(1− e)xy+ ea2(xy)2 = ea(1− e)xy+ ea2(1− e)(xy)2 + ea2e(xy)2 =

ea(1−e)xy+ea2(1−e)(xy)2+ea3(xy)3 = · · · = Σk−1
i=1 ea

i(1−e)(xy)i+eak(xy)k = Σk−1
i=1 ea

i(1−e)(xy)i . For any

r ∈ R , let g = 1−e+(1−e)re . Then g2 = g . Since R is a GQN ring, (1−e)reai(1−e) = g(eai(1−e)) ∈ N(R),

there exists ni ≥ 1 such that ((1 − e)reai(1 − e))ni = 0. Hence, (reai(1 − e))n+1 = 0, and it follows that

eai(1 − e) ∈ J(R) for all i , so Σk−1
i=1 ea

i(1 − e) ∈ J(R). Therefore, e = Σk−1
i=1 ea

i(1 − e)(xy)i ∈ J(R), and this

leads to e = 0 and (ax)q = 0, which shows that ax is right quasiregular. Thus, a ∈ J(R). 2

Theorem 5.2 If R is a GQN semiperiodic ring, then R/J(R) is commutative.

Proof By [1, Theorem 4.3], R is either commutative or periodic, so we may assume that R is periodic. Since

J(R) contains no nonzero idempotents, J(R) is contained in N(R) and hence J(R) = N(R) by Lemma 5.1

and one has that R/J(R) = R/N(R) is reduced; since R/N(R) is also semiperiodic, it is commutative by [1,

Theorem 4.4]. 2

Theorem 5.3 Let R be a GQN semiperiodic ring. Then:

(1) N(R) is an ideal of R .

(2) If J(R) ̸= N(R) , then R is commutative.

Proof In the proof of Theorem 5.2, we obtain that if R is not commutative, then J(R) = N(R). Hence, (2)

holds and (1) also holds for noncommutative ring R . But also if R is commutative, N(R) is an ideal; hence,

(1) holds in any case. 2
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