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Abstract: For subsets of R+ = [0,∞) we introduce a notion of coherently porous sets as the sets for which the upper

limit in the definition of porosity at a point is attained along the same sequence. We prove that the union of two strongly

porous at 0 sets is strongly porous if and only if these sets are coherently porous. This result leads to a characteristic

property of the intersection of all maximal ideals contained in the family of strongly porous at 0 subsets of R+ . It is

also shown that the union of a set A ⊆ R+ with arbitrary strongly porous at 0 set is porous at 0 if and only if A is

lower porous at 0.

Key words: Local upper porosity, local lower porosity, locally strongly porous set, union of locally porous sets, maximal

ideal of locally porous sets

1. Introduction

Porosity appeared in the papers of Denjoy [6, 7] and Khintchine [12] and, independently, Dolzenko [8]. This

concept has found interesting applications in the theory of free boundaries [11], generalized subharmonic

functions [9], complex dynamics [13], quasisymmetric maps [15], infinitesimal geometry [4], and other areas

of mathematics.

Definition 1.1 ([14]) Let E ⊆ R+ . The right upper porosity of E at 0 is the number

p(E) = lim sup
h→0+

λ(E, h)

h
(1)

where λ(E, h) is the length of the largest open subinterval of (0, h) that contains no point of E .

The porosity of E at a point p ∈ R+ has a standard interpretation as a normalized size of holes in E
near p .

We will use the following terminology. A set E ⊆ R+ is:

• Porous at 0 if p(E) > 0;

• Strongly porous at 0 if p(E) = 1;

• Nonporous at 0 if p(E) = 0.
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It should be noted that the standard definitions of porous, strongly porous, and nonporous sets use the

bilateral porosity at a point instead of the right porosity at a point (see, for example, [14]) but the present

paper deals only with the right porosity at 0 of subsets of R+ .

For E ⊆ R+ denote by UMP (E) the set of all sequences (hn)n∈N of positive real numbers such that

limn→∞ hn = 0 and

p(E) = lim
n→∞

λ(E, hn)

hn
.

We say that a pair {A,B} of subsets of R+ is coherently porous if

UMP (A) ∩ UMP (B) ̸= ∅.

More generally, we will use the following.

Definition 1.2 Let A = {Ai : i ∈ I} be a family of subsets of R+ . The family A is coherently porous if

∩
i∈I

UMP (Ai) ̸= ∅.

The second section of this paper contains some properties of coherently porous families of subsets of R+ .

In particular, it is shown that the union A ∪ B of strongly porous at 0 subsets of R+ is strongly porous at 0

if and only if the pair {A,B} is coherently porous; see Corollary 2.10. Theorem 2.7 describes the structure of

the sets A ⊆ R+ for which {A,C} is coherently porous for every C ⊆ R+ .

The third section deals with maximal ideals in the family of all strongly porous at 0 sets. It is shown

that for any pair I1 , I2 of distinct maximal ideals there is A ⊆ R+ such that A ∈ I1 and R+ − A ∈ I2 ; see

Theorem 3.13. A set of characteristic properties of the intersection of all maximal ideals of strongly porous at 0

sets is given in Theorem 3.6.

The lower porosity at 0 is considered in the fourth section. We prove that A ⊆ R+ is lower porous at 0

if and only if A ∪B is porous at 0 for every strongly porous at 0 set B ⊆ R+ ; see Theorem 4.10.

2. Union of strongly porous at zero sets

The present section deals with the main properties of coherently porous sets. In particular, we apply this notion

to describe the necessary and sufficient conditions under which the union of strongly porous at 0 sets is strongly

porous at 0.

Some results about finite and countable unions of locally porous sets were obtained by Renfro in [2].

The next example shows that the union of two strongly porous at 0 sets can be nonporous at 0.

Example 2.1 Let (an)n∈N and (bn)n∈N be some sequences of positive real numbers such that

an > bn > an+1 > 0 (2)

for all n ∈ N and

lim
n→∞

bn
an

= lim
n→∞

an+1

bn
= 0. (3)
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It follows from (3) that

lim
n→∞

an = lim
n→∞

bn = 0.

Let us define the sets A,B ⊆ R+ as

A :=
∞∪

n=1

[bn, an] and B :=
∞∪

n=1

[an+1, bn].

It is clear that A ∪B = (0, a1] . Thus, A ∪B is nonporous at 0 . Using (2), (3), and (1) we obtain

p(A) ≥ lim sup
n→∞

λ(A, bn)

bn
= lim sup

n→∞

(bn − an+1)

bn

= 1− lim inf
n→∞

an+1

bn
= 1.

Similarly, we can prove that p(B) ≥ 1 . Hence, A and B are strongly porous at 0 .

Starting from Example 2.1 it is easy to prove that every E ⊆ R+ is the union of two strongly porous

at 0 sets.

Proposition 2.2 Let E be a subset of R+ . Then there are subsets S and Q of R+ such that

E = S ∪Q

and p(S) = p(Q) = 1 .

Proof Let A and B be subsets of R+ constructed in Example 2.1. Write

S :=
(
{0} ∪A

)
∩ E and Q := (B ∪ (a1,∞)) ∩ E.

Then we have

S ∪Q =
(
{0} ∪ (0, a1] ∪ (a1,∞)

)
∩ E = R+ ∩ E = E.

Since p({0} ∪A) = p(A) = 1 and p(B ∪ (a1,∞)) = p(B) = 1 and

S ⊆ ({0} ∪A) and Q ⊆ B ∪ (a1,∞),

the equalities p(S) = p(Q) = 1 hold. 2

Lemma 2.3 Let A be a porous at 0 subset of R+ and let

(hn)n∈N ∈ UMP (A).

For every n ∈ N , denote by (cn, dn) the largest open interval in the set ((0, hn)−A) . Then the equality

lim
n→∞

dn
hn

= 1 (4)

holds.
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Proof The inequality hn ≥ dn holds for every n ∈ N . Consequently, we have

lim sup
n→∞

dn
hn

≤ 1.

If (4) does not hold, then there are q ∈ R+ and a subsequence (hnk
)k∈N of the sequence (hn)n∈N such that

0 < p(A) = lim
n→∞

dn − cn
hn

≤ lim inf
n→∞

dn
hn

= lim
k→∞

dnk

hnk

= q < 1.

Since

(cn, dn) ⊆
(
(0, dn)−A

)
,

we have λ(A, hn) = λ(A, dn). Consequently,

lim sup
k→∞

λ(A, dnk
)

dnk

= lim sup
k→∞

hnk

dnk

λ(A, hnk
)

hnk

=
1

q
lim
k→∞

λ(A, hnk
)

hnk

=
1

q
p(A) > p(A).

The last inequality contradicts the definition of the right upper porosity at 0. 2

The next lemma is straightforward and we omit its proof.

Lemma 2.4 Let A be a subset of R and let

(hn)n∈N ∈ UMP (A).

Then the following statements hold:

(i) If (tn)n∈N is a sequence of positive real numbers such that

lim
n→∞

tn
hn

= 1,

then
(tn)n∈N ∈ UMP (A);

(ii) Every subsequence (hnk
)k∈N of the sequence (hn)n∈N belongs to UMP (A) .

We will sometimes use this lemma without any references.

Lemma 2.5 Let A be a subset of R+ with

0 < p(A) < 1 (5)

and let (hn)n∈N ∈ UMP (A) . Then there is a sequence ((qn, tn))n∈N of open intervals such that every (qn, tn)

is a connected component of the set Int(R+ −A) and

lim
n→∞

tn
hn

= 1. (6)
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Proof For every n ∈ N , denote by (cn, dn) the largest open interval in the set (0, hn) − A and respectively

by (qn, tn) the connected component of Int(R+ −A), which satisfies

(qn, tn) ⊇ (cn, dn). (7)

It follows from (5) that

lim
n→∞

tn = 0. (8)

Hence, there is n0 ∈ N such that tn < ∞ if n ≥ n0 . By Lemma 2.3 the limit relation

lim
n→∞

dn
hn

= 1 (9)

holds. Thus, it suffices to show that

lim
n→∞

dn
tn

= 1. (10)

Inclusion (7) implies dn ≤ tn for every n ∈ N . Consequently,

lim sup
n→∞

dn
tn

≤ 1.

Let {nk}k∈N be a sequence on natural numbers for which

s := lim inf
n→∞

dn
tn

= lim
k→∞

dnk

tnk

. (11)

Since cn = qn holds for every n ∈ N , we have

λ(A, tnk
)

tnk

=
tnk

− qnk

tnk

=
tnk

− dnk

tnk

+
dnk

− cnk

tnk

=
(
1− dnk

tnk

)
+

dnk

tnk

(dnk
− cnk

dnk

)
=

(
1− dnk

tnk

)
+

dnk

tnk

hnk

dnk

λ(A, hnk
)

hnk

for all sufficiently large k ∈ N . Now (5), (9), and (11) imply

p(A) ≥ lim sup
k→∞

λ(A, tnk
)

tnk

= (1− s) + sp(A).

Note that the inequalities

p(A) ≥ (1− s) + sp(A)

and
p(A)(1− s) ≥ (1− s) (12)

are equivalent. From 0 < p(A) < 1 and 1 − s ≥ 0 it follows that inequality (12) holds if and only if s = 1.

Thus,

1 = lim inf
n→∞

dn
tn

≤ lim sup
n→∞

dn
tn

≤ 1.

Limit relation (10) follows. 2
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Remark 2.6 The conclusion of Lemma 2.5 is false for strongly porous at 0 sets A . It can be shown that

p(A) = 1 if and only if (shn)n∈N ∈ UMP (A) for all (hn)n∈N ∈ UMP (A) and s ∈ (0, 1) .

Theorem 2.7 Let A be a subset of R+ . Then the following statements are equivalent.

(i) A is nonporous at 0 or

0 /∈ A− {0},

where A− {0} is the closure of the set A− {0} .

(ii) Every sequence (hn)n∈N of positive real numbers with lim
n→∞

hn = 0 belongs to UMP (A) .

(iii) The pair {A,C} is coherently porous for each C ⊆ R+ .

Proof (i) ⇒ (ii) Let (i) hold. If A is nonporous at 0, then for every sequence (hn)n∈N of positive real

numbers with lim
n→∞

hn = 0 we have

p(A) ≥ lim sup
n→∞

λ(A, hn)

hn
≥ lim inf

n→∞

λ(A, hn)

hn
≥ 0 = p(A).

Similarly, 0 /∈ A− {0} if and only if there is t > 0 such that

(0, t) ∩A = ∅.

The last equality implies that p(A) = 1 and

lim
n→∞

λ(A, hn)

hn
= 1

for every sequence (hn)n∈N of positive real numbers with lim
n→∞

hn = 0. The implication (i) ⇒ (ii) follows.

(ii) ⇒ (iii) Suppose that condition (ii) holds. Let C ⊆ R+ and let (hn)n∈N ∈ UMP (C). Then (ii)

implies

(hn)n∈N ∈ UMP (A).

Thus, the pair {A,C} is coherently porous.

(iii) ⇒ (i) Let (iii) hold. Suppose that (i) does not hold, i.e. 0 ∈ A− {0} and p(A) > 0. We can find

a sequence
(
(an, bn)

)
n∈N of open intervals in R+ −A such that (bn)n∈N ∈ UMP (A) and

λ(A, bn) = bn − an, (13)

lim
n→∞

an+1

bn
= 0 and bn+1 < an < bn (14)

for every n ∈ N . The inequality an < bn implies that the point

cn :=
2bnan
bn + an

(15)
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belongs to the interval (an, bn),

an < cn < bn. (16)

Moreover, from (15) it follows that

cn − an
cn

=
1

2

bn − an
bn

. (17)

Let us define a set C ⊆ R+ as

C := R+ −
( ∞∪

n=1

(an, cn)
)
. (18)

It follows from (14) and (16) that

λ(C, cn) = cn − an (19)

holds for all sufficiently large n . Since every bounded connected component of Int(R+ − C) has the form

(an, cn) for some n ∈ N , equalities (19), (17), and (13) imply

p(C) = lim sup
n→∞

λ(C, cn)

cn
(20)

= lim
n→∞

cn − an
cn

=
1

2
lim

n→∞

bn − an
bn

=
1

2
p(A).

It follows from 0 < p(A) ≤ 1 that

0 < p(C) ≤ 1

2
.

Let (hk)k∈N ∈ UMP (C). By Lemma 2.5 there is a subsequence (cnk
)k∈N of (cn)n∈N such that

lim
k→∞

cnk

hk
= 1.

By statement (iii) the pair {A,C} is coherently porous. Consequently,

p(A) = lim
k→∞

λ(A, cnk
)

cnk

. (21)

Using (14) we see that (ank
, cnk

) is the largest interval in the set

(R+ −A) ∩ (0, cnk
)

for all sufficiently large k . Hence, we have

λ(A, cnk
) = cnk

− ank

for all sufficiently large k . Now from (20) and (21) we obtain

p(A) = lim
k→∞

cnk
− ank

cnk

=
1

2
p(A).
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The equality

p(A) =
1

2
p(A)

is valid if and only if

p(A) = 0.

It contradicts the condition p(A) > 0. 2

Lemma 2.8 Let A1, . . . , An , n ≥ 2 , be subsets of R+ with

p(Ai) ∈ (0, 1]

for every i = 1, . . . , n . If the family {A1, . . . , An} is coherently porous, then the equality

p(A1 ∪ . . . ∪An) = min{p(A1), . . . , p(An)} (22)

holds.

Proof Let {A1, . . . , An} be coherently porous. The inclusions

(A1 ∪ . . . ∪An) ⊇ Ai, i = 1, . . . , n,

give us the inequality

p(A1 ∪ . . . ∪An) ≤ min{p(A1), . . . , p(An)}.

Hence, it suffices to show that

p(A1 ∪ . . . ∪An) ≥ min{p(A1), . . . , p(An)}. (23)

Since {A1, . . . , An} is coherently porous, there exists

(hk)k∈N ∈
n∩

i=1

UMP (Ai).

For all k ∈ N and i ∈ {1, . . . , n} denote by (cik, d
i
k) the largest open interval in the set (0, hk)−Ai . Write

dk := min{d1k, . . . , dnk}. (24)

Lemma 2.3 implies that

lim
k→∞

dik
hk

= 1

for every i ∈ {1, . . . , n} . Consequently, we have

lim
k→∞

dk
hk

= 1.

By Lemma 2.4 it follows that

(dk)k∈N ∈
n∩

i=1

UMP (Ai). (25)
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Let us denote by i0 an index for which

p(Ai0) = min{p(A1), . . . , p(An)}. (26)

Let p0 := p(Ai0) and ε ∈ (1 − p0, 1). Using (24), (25), and (26), we can prove that there is k0 ∈ N such that

the inclusion

(εdk, dk) ⊆ (cik, d
i
k)

holds for every i ∈ {1, . . . , n} if k ≥ k0 . Consequently,

p(A1 ∪ . . . ∪An) ≥ lim sup
k→∞

λ(A1 ∪ . . . ∪An, dk)

dk
≥ lim sup

k→∞

dk − εdk
dk

= 1− ε

for every ε ∈ (1− p0, 1). Letting ε to (1− p0) we obtain (23). 2

Theorem 2.9 Let A1, ...An be subsets of R+ . Suppose there is a number p ∈ [0, 1] such that

p(A1) = ... = p(An) = p. (27)

Then the following two statements are equivalent.

(i) The family {A1, . . . , An} is coherently porous.

(ii) The equality

p(A1 ∪ . . . ∪An) = p

holds.

Proof The case p = 0 directly follows from Theorem 2.7.

Let p ∈ (0, 1] and let {A1, . . . , An} be coherently porous. Then by Lemma 2.8 we have

p(A1 ∪ . . . ∪An) = min{p(A1), . . . , p(An)} = p.

The implication (i) ⇒ (ii) holds.

Let p(A1 ∪ . . . ∪An) = p . To prove (ii) ⇒ (i) it suffices to show that

(hk)k∈N ∈
n∩

i=1

UMP (Ai) (28)

holds if
(hk)k∈N ∈ UMP (A1 ∪ . . . ∪An). (29)

Suppose that (hk)k∈N satisfies (29). Then we have

p = lim
k→∞

λ(A1 ∪ . . . ∪An, hk)

hk
≤ lim inf

k→∞

λ(Ai, hk)

hk

for every i ∈ {1, . . . , n} . Let 1 ≤ i ≤ n . Since

lim inf
k→∞

λ(Ai, hk)

hk
≤ lim sup

k→∞

λ(Ai, hk)

hk
≤ p,
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there exists limk→∞
λ(Ai,hk)

hk
such that

lim
k→∞

λ(Ai, hk)

hk
= p = p(Ai),

i.e. the statement
(hk)k∈N ∈ UMP (Ai)

holds for every i ∈ {1, . . . , n} . Statement (28) follows. 2

Corollary 2.10 Let A1, ..., An be strongly porous at 0 subsets of R+ . Then the union ∪n
j=1Aj is strongly

porous at 0 if and only if the family {A1, . . . , An} is coherently porous.

In the case when A = {An : n ∈ N} is coherently porous the union ∪n∈NAn can be nonporous even if

every An is strongly porous at 0.

Proposition 2.11 For every A ⊆ R+ there is a countable coherently porous family A = {An : n ∈ N} of

strongly porous at 0 sets such that

A =
∪
n∈N

An. (30)

Proof For A ⊆ R+ and n ∈ N define the set An as

An := A ∩
(
{0} ∪

(
1

n
,∞

))
.

Then (30) is evident and A = {An : n ∈ N} is coherently porous by Theorem 2.7. 2

The next proposition collects together some basic properties of the binary relation “be coherently porous”.

Proposition 2.12 Let A and B be subsets of R+ .

(i) The pair {A,B} is coherently porous if and only if the pair {B,A} is coherently porous.

(ii) The pair {A,A} is coherently porous.

(iii) If A is strongly porous at 0 , then the family 2A of all subsets of A is coherently porous.

(iv) If A and B are strongly porous at 0 , then there exists C ⊆ R+ such that C is strongly porous at 0 and

the pairs {A,C} and {C,B} are coherently porous.

Proof Statements (i) and (ii) follow directly from Definition 1.2.

(iii) The proof of this statement is similar to the proof of implication (ii) ⇒ (i) in Theorem 2.9.

(iv) Let A and B be strongly porous at 0. Then we have

A ∩B ⊆ A and A ∩B ⊆ B.

Using statement (iii) we obtain that
{
A, (A ∩ B)

}
and

{
B, (A ∩ B)

}
are coherently porous. Statement (iv)

follows. 2
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In the rest of this section we describe an interesting link between strongly porous at 0 sets and graph

theory.

Write A ≍ B if the pair {A,B} is coherently porous and A ̸= B . Let us denote by SP the set of all

strongly porous at 0 subsets of R+ .

Let us define a graph G = (V,E) with the vertex set V = SP and the edge set E such that vertices A ,

B ∈ V are adjacent if and only if A ≍ B . Then statement (iv) of Proposition 2.12 means that the diameter of

G is 2, i.e. for every two X , Y ∈ V there is Z ∈ V such that X , Z are adjacent and Z , Y are also adjacent.

The graphs of diameter 2 have nice combinatorial properties, which can be reformulated in the language

of porosity of sets. An example of such a reformulation is given below.

Proposition 2.13 Let A = {A1, . . . , An} be a family of strongly porous at 0 sets and let n = d2 for some

integer number d ≥ 2 . Suppose that for every pair of distinct Ai , Aj ∈ A there is Ak ∈ A such that Ai ≍ Ak

and Ak ≍ Aj ; for every Ai ∈ A , the number of Aj ∈ A with Ai ≍ Aj is at most d ; and there is Ai0 such that

the number of Ai ∈ A with Ai0 ≍ Ai is d . Then d = 4 and the elements of A can be numerated such that

(i) (Ai ≍ Aj) holds if and only if i = j (mod 2) .

The corresponding result for an arbitrary finite graph of diameter 2 was proved in [10]. Note that a family

{A1, A2, A3, A4} ⊆ SP for which condition (i) holds can be constructed by a modification of Example 2.1.

3. Maximal ideals in SP
As in the preceding section, SP denotes the set of all strongly porous at 0 subsets of R+ . The main goal of

this section is to describe the set of subsets E ⊆ R+ for which {E,A} is coherently porous for every strongly

porous at 0 set A on maximal ideals language. Moreover, it is shown that for every two distinct maximal ideals

I1 , I2 ⊆ SP there are A1 ∈ I1 and A2 ∈ I2 such that A1 ∪A2 = R+ .

Definition 3.1 A nonempty collection I of subsets of a set X is an ideal on X if the following conditions are

valid:

(i) The implication

(B ∈ I & C ⊆ B) ⇒ (C ∈ I) (31)

holds for all sets C and B ;

(ii) B ∪ C ∈ I for all B , C ∈ I ;

(iii) X /∈ I .

A collection I ⊆ 2X is said to be closed under subsets if statement (i) of Definition 3.1 is valid. It is

clear that the set SP is closed under subsets but, as Example 2.1 shows, it is not an ideal on R+ .

Definition 3.2 Let Γ ⊆ 2X be nonempty and closed under subsets. An ideal I on X is Γ-maximal if I ⊆ Γ

and the implication

(I ⊆ J ⊆ Γ) ⇒ (I = J) (32)

holds for every ideal J on X .
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It is clear that the intersection of any nonempty family of ideals on X is also an ideal on X . Write

M(Γ) for the set of all Γ -maximal ideals and define an ideal Î(Γ) as

Î(Γ) :=
∩

I∈M(Γ)

I. (33)

In what follows, we describe some properties of the ideal Î(SP), which was introduced in [5]. The

following lemma is a particular case of Theorem 4.4 from [5].

Lemma 3.3 Let Γ ⊆ 2R
+

be closed under subsets and R+ = ∪A∈ΓA and let B ∈ Γ . Then B ∈ Î(Γ) if and

only if B ∪ E ∈ Γ holds for every E ∈ Γ .

Corollary 3.4 Let A be a subset of R+ . Then A ∈ Î(SP) if and only if

A ∪ E ∈ SP

holds for every E ∈ SP .

For q > 1 and E ⊆ R+ the q -blow up of E is the set

E(q) :=
∪
x∈E

(q−1x, qx). (34)

The set E(q) is open for every E ⊆ R+ and q > 1. If the set Cc1(E(q)) of connected components of (0, 1)∩E(q)

is infinite, then there is a unique sequence ((ai, bi))i∈N of open intervals such that:

(i1) For every (a, b) ∈ Cc1(E(q)) there is a unique i0 ∈ N satisfying the equality

(a, b) = (ai0 , bi0);

(i2) The inequalities

bi+1 < ai < bi

hold for every i ∈ N ;

(i3) The equality

(0, 1) ∩ E(q) =

∞∪
i=1

(ai, bi)

holds.

If a sequence ((ai, bi))i∈N satisfies (i1)–(i3), we write

Cc1(E(q)) = ((ai, bi))i∈N.

The next lemma is a reformulation of Theorem 6.6 from [5].

Lemma 3.5 The following conditions are equivalent for every E ⊆ R with 0 ∈ E − {0} .
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(i) E ∈ Î(SP) .

(ii) For every q > 1 there is an infinite sequence ((ai, bi))i∈N such that

Cc1(E(q)) = ((ai, bi))i∈N and lim sup
i→∞

bi
ai+1

< ∞.

Corollary 3.4, Lemma 3.5, and Corollary 2.10 give us the following theorem.

Theorem 3.6 The following statements are equivalent for every E ∈ SP .

(i) E ∈ Î(SP) .

(ii) The pair {E,A} is coherently porous for every A ∈ SP .

(iii) The set E ∪A is strongly porous at 0 for every A ∈ SP .

(iv) We have either 0 /∈ E − {0} or, for every q > 1 , there is an infinite sequence ((ai, bi))i∈N of open interval

such that

Cc1(E(q)) = ((ai, bi))i∈N and lim sup
i→∞

bi
ai+1

< ∞.

In the next example we construct a set E ∈ Î(SP) for which condition (i) from Theorem 2.7 does not

hold.

Example 3.7 Let (xn)n∈N be a sequence of positive real numbers such that

lim
n→∞

xn+1

xn
= 0 (35)

and let q > 1 . Write

E :=
∞∪

n=1

(q−1xn, qxn). (36)

Then the pairs {E,A} are coherently porous for all strongly porous at 0 sets A ⊆ R+ . The last statement

follows from Theorem 3.6, condition (35), and the equality

X(q)(q1) = X(qq1), (37)

where X is the set of elements of the sequence (xn)n∈N and X(q)(q1) is the q1 -blow up of the q -blow up of the

set X .

Remark 3.8 The set E from Example 3.7 belongs to the so-called completely strongly porous at 0 sets, which

form a proper subset of Î(SP) . For details, see [3] and [5].

For every nonempty set X , each 2X –maximal ideal I generates the ultrafilter FI on X as

FI := {X − E : E ∈ I} (38)
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and, conversely, for every ultrafilter F on X the set

IF = {X − E : E ∈ F}

is a 2X -maximal ideal. It is well known that a filter F on X is an ultrafilter if and only if, for every A ⊆ X ,

either A ∈ F or (X −A) ∈ F . It implies the following.

Proposition 3.9 Let X be a nonempty set. Then for every two distinct 2X maximal ideals I1 and I2 there

is a set A ⊆ X such that A ∈ I1 and X −A ∈ I2 .

Proof Since I1 ̸= I2 there is A ⊆ X such that

A ∈ I1 and A /∈ I2.

By (38), the statement (X −A) /∈ FI2 holds. Using the above-mentioned characteristic property of ultrafilters

we see that A ∈ FI2 . The last statement is equivalent to (X −A) ∈ I2 . 2

Now we will show that a result similar to Proposition 3.9 is valid for SP –maximal ideals.

The following two lemmas are simple modifications of the corresponding results from [5].

Lemma 3.10 Let E ⊆ R+ and E /∈ SP . Then there is q > 1 such that the equality

E(q) ∩ (0, 1) = (0, 1)

holds.

Proof Using (37) we see that the lemma is valid if

E(q) ∩ (0, t) = (0, t) (39)

holds for some t > 0. The last equality is evident for every q > 1 if there is t > 0 such that (0, t) ⊆ E . Hence,

we can assume (0, t) \E ̸= ∅ for every t > 0. Since E is not strongly porous at 0, there is s ∈ (0, 1) such that

lim sup
h→0+

λ(E, h)

h
< s.

Consequently, there exists t > 0 such that, for every y ∈ (0, t)\E , we can find x ∈ E satisfying the inequalities

x < y and
y − x

y
< s.

These inequalities imply

x < y <
x

1− s
.

Hence, y ∈ (q−1x, qx) holds with q = 1/(1− s). Thus, the inclusion (0, t) \ E ⊆ E(q) holds for such q . Since

E ∩ (0, t) ⊆ E(q) for all t > 0 and q > 1, we obtain

(0, t) = (E ∩ (0, t)) ∪ ((0, t) \ E) ⊆ E(q) ∪ E(q) = E(q).

Thus,

(0, t) ⊆ (0, t) ∩ E(q) ⊆ (0, t),

which implies (39). 2
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Lemma 3.11 Let E ⊆ R+ and q > 1 . Then E ∈ SP if and only if E(q) ∈ SP .

Proof Since E(q) ⊇ (E \ {0})(q) and

(E ∈ SP) ⇔ (E \ {0} ∈ SP),

the implication (E(q) ∈ SP) ⇒ (E ∈ SP) is trivial.

Let E ∈ SP . Then there is a sequence {(an, bn)}n∈N such that

0 < an < bn, lim
n→∞

bn = 0, (an, bn) ∩ E = ∅ and lim
n→∞

an
bn

= 0.

It is easy to prove that

qan < q−1bn and (qan, q
−1bn) ∩ E(q) = ∅

for all sufficiently large n . Since

lim
n→∞

qan
q−1bn

= q2 lim
n→∞

an
bn

= 0,

the set E(q) is strongly porous at 0. The implication

(E ∈ SP) ⇒ (E(q) ∈ SP)

follows. 2

Lemma 3.12 Let I be a SP -maximal ideal and let q > 1 . Then the statement

E(q) ∈ I (40)

holds for every E ∈ I .

Proof Let E ∈ I . If E(q) ∪A ∈ SP holds for every A ∈ I , then the set J defined by the rule

(X ∈ J) ⇔ (∃B ∈ I such that X ⊆ B ∪ E(q))

is an ideal on R+ for which
I ⊆ J ⊆ SP. (41)

Since I is SP –maximal ideal, (41) implies the equality I = J . It is clear that E(q) ∈ J . Thus, if E(q) /∈ I ,

then there is A ∈ I such that

E(q) ∪A /∈ SP. (42)

From E ∈ I and A ∈ I it follows that A ∪ E ∈ I . In particular, A ∪ E ∈ I implies A ∪ E ∈ SP . Using

Lemma 3.11 we obtain
(A ∪ E)(q) ∈ SP,

where (A ∪ E)(q) is the q -blow up of the set A ∪ E . It follows directly from (34) that

(A ∪ E)(q) = A(q) ∪ E(q).

Moreover, we evidently have the inclusion

A ⊆ A(q) ∪ {0}.
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Hence,

E(q) ∪A ⊆ E(q) ∪A(q) ∪ {0} ∈ SP,

which contradicts (42). 2

Theorem 3.13 Let I1 and I2 be two distinct SP –maximal ideals. Then there is A ∈ I1 such that (R+−A) ∈
I2 .

Proof Write

I1 ∨ I2 := {A1 ∪A2 : A1 ∈ I1, A2 ∈ I2}.

It is easy to see that

I1 ⊆ I1 ∨ I2 and I2 ⊆ I1 ∨ I2. (43)

If I1 ∨ I2 ⊆ SP , then I1 ∨ I2 is an ideal and from (43) it follows that

I1 = I1 ∨ I2 = I2 (44)

because I1 and I2 are SP –maximal ideals. The supposition I1 ̸= I2 contradicts (44). Consequently we can

find A1 ∈ I1 and A2 ∈ I2 such that

A1 ∪A2 /∈ SP.

Now using Lemma 3.10 we can find q > 1 for which

(A1 ∪A2)(q) ⊇ (0, 1). (45)

Write

A := A1(q) ∪ {0} ∪ [1,∞). (46)

By Lemma 3.12 we have A1(q) ∈ I1 . Since {0} ∈ I1 and [t,∞) ∈ I1 , we also have A ∈ I1 . Similarly, A2(q) ∈ I2

holds. From (45) and (46) we obtain that

A ⊆ A ∪ (A2(q)) = A1(q) ∪A2(q) ∪ {0} ∪ [1,∞) = R+.

Since

A ∩ (A2(q)−A) = ∅ and A ∪ (A2(q)−A) = A ∪A2(q) = R+,

the equality

A2(q)−A = R+ −A

holds. From A2(q) ∈ I2 and A2(q)−A ⊆ A2(q), it follows that

R+ −A ∈ I2.

This finishes the proof. 2

1525



ALTINOK et al./Turk J Math

4. The lower porosity at zero

The notion of lower porosity at 0 is similar to the notion of upper porosity at 0.

Definition 4.1 Let E ⊆ R+ . The right lower porosity of E at 0 is the number

p(E) = lim inf
h→0+

λ(E, h)

h
,

where λ(E, h) is the same as in Definition 1.1.

We will say that E ⊆ R+ is lower porous at 0 if p(E) > 0. The sets E ⊆ R+ with p(E) = 0 will

be called lower nonporous at 0. It should be noted that p(E) > 1
2 holds if and only if 0 /∈ E − {0} (see,

for example, Corollary 5.5 in [1]). It does not therefore make sense to introduce the concept of strongly lower

porous at 0 sets.

The following characteristic property of lower porous at 0 sets is occasionally useful.

Lemma 4.2 Let E ⊆ R+ . Then E is lower porous at 0 if and only if there are h0 > 0 and p0 > 0 such that

the equality

λ(E, h) > hp0 (47)

holds for every h ∈ (0, h0) .

Proof If, for every pair of positive h0 and p0 , there is h ∈ (0, h0) such that

λ(E, h) ≤ hp0,

then the equality p(E) = 0 follows from Definition 4.1. Hence, the equality p(E) > 0 implies the existence of

h0 , p0 , for which (47) holds for every h ∈ (0, h0). The converse is evident. 2

Remark 4.3 In fact, for every p0 ∈ (0, p(E)) , there is h0 = h0(p0) > 0 such that (47) holds for every

h ∈ (0, h0) .

Lemma 4.4 Let E ⊆ R+ be lower porous at 0 , let p0 ∈ (0, p(E)) , and let

q ∈
(
1,

1

(1− p0)1/2

)
.

Then the q -blow up E(q) is also lower porous at 0 .

Proof By Lemma 4.2, it suffices to show that there are t0 > 0 and h0 > 0 such that

λ(E(q), h) > ht0 (48)

for all h ∈ (0, h0).

Since E is lower porous at 0, there is h0 > 0 such that

λ(E, h) > hp0 (49)

1526



ALTINOK et al./Turk J Math

for every h ∈ (0, h0) (see Remark 4.3). Let (a, b) be an interval in ((0, h)− E) with

h ∈ (0, h0) and b− a = λ(E, h).

Inequality (49) and the inequality b ≤ h imply

q−1b− qa = (q−1 − q)b+ q(b− a) = (q−1 − q)b+ qλ(E, h)

> (q−1 − q)h+ qhp0 = h(q−1 − q(1− p0)) (50)

for every h ∈ (0, h0). Write

t0 := q−1 − q(1− p0).

Then it follows from q ∈
(
1, 1

(1−p0)1/2

)
that t0 > 0. The inequality t0 > 0 and (50) show, in particular, that

q−1b > qa.

Since the open interval (a, b) lies in ((0, h)− E), for the open interval (qa, q−1b) we obtain the inclusion

(qa, q−1b) ⊆ ((0, h)− E(q)).

Thus,

λ(E(q), h) ≥ q−1b− qa > ht0

holds for every h ∈ (0, h0). 2

Lemma 4.5 Let E ⊆ R+ be strongly porous at 0 . Then (R+ − E) is lower nonporous at 0 .

The proof is straightforward so we omit it here.

Theorem 4.6 Let E be a subset of R+ . Then E is lower nonporous at 0 if and only if the set (R+ − E(q))

is strongly porous at 0 for every q > 1 , where E(q) is the q -blow up of E .

Proof Let E be lower nonporous at 0. Then there is a sequence (hn)n∈N of positive real numbers such that

limn→∞ hn = 0 and

lim
n→∞

λ(E, hn)

hn
= 0. (51)

For every n ∈ N denoted by tn the point closest to hn on the set [0, hn] ∩ E . Equality (51) implies

lim
n→∞

tn
hn

= 1.

Consequently, there is a sequence (pn)n∈N such that

pn ∈ [0, hn] ∩ E (52)

for every n ∈ N and

lim
n→∞

pn
tn

= 1.
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It follows from (52) that

λ(E, pn) ≤ λ(E, hn)

holds for every n ∈ N . Hence, we have

lim
n→∞

λ(E, pn)

pn
= 0. (53)

Let q > 1 and n ∈ N . Denote by sn the point of [0, pn] for which the set (sn, pn] is a connected component

of E(q) ∩ (0, pn] . We claim that

(sn, qsn) ∩ E = ∅ (54)

holds for every n ∈ N . Indeed, if there is an ∈ E such that

an ∈ (sn, qsn),

then by the definition of the q -blow up of E we obtain

(q−1an, qan) ⊆ E(q). (55)

Since

q−1an < q−1qsn = sn,

inclusion (55) implies

(q−1an, pn] ⊆ E(q),

contrary to the definition of sn .

To prove the statement

(R+ − E(q)) ∈ SP (56)

it suffices to show the limit relation

lim
n→∞

sn
pn

= 0. (57)

If (57) does not hold, then there are c ∈ (0, 1) and an increasing sequence (nk)k∈N of natural numbers such

that

lim
n→∞

snk

pnk

= c. (58)

Equality (54) implies that

λ(E, pn) ≥ (q − 1)sn.

The last inequality and (58) give us

lim sup
k→∞

λ(E, pnk
)

pnk

≥ (q − 1) lim sup
k→∞

snk

pnk

= c(q − 1).

Since c ∈ (0, 1) and q > 1, it contradicts (53). Limit relation (57) follows.

Let (56) hold for every q > 1. We must prove that E is lower porous at 0. Suppose that, on the contrary,

p(E) = lim inf
h→∞

λ(E, h)

h
> 0.
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By Lemma 4.4 there is q > 1 such that E(q) is also lower porous at 0, i.e. p(E(q)) > 0. It is clear that

E(q) = (R+ − (R+ − E(q))). (59)

Since R+−E(q) ∈ SP , Lemma 4.5 and (59) imply that E(q) is lower nonporous at 0, contrary to p(E(q)) > 0.

2

Lemma 4.7 Let E ⊆ R+ be porous at 0 , let p0 ∈ (0, p(E)) , and let

q ∈
(
1,

1

(1− p0)1/2

)
.

Then the q -blow up E(q) is also porous at 0 .

The proof of this lemma can be obtained by a simple modification of the proof of Lemma 4.4.

To formulate the next lemma we need a generalization of the concept of q -blow up of sets.

Let A ⊆ R+ , let Γ̃ = (Γn)n∈N be a sequence of subsets of A , and let q̃ = (qn)n∈N be a sequence of real

numbers in (1,∞).

Definition 4.8 The (Γ̃, q̃)-blow up of A is the set

A(Γ̃, q̃) :=
∞∪
i=1

Γn(qn),

where Γn(qn) is the qn -blow up of Γn .

It is easy to set that for every q > 1 and A ⊆ R+ we have

A(q) = A(Γ̃, q̃)

whenever qn = q and Γn = A for every n ∈ N .

Lemma 4.9 Let A be a lower nonporous at 0 subset of R+ . Then for every sequence q̃ = (qn)n∈N with

limn→∞ qn = 1 and qn ∈ (1,∞) for each n ∈ N , there is a sequence of disjoint intervals ((an, bn))n∈N :

(i) limn→∞ an = 0 and 0 < bn+1 < an < bn for every n ∈ N ;

(ii) The set (R+ −A(Γ̃, q̃)) is strongly porous at 0 for Γ̃ = (Γn)n∈N with

Γn := (an, bn) ∩A, n ∈ N.

Proof Let (qn)n∈N satisfy the condition of the lemma. By Theorem 4.6, the set R+ − A(q1) is strongly

porous at 0. Consequently there is an open interval (a1, b1) such that a1 > 0, (a1, b1)∩ (R+ −A(q1)) = ∅ and

b1−a1

b1
< 1

2 . The set R+ −A(q2) is also strongly porous at 0. Hence, we can find (a2, b2) such that

0 < a2 < b2 < a1, (a2, b2) ∩ (R+ −A(q2)) = ∅ and
b2 − a2

b2
<

1

22
.

1529



ALTINOK et al./Turk J Math

By induction on n , we can find an interval (an, bn) such that

0 < an < bn < an−1, (an, bn) ∩ (R+ −A(qn)) = ∅ and
bn − an

bn
<

1

2n
.

Simple estimates show that ((an, bn))n∈N is the desired sequence. 2

Using the last lemma we can completely describe the sets A ⊆ R+ for which the union A ∪B is porous

at 0 for every strongly porous at 0 set B ⊆ R+ .

Theorem 4.10 The following statements are equivalent for every A ⊆ R+ .

(i) The set A is lower porous at 0 .

(ii) The union A ∪B is porous at 0 for every strongly porous at 0 set B ⊆ R+ .

Proof (i) ⇒ (ii) Suppose that A is lower porous at 0. Let B an arbitrary strongly porous at 0 subset of

R+ and let (hn)n∈N ∈ UMP (B). Using Lemma 2.3 and Lemma 2.4 we, without loss of generality, may assume

that for every n ∈ N there is sn ∈ (0, hn) such that

(sn, hn) ⊆ R+ −B

and

lim
n→∞

sn
hn

= 0. (60)

Since A is lower porous at 0, for every n ∈ N there is an interval (tn, pn) such that

(tn, pn) ⊆ (0, hn) ∩ (R+ −A)

and

lim inf
n→∞

pn − tn
hn

≥ p(A) > 0. (61)

The inequality pn ≥ pn − tn and (61) imply

lim inf
n→∞

pn
hn

≥ p(A) > 0. (62)

Using (60) we see that pn ∈ (sn, hn) for all sufficient large n ∈ N . For every n ∈ N we write

mn := min{tn, sn}.

Then, for all sufficiently large n , we have mn < hn and

(mn, pn) ⊆ (R+ − (A ∪B)).

From (60)–(62) it follows that

p(A ∪A) ≥ lim sup
n→∞

pn −mn

hn
≥ lim inf

n→∞

pn −mn

hn
≥ min

{
lim inf
n→∞

pn − sn
hn

, lim inf
n→∞

pn − tn
hn

}
≥ min

{
lim inf
n→∞

pn
hn

, p(A)

}
≥ min{p(A), p(A)} = p(A) > 0. (63)

Thus, A ∪B is porous at 0.
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(ii) ⇒ (i) Suppose now that A∪B is porous at 0 for every strongly porous at 0 set B ⊆ R+ . We must

prove that A is lower porous at 0.

Suppose, towards a contradiction, that A is lower nonporous at 0. In this case there are some sequences

((an, bn))n∈N and q̃ = (qn)n∈N that satisfy conditions (i), (ii), and (iii) from Lemma 4.9. In particular we

have that the set

(R+ −A(Γ̃, q̃))

is strongly porous at 0 with

Γ̃ = (A ∩ (an, bn))n∈N and lim
n→∞

qn = 1.

Consequently, the set

D := A ∪ (R+ −A(Γ̃, q̃))

is porous at 0. By Lemma 4.7 there is q > 1 such that the q -blow up D(q) is also porous at 0. It is clear that

D(q) = A(q) ∪ (R+ −A(Γ̃, q̃))(q) ⊇ A(q) ∪
(
(R+ −A(Γ̃, q̃))− {0}

)
.

Hence, the inclusion

D(q) ∩ (0, t) ⊇ A(q) ∪ (R+ −A(Γ̃, q̃)) ∩ (0, t)

holds for every t > 0. The last formula can be written as

D(q) ∩ (0, t) ⊇
(
(A(q) ∩ (0, t)) ∪ ((0, t)−A(Γ̃, q̃))

)
. (64)

Since limn→∞ qn = 1, there exists n0 ∈ N such that

qn < q (65)

for every n ≥ n0 . Write

t∗ := sup

{
x : x ∈ A ∩

∞∪
n=1

(an, bn)

}
.

Since (65) holds for every n ≥ n0 , we obtain

(0, t∗) ∩A(q) ⊇ (0, t∗) ∩A(Γ̃, q̃).

The last inclusion and (64) with t = t∗ imply

D(q) ∩ (0, t∗) ⊇
(
(0, t∗) ∩ (A(q)) ∪ ((0, t∗)−A(Γ̃, q̃))

)
= (0, t∗).

Since D(q) is porous at 0, the open interval (0, t∗) is also porous at 0. The last statement is obviously false.

2

Let us denote by LP the set of all lower porous at 0 subsets of R+ . Write M(LP) for the set of all

LP -maximal ideals and define an ideal Î(LP) as

Î(LP) =
∩

I∈M(LP)

I (66)

(see formula (33)).
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Corollary 4.11 The inclusion

Î(LP) ⊇ Î(SP)

holds.

Proof Let B ∈ Î(SP). We must show that B ∈ Î(LP). Using Lemma 3.3 we obtain that B ∈ Î(LP) if and

only if

B ∪ E ∈ LP (67)

for every E ∈ LP . By Theorem 4.10 statement (67) holds if and only if

(i) the set (B ∪ E) ∪ S is porous at 0 for every S ∈ SP .

Corollary 3.4 implies that

B ∪ S ∈ SP

for every S ∈ SP . Using Theorem 4.10 again we obtain (i). 2

Similarly to (66) we can define the ideal

Î(P) =
∩

I∈M(P)

I,

where P is the set of all porous at 0 subsets of R+ and M(P) is the set of all P -maximal ideals.

Corollary 4.12 The inclusion

Î(LP) ⊇ Î(P)

holds.

Proof Let B ∈ Î(P). As in the proof of Corollary 4.11 we see that B ∈ Î(LP) if and only if

B ∪ E ∪ S ∈ P (68)

holds for every E ∈ LP and every S ∈ SP . Theorem 4.10 implies that E ∪ S ∈ P if E ∈ LP and S ∈ SP .

Using Lemma 3.3 we obtain (68). 2

The following example shows that

Î(P)− Î(SP) ̸= ∅. (69)

Example 4.13 Let q ∈ (0, 1) and let A be the set of all elements of the sequence (qn)n∈N . The set A is not

strongly porous at 0 . Hence, A /∈ Î(SP) hold. To see that A ∈ Î(P) , it suffices to show that

A ∪ E ∈ P (70)

for every E ∈ P . If 0 /∈ E − {0} , then (70) is trivial. Suppose that 0 ∈ E − {0} .
Let ((an, bn))n∈N be a sequence of open intervals such that

bn+1 < an < bn and (an, bn) ⊆ R+ − E

holds for every n ∈ N and

lim sup
n→∞

bn − an
bn

= p(E) > 0.

There are several cases to consider:
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(i1) there exists a subsequence ((ank
, bnk

))k∈N of ((an, bn))n∈N such that

A ∩ (ank
, bnk

) = ∅

for every k ∈ N ;

(i2) there is ((ank
, bnk

))k∈N such that

card(A ∩ (ank
, bnk

)) = 1

for every k ∈ N ;

(i3) there is ((ank
, bnk

))k∈N with

card(A ∩ (ank
, bnk

)) ≥ 2

for every k ∈ N .

If (i1) holds, then it is clear that

p(A ∪ E) = p(E) > 0.

Condition (i2) implies

λ(A ∪ E, bnk
) ≥ 1

2
(bnk

− ank
)

for every k ∈ N . Hence, we have

p(A ∪ E) ≥ lim sup
k→∞

1

2

bnk
− ank

bnk

=
1

2
p(E) > 0.

If we have (i3) , then for every k ∈ N there is m(k) ∈ N such that

[qm(k)+1, qm(k)] ⊆ (ank
, bnk

).

Consequently,

p(A ∪ E) ≥ lim sup
k→∞

qm(k) − qm(k)+1

qm(k)
= 1− q > 0.

Statement (70) follows.

Remark 4.14 The set E from Example 3.7 belongs to Î(SP) . It is easy to see that E /∈ Î(P) . Indeed, we

evidently have E ∪ (R+ − E) = R+ . Moreover, since

E =

∞∪
n=1

(q−1xn, qxn),

we have

p(R+ − E) ≥ lim sup
n→∞

λ((R+ − E), qxn)

qxn
≥ lim sup

n→∞

qxn − q−1xn

qxn
= 1 − q−2 > 0.

Thus, Î(SP)− Î(P) ̸= ∅ .
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It seems to be interesting to find a nonempty set E ⊆ R+ such that

E ∈ (Î(LP)− Î(P))

or to prove the equality

Î(LP) = Î(P).
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