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Abstract: For subsets of R™ = [0,00) we introduce a notion of coherently porous sets as the sets for which the upper
limit in the definition of porosity at a point is attained along the same sequence. We prove that the union of two strongly

porous at O sets is strongly porous if and only if these sets are coherently porous. This result leads to a characteristic
property of the intersection of all maximal ideals contained in the family of strongly porous at 0 subsets of RY. It is

also shown that the union of a set A C R™ with arbitrary strongly porous at 0 set is porous at 0 if and only if A is

lower porous at 0.
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1. Introduction

Porosity appeared in the papers of Denjoy [6, 7] and Khintchine [12] and, independently, Dolzenko [8]. This
concept has found interesting applications in the theory of free boundaries [11], generalized subharmonic
functions [9], complex dynamics [13], quasisymmetric maps [15], infinitesimal geometry [4], and other areas

of mathematics.

Definition 1.1 ([14]) Let E C R*. The right upper porosity of E at 0 is the number

P(F) = limsup ME )
h—0+ h

where A(E, h) is the length of the largest open subinterval of (0,h) that contains no point of E.

The porosity of E at a point p € RT has a standard interpretation as a normalized size of holes in F
near p.
We will use the following terminology. A set £ C RT is:
e Porous at 0 if p(E) > 0;
e Strongly porous at 0 if p(F) = 1;
e Nonporous at 0 if p(E) =0.

*Correspondence: mayaaltinok@mersin.edu.tr
2010 AMS Mathematics Subject Classification: 28A05
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It should be noted that the standard definitions of porous, strongly porous, and nonporous sets use the
bilateral porosity at a point instead of the right porosity at a point (see, for example, [14]) but the present
paper deals only with the right porosity at 0 of subsets of R*.

For E C Rt denote by UMP(E) the set of all sequences (hy,)nen of positive real numbers such that

lim,, s hy, = 0 and

p(B) = lim 2ESm)

n— oo hn,

We say that a pair {4, B} of subsets of R is coherently porous if
UMP(A)NUMP(B) # 0.

More generally, we will use the following.

Definition 1.2 Let A = {A;:i € I} be a family of subsets of RT. The family A is coherently porous if

(YUMP(A;) # 0.

iel

The second section of this paper contains some properties of coherently porous families of subsets of R™ .
In particular, it is shown that the union AU B of strongly porous at 0 subsets of RT is strongly porous at 0
if and only if the pair {A, B} is coherently porous; see Corollary 2.10. Theorem 2.7 describes the structure of
the sets A C R for which {A,C} is coherently porous for every C' C R™.

The third section deals with maximal ideals in the family of all strongly porous at 0 sets. It is shown
that for any pair I, I, of distinct maximal ideals there is A C R* such that A € I; and RT — A € I,; see
Theorem 3.13. A set of characteristic properties of the intersection of all maximal ideals of strongly porous at 0
sets is given in Theorem 3.6.

The lower porosity at 0 is considered in the fourth section. We prove that A C RT is lower porous at 0

if and only if AU B is porous at 0 for every strongly porous at 0 set B C R ; see Theorem 4.10.

2. Union of strongly porous at zero sets

The present section deals with the main properties of coherently porous sets. In particular, we apply this notion
to describe the necessary and sufficient conditions under which the union of strongly porous at 0 sets is strongly
porous at 0.

Some results about finite and countable unions of locally porous sets were obtained by Renfro in [2].

The next example shows that the union of two strongly porous at 0 sets can be nonporous at 0.

Example 2.1 Let (ap)nen and (by)nen be some sequences of positive real numbers such that

ap > by > apy1 >0 (2)
for all n € N and
bn mn
lim - = lim 2 — (3)
n—00 Ay n—o0 n

1511



ALTINOK et al./Turk J Math

It follows from (3) that

lim a, = lim b, = 0.
n— oo n— o0

Let us define the sets A,B C Rt as

o0

bn,an] and B := | J[ant1,bn).

1 n=1

(@

A=

n

It is clear that AU B = (0,a1]. Thus, AU B is nonporous at 0. Using (2), (3), and (1) we obtain

p(A) > limsup M4, bn) = lim sup (bn = ant1)
=1 —liminfM =1.
n—oo

n

Similarly, we can prove that p(B) > 1. Hence, A and B are strongly porous at 0.

Starting from Example 2.1 it is easy to prove that every E C RT is the union of two strongly porous

at 0 sets.
Proposition 2.2 Let E be a subset of Rt . Then there are subsets S and @ of Rt such that
E=5UQ

and B(S) = B(Q) = 1.
Proof Let A and B be subsets of R™ constructed in Example 2.1. Write

S:=({0}UA)NE and Q := (BU (ay,00)) N E.

Then we have
SUQ=({0}U(0,a1]U(ar,00)) NE=R*NE=E.

Since p({0} UA) =p(A) =1 and p(BU (a1,00)) =p(B) =1 and
SC({0tud) and Q C BU(ay,0),

the equalities p(S) = p(Q) =1 hold. O

Lemma 2.3 Let A be a porous at 0 subset of RT and let
(hn)nEN € UMP(A)

For every n € N, denote by (cn,d,) the largest open interval in the set ((0,h,) — A). Then the equality
. dn
am =1 (@)

holds.
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Proof The inequality h, > d, holds for every n € N. Consequently, we have

d
limsup — < 1.
n—roo n

If (4) does not hold, then there are ¢ € RT and a subsequence (hy, )ren of the sequence (hy)nen such that

0<p(A) = lim dn — Cn Sliminfd—n: lim e =q<1.

n—00 n n—o00 N, k—r o0 hnk

Since

(Cmdn) c ((O,dn) - A)’

we have A(4, h,) = A(4,d,). Consequently,

lim sup A ) _ lim sup finy A(A; By )

k—o0 N k—o0 n h‘nk
AMA hy,) 1

1 1 _
= gklgl;o " QP(A) > p(A).

The last inequality contradicts the definition of the right upper porosity at 0.

The next lemma is straightforward and we omit its proof.

Lemma 2.4 Let A be a subset of R and let
(hn)neny € UMP(A).
Then the following statements hold:

(i) If (tn)nen is a sequence of positive real numbers such that

lim - =1
nesoo by

then
(tn)neN S []]\4P(14)7

(i) Every subsequence (hn, )ken of the sequence (hy)nen belongs to UMP(A).
We will sometimes use this lemma without any references.
Lemma 2.5 Let A be a subset of RT with

0<p(A) <1

()

and let (hp)nen € UMP(A). Then there is a sequence ((qn,tn))nen of open intervals such that every (qn,ty)

is a connected component of the set Int(Rt — A) and

t
lim =2 =1.
n— oo n

(6)
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Proof For every n € N, denote by (¢,,d,) the largest open interval in the set (0,h,) — A and respectively
by (gn,tn) the connected component of Int(RT — A), which satisfies

(Qna tn) ) (Cn; dn)- (7)
It follows from (5) that
lim ¢, =0. (8)
n—oo

Hence, there is ng € N such that ¢, < oo if n > ng. By Lemma 2.3 the limit relation

dn,
dm g, = ©)
holds. Thus, it suffices to show that

Inclusion (7) implies d,, < t,, for every n € N. Consequently,

d
limsup — < 1.
n—oo n

Let {ni}ren be a sequence on natural numbers for which

dy, . dy
s:=liminf — = lim —*. (11)
n—oo t, k—oo ty,
Since ¢, = g, holds for every n € N, we have
AMA, ty,) b = ey — dp, n dp, — Cn,
tn, tn, tn, tn,
()t ()
7 tn, dn,,
_ ( B dﬂ) . dny Py MA, By,)
o, tn, Aoy Py
for all sufficiently large k € N. Now (5), (9), and (11) imply
AA, t,
p(A) > limsup MA ) = (1—3s)+ sp(A).
k—o0 ngk
Note that the inequalities
P(A) > (1 —s) + sp(A)
and
PA)(1—s) = (1—5) (12)

are equivalent. From 0 < p(A) < 1 and 1 — s > 0 it follows that inequality (12) holds if and only if s = 1.
Thus,

dy dn
1= liminft— <limsup — < 1.

n—=00 1p n—oo Un

Limit relation (10) follows. O
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Remark 2.6 The conclusion of Lemma 2.5 is false for strongly porous at 0 sets A. It can be shown that
p(A) =1 if and only if (shyp)nen € UMP(A) for all (hy)nen € UMP(A) and s € (0,1).

Theorem 2.7 Let A be a subset of R . Then the following statements are equivalent.

(i) A is nonporous at 0 or

0 ¢ A-— {0}7
where A — {0} is the closure of the set A — {0}.

(ii) Every sequence (hn)nen of positive real numbers with lim h,, =0 belongs to UM P(A).
n—oo

(11i) The pair {A,C} is coherently porous for each C C RT .

Proof (i) = () Let (4) hold. If A is nonporous at 0, then for every sequence (hy)nen of positive real

numbers with lim A, = 0 we have
n— oo

> liminf
n—oo

P(A) > limsup W

n—oo n

Similarly, 0 ¢ A — {0} if and only if there is ¢ > 0 such that
0, )N A=0.
The last equality implies that p(4) =1 and

AA, hy)

n

lim =1
n—o0

for every sequence (hy)nen of positive real numbers with lim h,, = 0. The implication (i) = (%) follows.
n—oo

(71) = (i) Suppose that condition (ii) holds. Let C' C R and let (hy)nen € UMP(C). Then (i7)
implies
(hn)nen € UM P(A).
Thus, the pair {A, C} is coherently porous.
(iii) = (i) Let (7ii) hold. Suppose that (i) does not hold, i.e. 0 € A — {0} and p(A) > 0. We can find
a sequence ((an, b"))nEN of open intervals in Rt — A such that (b,,)n,en € UMP(A) and

AMA,b,) = by — ap, (13)

. An+1
lim 2+

n—oo n

=0and byy1 < ap < by, (14)

for every n € N. The inequality a, < b, implies that the point

2b,an,
Cp 1=
by, + an,

(15)
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belongs to the interval (ay,,by,),

ap < ¢y < by,.

=

Moreover, from (15) it follows that

Cp, — Qn 1b,

2

— Qp

bn

Cn

Let us define a set C C Rt as

C:=Rt - ( D(an,cn)).

1

n=

It follows from (14) and (16) that

Qp

AMCen) =cn —

(16)

(17)

(18)

(19)

holds for all sufficiently large n. Since every bounded connected component of Int(RT — C) has the form

(an,cp) for some n € N, equalities (19), (17), and (13) imply

AC
p(C) = limsup ACen) (20)
n— o0 Cn
. Cn_an_l . bn an_1,
- nlggo Cn N 5 nh_{go bn B ip(A)
It follows from 0 < p(A) <1 that
1
0<p(C) <35
Let (hi)ken € UM P(C). By Lemma 2.5 there is a subsequence (cp, )ren of (¢n)nen such that
c
lim —% = 1.
kLH;o hk
By statement (i) the pair {A,C} is coherently porous. Consequently,
A, ¢,
B(A) = Tim A ) (21)
k—o0 Cny,

Using (14) we see that (an,,cn,) is the largest interval in the set
(Rt — A)N(0,cn,)

for all sufficiently large k. Hence, we have

AA, e, ) = Cny, — Gny

for all sufficiently large k. Now from (20) and (21) we obtain
Cnp — @ 1
A= T

1516
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The equality

is valid if and only if

It contradicts the condition p(A) > 0. O

Lemma 2.8 Let Ay,...,A,, n>2, be subsets of RT with
p(A;) € (0,1]
for every i =1,... n. If the family {A1,..., A} is coherently porous, then the equality
p(A1U...UA,) =min{p(41),...,0(4,)} (22)

holds.
Proof Let {Aj,...,A,} be coherently porous. The inclusions

(AluuAn)QA“ i:l,...,n,

give us the inequality
p(A1U...UA,) <min{p(41),...,0(4n)}.

Hence, it suffices to show that
p(A1U...UA,) > min{p(41),...,5(An)}. (23)

Since {A41,...,A,} is coherently porous, there exists

(hx)ken € (| UMP(A)).

i=1
For all k € N and i € {1,...,n} denote by (ci,d:) the largest open interval in the set (0,h;) — A;. Write
dy := min{dg, ..., d}}. (24)

Lemma 2.3 implies that

for every i € {1,...,n}. Consequently, we have

By Lemma 2.4 it follows that

(e € (VUMP(A). (25)

i=1
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Let us denote by iy an index for which
P(Aiy) = min{p(A1),...,p(An)}. (26)

Let py :=P(A;,) and € € (1 — Py, 1). Using (24), (25), and (26), we can prove that there is ko € N such that
the inclusion
(5dk7 dk) c (C?c’di:)

holds for every i € {1,...,n} if k> ky. Consequently,

AMA1U...UA,,d . dy, —ed
p(A1U...UA,) > limsup (41 k>2hmsupu:1—8
f—ro00 dy, k—ro0 dy,
for every € € (1 — Py, 1). Letting € to (1 —p,) we obtain (23). O

Theorem 2.9 Let Ay, ... A, be subsets of RY. Suppose there is a number p € [0,1] such that
P(A1) = ... =p(4n) = p. (27)
Then the following two statements are equivalent.
(i) The family {A1,..., A} is coherently porous.

(ii) The equality
p(A1U...UA,) =p
holds.
Proof The case p =0 directly follows from Theorem 2.7.
Let p € (0,1] and let {A4,...,A,} be coherently porous. Then by Lemma 2.8 we have

p(A1U...UA,) =min{p(41),...,0(4,)} =p.

The implication (i) = (¢7) holds.
Let (A1 U...UA,) =p. To prove (ii) = (i) it suffices to show that

(hi)ren € [JUMP(A;) (28)
=1
holds if
(hk)keN € UMP(AlLJ...UAn). (29)

Suppose that (hg)gen satisfies (29). Then we have

AU .UA,h Aih
p: hm >\( 1U U ny k) Shmlnf A( 19 k‘)
k— o0 hi k—o00 k
for every i € {1,...,n}. Let 1 <i <mn. Since
lim inf MAs, o) < lim sup (A, o) < p,
k=00 k k—o00 hy
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there exists limg_ oo A(Ah’ikh") such that

tim 2400 g,
k—o00 hy

i.e. the statement
(hk)keN S UMP(Ai)

holds for every i € {1,...,n}. Statement (28) follows. O

Corollary 2.10 Let Ay,..., A, be strongly porous at 0 subsets of RT. Then the union U 1 A; is strongly
porous at 0 if and only if the family {Ai,..., A,} is coherently porous.

In the case when A = {A, : n € N} is coherently porous the union U,enA, can be nonporous even if

every A, is strongly porous at 0.

Proposition 2.11 For every A C R there is a countable coherently porous family A = {A, : n € N} of

strongly porous at 0 sets such that

A= ] A, (30)

neN

Proof For A C RT and n € N define the set A,, as

A, :=AN ({O}U (Tlloo)> .

Then (30) is evident and A = {A,, : n € N} is coherently porous by Theorem 2.7. O

The next proposition collects together some basic properties of the binary relation “be coherently porous”.

Proposition 2.12 Let A and B be subsets of RT.
(i) The pair {A, B} is coherently porous if and only if the pair {B, A} is coherently porous.
(i) The pair {A, A} is coherently porous.

(iii) If A is strongly porous at 0, then the family 24 of all subsets of A is coherently porous.

(w) If A and B are strongly porous at 0, then there exists C C RT such that C is strongly porous at 0 and
the pairs {A,C} and {C, B} are coherently porous.

Proof Statements (i) and (i¢) follow directly from Definition 1.2.
(74) The proof of this statement is similar to the proof of implication (i) = (¢) in Theorem 2.9.

(iv) Let A and B be strongly porous at 0. Then we have
ANBCAand ANBC B.

Using statement (iii) we obtain that {A4,(AN B)} and {B,(AN B)} are coherently porous. Statement (iv)

follows. O
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In the rest of this section we describe an interesting link between strongly porous at 0 sets and graph
theory.

Write A =< B if the pair {A, B} is coherently porous and A # B. Let us denote by SP the set of all
strongly porous at 0 subsets of RY.

Let us define a graph G = (V, E) with the vertex set V = SP and the edge set E such that vertices A,
B €V are adjacent if and only if A < B. Then statement (iv) of Proposition 2.12 means that the diameter of
G is 2, 1i.e. for every two X, Y € V thereis Z € V such that X, Z are adjacent and Z, Y are also adjacent.

The graphs of diameter 2 have nice combinatorial properties, which can be reformulated in the language

of porosity of sets. An example of such a reformulation is given below.

Proposition 2.13 Let A = {Ay,...,A,} be a family of strongly porous at 0 sets and let n = d? for some
integer number d > 2. Suppose that for every pair of distinct A;, Aj € A there is Ay € A such that A; < Ay,
and Ay < Aj; for every A; € A, the number of A; € A with A; < A; is at most d; and there is A;, such that
the number of A; € A with A;, < A; is d. Then d =4 and the elements of A can be numerated such that

(1) (A; < Aj) holds if and only if i = j (mod 2).

The corresponding result for an arbitrary finite graph of diameter 2 was proved in [10]. Note that a family
{41, Az, A3, Ay} C SP for which condition (i) holds can be constructed by a modification of Example 2.1.

3. Maximal ideals in SP
As in the preceding section, SP denotes the set of all strongly porous at 0 subsets of RT. The main goal of
this section is to describe the set of subsets F C RT for which {E, A} is coherently porous for every strongly

porous at 0 set A on maximal ideals language. Moreover, it is shown that for every two distinct maximal ideals
I,, I, C SP there are A; € I; and Ay € I, such that A, U Ay = RT.

Definition 3.1 A nonempty collection I of subsets of a set X is an ideal on X if the following conditions are

valid:

(i) The implication
(BeI& CCB)=(Cel) (31)

holds for all sets C and B;
(i) BUC €1 forall B, C €1;
(iti) X ¢ 1.
A collection T C 2% is said to be closed under subsets if statement (i) of Definition 3.1 is valid. It is

clear that the set SP is closed under subsets but, as Example 2.1 shows, it is not an ideal on R™ .

Definition 3.2 Let T' C 2% be nonempty and closed under subsets. An ideal I on X is T'-mazimal if T C T
and the implication

(ICICT) = (1=J) (32)
holds for every ideal J on X .
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It is clear that the intersection of any nonempty family of ideals on X is also an ideal on X . Write

M(T) for the set of all I-maximal ideals and define an ideal I(T") as

Iry:= (] L (33)

IeM(T)

In what follows, we describe some properties of the ideal I (SP), which was introduced in [5]. The

following lemma is a particular case of Theorem 4.4 from [5].

Lemma 3.3 Let T C 28" be closed under subsets and RT = UaerA and let B € T'. Then B € f(l") if and
only if BUE €T holds for every E € T'.

Corollary 3.4 Let A be a subset of RT. Then A € f(SP) if and only if

AUFE € SP

holds for every E € SP.

For ¢ >1 and E C R" the g-blow up of E is the set

E(q) == |J (¢ 2, qn). (34)

zEE

The set E(q) is open for every E C RT and ¢ > 1. If the set Cc!(E(q)) of connected components of (0, 1)NE(q)

is infinite, then there is a unique sequence ((a;, b;))ien of open intervals such that:
(i1) For every (a,b) € Cct(E(q)) there is a unique iy € N satisfying the equality
(a,b) = (ai, biy);

(i2) The inequalities

biv1 <a; <b;
hold for every i € N;

(i3) The equality
(0,1) N B(q) = J(a:, )

holds.

If a sequence ((a;,b;)):en satisfies (i1)—(i3), we write

Cc'(B(q) = ((ai, bi))ien.

The next lemma is a reformulation of Theorem 6.6 from [5].

Lemma 3.5 The following conditions are equivalent for every E C R with 0 € E — {0}.
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(i) EclI(SP).

(i1) For every q > 1 there is an infinite sequence ((a;,b;))ien such that

CeM(E(q)) = (a:.b0))ien and limsup 2 < oo,

i—oo  Qit1
Corollary 3.4, Lemma 3.5, and Corollary 2.10 give us the following theorem.

Theorem 3.6 The following statements are equivalent for every £ € SP.
(i) EclI(SP).
(i¢) The pair {E, A} is coherently porous for every A € SP.

(#it) The set E'U A is strongly porous at 0 for every A € SP.
(iv) We have either 0 ¢ E — {0} or, for every ¢ > 1, there is an infinite sequence ((a;,b;))ien of open interval
such that
b;
Cc'(E(q)) = ((as, b:))ien and limsup < 00.

i—oo  Ai+1

In the next example we construct a set E € I(SP) for which condition (i) from Theorem 2.7 does not
hold.

Example 3.7 Let (x,)nen be a sequence of positive real numbers such that

lim 2L — (35)
n—oo I,
and let ¢ > 1. Write
[ee]
E = U (q_lxnyqajn)' (36)
n=1

Then the pairs {E,A} are coherently porous for all strongly porous at 0 sets A C RY. The last statement

follows from Theorem 3.6, condition (35), and the equality

X(@)(q1) = X(qq1), (37)

where X is the set of elements of the sequence (Tn)nen and X(q)(q1) is the qi -blow up of the q-blow up of the
set X.

Remark 3.8 The set E from Example 3.7 belongs to the so-called completely strongly porous at 0 sets, which
form a proper subset of I(SP). For details, see [3] and [5].

For every nonempty set X, each 2% ~maximal ideal I generates the ultrafilter 71 on X as

F={X-E:FEecl} (38)
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and, conversely, for every ultrafilter /7 on X the set
Ir={X-FE:EcF}
is a 2% -maximal ideal. It is well known that a filter F on X is an ultrafilter if and only if, for every A C X,

either A€ F or (X — A) € F. It implies the following.

Proposition 3.9 Let X be a nonempty set. Then for every two distinct 2% maximal ideals I, and Iy there
is a set A C X such that A€y and X —Aecl,.

Proof Since I; # I, there is A C X such that
Aely andAgéIQ.
By (38), the statement (X — A) ¢ Fi, holds. Using the above-mentioned characteristic property of ultrafilters
we see that A € Fy,. The last statement is equivalent to (X — A) € I. O
Now we will show that a result similar to Proposition 3.9 is valid for SP-maximal ideals.
The following two lemmas are simple modifications of the corresponding results from [5].
Lemma 3.10 Let E CR* and E ¢ SP. Then there is q > 1 such that the equality
E(q)n(0,1) = (0,1)

holds.
Proof Using (37) we see that the lemma is valid if

E(q) N (0,t) = (0,1) (39)

holds for some ¢ > 0. The last equality is evident for every ¢ > 1 if there is ¢ > 0 such that (0,¢) C E. Hence,
we can assume (0,¢) \ E # 0 for every ¢ > 0. Since E is not strongly porous at 0, there is s € (0,1) such that

B
limsup ———= <'s
h—0+

Consequently, there exists ¢t > 0 such that, for every y € (0,¢)\ E, we can find = € F satisfying the inequalities

y—x

xr <y and < s.

These inequalities imply

<y< 1‘
T —
4 1—s

Hence, y € (¢~ 'z,qz) holds with ¢ = 1/(1 — s). Thus, the inclusion (0,¢)\ E C E(q) holds for such ¢. Since
EN(0,t) C E(q) for all ¢ >0 and ¢ > 1, we obtain

(0,8) = (EN(0,£)) U ((0,1) \ E) € E(q) U E(q) = E(q)-

Thus,
(0,t) C (0,t) N E(q) C (0,1),

which implies (39). O
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Lemma 3.11 Let E CRY and ¢ > 1. Then E € SP if and only if E(q) € SP.
Proof Since E(q) 2 (E\ {0})(q) and

(EeS8P) < (E\{0} e SP),

the implication (E(q) € SP) = (FE € SP) is trivial.
Let E € SP. Then there is a sequence {(an,b,)}nen such that

0<an<bp, limb,=0, (anby)NE=0 and lim * =0.

n—oo n—oo n

It is easy to prove that
qan < ¢ 'by and  (qan,q 'bn) N E(q) =0
for all sufficiently large n. Since

. a 9. n

the set E(q) is strongly porous at 0. The implication
(E € SP)=(E(q) € SP)

follows. -

Lemma 3.12 Let I be a SP-maximal ideal and let ¢ > 1. Then the statement

E(q) el (40)
holds for every E € 1.
Proof Let E€1. If E(q) UA € SP holds for every A € I, then the set J defined by the rule

(X €J) < (3B €Isuch that X C BU E(q))

is an ideal on RT for which
1CJcCsPp. (41)

Since I is SP-maximal ideal, (41) implies the equality I = J. It is clear that E(q) € J. Thus, if E(q) ¢ I,
then there is A € I such that
E(q)UA ¢ SP. (42)

From E €1 and A € I it follows that AU E € I. In particular, AUFE € I implies AUFE € SP. Using

Lemma 3.11 we obtain
(AU E)(q) € SP,

where (AU E)(q) is the g-blow up of the set AU E. It follows directly from (34) that
(AU E)(q) = Alg) U E(q)-

Moreover, we evidently have the inclusion
A C A(q) U{0}.
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Hence,

E(q)UAC E(q) U A(q) U{0} € SP,

which contradicts (42). O

Theorem 3.13 Let Iy and Iy be two distinct SP —mazimal ideals. Then there is A € Iy such that (RT — A) €
I.

Proof Write
I, vl = {Al UAs: A elq, Ay € 12}

It is easy to see that

Il Q Il \Y 12 and :[2 g Il \Y 12. (43)
If Iy VI, C SP, then I; VI, is an ideal and from (43) it follows that
IL=I1vh =1, (44)

because I; and I, are SP—maximal ideals. The supposition I; # Iy contradicts (44). Consequently we can
find A; € I and Ay € I, such that

A U A, ¢ SP.

Now using Lemma 3.10 we can find ¢ > 1 for which
(A1 U As)(q) 2 (0,1). (45)

Write
A= A1(q) U{0} UL, 00). (46)

By Lemma 3.12 we have A;(q) € I . Since {0} € I; and [t,00) € I, we also have A € I;. Similarly, A2(q) € I
holds. From (45) and (46) we obtain that

AC AU(A2(q)) = Ai(q) U A2(q) U{0} U [1,00) =RT.

Since

AN (As(q) —A) =0 and AU (Az(q) — A) = AU Ax(q) = RT,

the equality
As(q) —A=RT - A

holds. From As(q) € Iy and Az(q) — A C As(q), it follows that

R+_A€IQ.

This finishes the proof. O
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4. The lower porosity at zero

The notion of lower porosity at 0 is similar to the notion of upper porosity at 0.

Definition 4.1 Let E C RY. The right lower porosity of E at 0 is the number

o MER)
p(E) = liminf ===,

where A(E,h) is the same as in Definition 1.1.
We will say that £ C R is lower porous at 0 if p(E) > 0. The sets E C R with p(E) = 0 will

be called lower nonporous at 0. It should be noted that p(E) > i holds if and only if 0 ¢ E — {0} (see,

for example, Corollary 5.5 in [1]). It does not therefore make sense to introduce the concept of strongly lower
porous at 0 sets.

The following characteristic property of lower porous at 0 sets is occasionally useful.

Lemma 4.2 Let E CRT. Then E is lower porous at 0 if and only if there are hg > 0 and pg > 0 such that
the equality
AE,h) > hpo (47)

holds for every h € (0, ho) .
Proof If, for every pair of positive hg and pg, there is h € (0, hg) such that

)‘(Ea h) < hpOa

then the equality p(E) = 0 follows from Definition 4.1. Hence, the equality p(£) > 0 implies the existence of
ho, po, for which (47) holds for every h € (0,hg). The converse is evident. O

Remark 4.3 In fact, for every po € (0,p(E)), there is hg = ho(po) > 0 such that (47) holds for every
h e (0, ho) .

Lemma 4.4 Let E C RT be lower porous at 0, let po € (0,p(E)), and let

q€<l’u;o>w>'

Then the q-blow up E(q) is also lower porous at 0.
Proof By Lemma 4.2, it suffices to show that there are tg > 0 and hg > 0 such that

A(E(q), h) > hto (48)

for all h € (0, hg).

Since FE is lower porous at 0, there is hg > 0 such that

ME, h) > hpg (49)
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for every h € (0,hg) (see Remark 4.3). Let (a,b) be an interval in ((0,h) — E) with
h € (0,ho) and b —a = A(E, h).

Inequality (49) and the inequality b < h imply

g 'b—qa= (¢ " —qb+qb—a)= (" —q)b+q\(E,h)

> (¢7" = q)h + ghpo = k(g — q(1 — po))

for every h € (0, hg). Write
to=q~" —q(l —po).

(50)

Then it follows from ¢ € (1, W) that tp > 0. The inequality t; > 0 and (50) show, in particular, that

g b > qa.

Since the open interval (a,b) lies in ((0,h) — E), for the open interval (ga,q~'b) we obtain the inclusion

(qa,q7'b) € ((0,h) — E(q)).

Thus,
AE(q),h) > g b —qga > hto

holds for every h € (0, h).

Lemma 4.5 Let E CRT be strongly porous at 0. Then (R — E) is lower nonporous at 0.

The proof is straightforward so we omit it here.

Theorem 4.6 Let E be a subset of RT. Then E is lower nonporous at 0 if and only if the set (RT — E(q))

is strongly porous at 0 for every q > 1, where E(q) is the q-blow up of E.

Proof Let E be lower nonporous at 0. Then there is a sequence (hy,)nen of positive real numbers such that

limy 00 hin = 0 and
ANE, hn)

n

lim =0.

n—oo

For every n € N denoted by ¢, the point closest to h,, on the set [0,h,] N E. Equality (51) implies

Consequently, there is a sequence (py,)nen such that
pn €[0,h,]NE
for every n € N and

lim — =1.
n—oo ),

(51)

1527



ALTINOK et al./Turk J Math

It follows from (52) that
AE,pn) < AME, hy)

holds for every n € N. Hence, we have
E

n—oo pn

=0. (53)

Let ¢ > 1 and n € N. Denote by s, the point of [0, p,] for which the set (s,,pn] is a connected component
of E(q)N(0,p,]. We claim that
(Snyqsn) NE =10 (54)

holds for every n € N. Indeed, if there is a,, € E such that

an e (577,7 qsn)?

then by the definition of the g-blow up of F we obtain

(¢ an, qas) € E(q). (55)

Since
—1 P
q "Gn < q "qSp = Sn,
inclusion (55) implies
(4 an, pa] € E(q),

contrary to the definition of s, .

To prove the statement

(R+ — E(q)) e SP (56)
it suffices to show the limit relation
lim % = 0. (57)
n—00 Pp

If (57) does not hold, then there are ¢ € (0,1) and an increasing sequence (nj)ren of natural numbers such
that

lim 2% — . (58)

n=00 Pp,
Equality (54) implies that

A(E,pn) 2 (¢ —1)sn.
The last inequality and (58) give us

MNE, p, . n
limsupw > (q— 1)11msups—’“ =c(q—1).

k— o0 Pny, k—oo Pny

Since ¢ € (0,1) and ¢ > 1, it contradicts (53). Limit relation (57) follows.

Let (56) hold for every ¢ > 1. We must prove that E is lower porous at 0. Suppose that, on the contrary,
AME, h
p(E) = lim inf (E, )

h—o0

> 0.
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By Lemma 4.4 there is ¢ > 1 such that E(q) is also lower porous at 0, i.e. p(£(g)) > 0. It is clear that
E(g) = (RT = (RT - E(q)))- (59)

Since RT — E(q) € SP, Lemma 4.5 and (59) imply that E(q) is lower nonporous at 0, contrary to p(E(q)) > 0.
O

Lemma 4.7 Let E CRT be porous at 0, let py € (0,D(F)), and let

qe(l’a—;@w)'

Then the q-blow up E(q) is also porous at 0.

The proof of this lemma can be obtained by a simple modification of the proof of Lemma 4.4.

To formulate the next lemma we need a generalization of the concept of g-blow up of sets.

Let ACRT, let I' = (I'y)nen be a sequence of subsets of A, and let § = (gn)nen be a sequence of real

numbers in (1,00).

Definition 4.8 The (I, q)-blow up of A is the set

where Ty (qn) is the g -blow up of T\,

It is easy to set that for every ¢ > 1 and A C RT we have

whenever ¢, =¢q and I';, = A for every n € N.

Lemma 4.9 Let A be a lower nonporous at 0 subset of RT. Then for every sequence G = (qn)nen with

lim, oo gn =1 and ¢, € (1,00) for each n € N, there is a sequence of disjoint intervals ((an,bn))nen:
(1) limy,so0an, =0 and 0 < byy1 < ap < by, for every n € N;
(ii) The set (RT — A(T,q)) is strongly porous at 0 for T = () nen with
T, = (an,bp)NA, neN.
Proof Let (gn)nen satisfy the condition of the lemma. By Theorem 4.6, the set RT™ — A(qy) is strongly

porous at 0. Consequently there is an open interval (aj,b;) such that a; > 0, (a1,b1) N (RY — A(q1)) = 0 and

blb_% < 3. The set RT — A(ga) is also strongly porous at 0. Hence, we can find (az,bs) such that

bg—ag 1

0<ag <by < ap, (ag,bg)ﬂ(R+fA(q2)):®and b < 52"
2
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By induction on n, we can find an interval (a,,b,) such that

n — Un 1
0<a, <b, <an_1, (an,b,) N (RT — A(g,)) =0 and bTa < o

Simple estimates show that ((an,bs))nen is the desired sequence.

O

Using the last lemma we can completely describe the sets A C RT for which the union A U B is porous

at 0 for every strongly porous at 0 set B C RT.

Theorem 4.10 The following statements are equivalent for every A C Rt .

(1) The set A is lower porous at 0.

(i7) The union AU B is porous at O for every strongly porous at 0 set B C RT.

Proof (i) = (ii) Suppose that A is lower porous at 0. Let B an arbitrary strongly porous at 0 subset of

R* and let (h,)nen € UM P(B). Using Lemma 2.3 and Lemma 2.4 we, without loss of generality, may assume

that for every n € N there is s, € (0, h,) such that
(Sn,hn) CRT — B

and

. Sn
lim — =0.
n—oo n

Since A is lower porous at 0, for every n € N there is an interval (¢,,p,) such that
(tnapn) - (Oa hn) N (RJr - A)

and
Pn — tn

n

lim inf
n— oo

The inequality p, > p, — t, and (61) imply

lim inf 22 > p(A) > 0.

n=o0 fNip
Using (60) we see that p,, € (sn,hy) for all sufficient large n € N. For every n € N we write
My, := min{t,, s, }.
Then, for all sufficiently large n, we have m,, < h,, and
(M, pn) € (RT — (AU B)).

From (60)—(62) it follows that

- - - —t
O S P {liminf B0 i P }

n—oo n n— oo n

P(AUA) > limsup

n—00 hn n—00 n

(61)

(62)

> min {lim inf pn,p(A)} > min{p(A),p(A)} = p(4) > 0. (63)

n—oo Ay,

Thus, AU B is porous at 0.
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(#4) = (i) Suppose now that AU B is porous at 0 for every strongly porous at 0 set B C RT. We must
prove that A is lower porous at 0.

Suppose, towards a contradiction, that A is lower nonporous at 0. In this case there are some sequences
((an,bn))nen and G = (gn)nen that satisfy conditions (i), (i4), and (i) from Lemma 4.9. In particular we
have that the set

®R* — AT, 7))

is strongly porous at 0 with

f = (A n (an7bn))neN and lim qn = 1.
n—00

Consequently, the set
D:= AU (R" — AT, q))

is porous at 0. By Lemma 4.7 there is ¢ > 1 such that the g-blow up D(q) is also porous at 0. It is clear that

D(q) = A(q) U (RT — A(T,§))(q) 2 A(q) U ((RT — A(T, ) — {0}).
Hence, the inclusion
D(g) N (0,t) 2 A(g) U (RT — A(T',9)) N (0,1)
holds for every ¢ > 0. The last formula can be written as
D(q) N (0,1) 2 ((A(g) N (0,£)) U ((0,) — AT, @))). (64)
Since lim,, o ¢, = 1, there exists ng € N such that
gn < q (65)

for every n > ng. Write

t* = sup {x: € AN U(an,bn)}.

n=1

Since (65) holds for every n > ng, we obtain
(0,¢*) N A(g) 2 (0,¢") N A(T, ).
The last inclusion and (64) with ¢ = ¢* imply
D(q) N (0,£%) 2 ((0,°) N (A)) U ((0,¢%) = A(T,9))) = (0,¢%).

Since D(q) is porous at 0, the open interval (0,¢*) is also porous at 0. The last statement is obviously false.
O

Let us denote by LP the set of all lower porous at 0 subsets of RT. Write M (LP) for the set of all
LP-maximal ideals and define an ideal I(£LP) as

I(tPy= () 1 (66)

IeM(LP)

(see formula (33)).
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Corollary 4.11 The inclusion
I(LP) D I(SP)
holds.

Proof Let B € I(SP). We must show that B € I(LP). Using Lemma 3.3 we obtain that B € I(£P) if and
only if
BUE € LP (67)

for every E € LP. By Theorem 4.10 statement (67) holds if and only if
(i) the set (BU E)US is porous at 0 for every S € SP.

Corollary 3.4 implies that
BUSeSP

for every S € SP. Using Theorem 4.10 again we obtain (7). O
Similarly to (66) we can define the ideal

where P is the set of all porous at 0 subsets of R and M(P) is the set of all P-maximal ideals.

Corollary 4.12 The inclusion
I(LP) D I(P)
holds.
Proof Let B € I(P). As in the proof of Corollary 4.11 we see that B € I(£LP) if and only if

BUFEUSETP (68)

holds for every E € LP and every S € SP. Theorem 4.10 implies that EU S € P if £ € LP and S € SP.
Using Lemma 3.3 we obtain (68). O

The following example shows that

I(P) — I(SP) #0. (69)

Example 4.13 Let g € (0,1) and let A be the set of all elements of the sequence (¢™)nen. The set A is not
strongly porous at 0. Hence, A ¢ I(SP) hold. To see that A € I(P), it suffices to show that

AUEEP (70)

for every E € P. If 0 ¢ E — {0}, then (70) is trivial. Suppose that 0 € E — {0}.
Let ((an,bpn))nen be a sequence of open intervals such that
bpi1 < ap < by and (an,b,) CRT — E
holds for every n € N and
an

b, —
lim sup = B(E) > 0.

n— oo n

There are several cases to consider:
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(i1) there exists a subsequence ((an,,bn,))ken Of ((an,bn))nen such that
AN (an,,bn,) =10
for every k € N;

(i2) there is ((any;bn,))ken such that
card(A N (ap, by, )) =1
for every k € N;

(i3) there is ((any,bn,))ken with
card(A N (ap, , by, )) > 2

for every k € N.

If (i1) holds, then it is clear that
P(AUE)=p(FE) > 0.

Condition (iz) implies

1
MAUEb,,) > §(b —an,)
for every k € N. Hence, we have
1b,, — 1
P(AU E) > limsup = 2np — Ong ~p(E) > 0.

If we have (i3), then for every k € N there is m(k) € N such that

4O O] € (ar,.b,).
Consequently,

HAUE) > limsup L—— L~
q

k—o0

=1—-¢g>0.

Statement (70) follows.

Remark 4.14 The set E from Ezample 3.7 belongs to I(SP). It is easy to see that E ¢ I(P). Indeed, we
evidently have EU (RT — E) = R*. Moreover, since

oo
2= e g,

n=1

we have

A R+*E n n - -1 n

n—00 qTn n—00 qTn

Thus, 1(SP) — I(P) # 0.
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It seems to be interesting to find a nonempty set E C Rt such that

E e (I(LP) - I(P))

or to prove the equality

1534

I(LP) = I(P).
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