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Abstract: In this present work, we present the concept of a crossed module over generalized groups and we call it a

“generalized crossed module”. We also define a generalized group-groupoid. Furthermore, we show that the category of

generalized crossed modules is equivalent to that of generalized group-groupoids whose object sets are abelian generalized
group.
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1. Introduction

The generalized group, first defined by Molaei [13] in 1999, is an interesting generalization of groups. While there

is only one identity element in a group, each element in a generalized group has a unique identity element. With

this property, every group is a generalized group. After Molaei gave the definition of a generalized group, this

concept was studied in terms of algebraic, topological, and differentiable in large various areas of mathematics

[1, 2, 8, 12–15].

Another algebraic concept covered in the present study is the crossed module. The concept of crossed

module was defined over groups by Whitehead [19]. Afterwards, crossed modules were studied extensively in

many areas of mathematics by defining them also over other algebraic structures [3, 6, 16, 17].

We also define the concept of crossed module over generalized groups (called the generalized crossed

module). A generalized crossed module is a generalization of the crossed module over groups. We construct

the category of generalized crossed modules and their homomorphisms by giving some concrete examples about

generalized crossed modules.

The concept of groupoid was first introduced by Brandt [4] in 1926 as an algebraic notion. However, in

the category of theoretical approach, a groupoid is a small category whose every morphism is an isomorphism.

After the introduction of topological and differentiable groupoids by Ehresmann [7] in the 1950s, they have been

studied by many mathematicians with different approaches [5, 9, 10]. One of these different approaches is the

structured groupoid, which is obtained by adding another algebraic structure such that the composition of the

groupoid is compatible with the operation of the added algebraic structure [6, 8, 11, 16]. The best known of

the structured groupoids is the concept of group-groupoid. The group-groupoid, which is a group object in the

category of groupoids, was defined by Brown and Spencer [6]. They showed that the category of group-groupoids

is equivalent to that of crossed modules over groups. Then in [18] this result was generalized to the group with
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operations and internal groupoids. We note that the object groups in group-groupoids and the target groups in

crossed modules are the only groups. However, in the present study, different from the main result in [6], the

stated groups in the generalized group-groupoids and generalized crossed modules, respectively, are abelian.

In this study, we extend the concept of group-groupoid to the concept of generalized group-groupoid

by adding the structure of generalized group to a groupoid such that the composition of the groupoid and

the multiplication of the generalized group are compatible. In other words, a generalized group-groupoid is a

generalized group object in the category of groupoids. Thus, we construct the category of generalized group-

groupoids. Then, as a main result of the present study, we prove the more general case of the equivalences given

in [6] and [18].

2. Preliminaries

This section of the paper is devoted to giving fundamental definitions and concepts related to generalized

groups and groupoids. We will consider these fundamental concepts under two headings: generalized groups

and groupoids.

2.1. Generalized groups

In this subsection, some basic recalls of the concept of generalized group first defined by Molaei are given.

Definition 2.1 [13] A generalized group G is a nonempty set admitting an operation called multiplication

subject to the set of rules given below:

i) (ab)c = a(bc), for all a, b, c ∈ G

ii) For each a ∈ G , there exists a unique e(a) ∈ G such that ae(a) = e(a)a = a

iii) For each a ∈ G , there exists a−1 ∈ G such that aa−1 = a−1a = e(a) .

Let us give some results related to the structure of generalized groups via the following lemma.

Lemma 2.1 [13] Let G be a generalized group. Then

i) For each a ∈ G , there is a unique element a−1 ∈ G .

ii) For each a ∈ G , we have e(a) = e(a−1) and e(e(a)) = e(a) .

iii) For each a ∈ G , we have (a−1)−1 = a .

It is easily seen from Definition 2.1 that every group is a generalized group, but it is not true in general

that every generalized group is a group.

Let us state the relation between group and generalized group by the following lemma.

Lemma 2.2 [15] Let G be a generalized group and ab = ba for all a, b ∈ G . Then G is a group.

In other words, every abelian generalized group is a group.

Example 2.3 [15] Let G = IR × (IR \ {0}) . Then G with the multiplication (a, b) · (c, d) = (bc, bd) is a

generalized group in which for all (a, b) ∈ G , e(a, b) = (a/b, 1) and (a, b)−1 = (a/b2, 1/b) .
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Example 2.4 [8] Let G with the multiplication m be a generalized group. Then G×G with the multiplication

m1((a, b), (c, d)) = (m(a, c),m(b, d))

is a generalized group. For any element (a, b) ∈ G × G , the identity element is e1(a, b) = (e(a), e(b)) and the

inverse element is (a, b)−1 = (a−1, b−1) .

Definition 2.2 [12] If e(ab) = e(a)e(b) for all a, b ∈ G , then G is called a normal generalized group.

Definition 2.3 [12] Let G and H be two generalized groups. A generalized group homomorphism from G to

H is a map f : G→ H such that f(ab) = f(a)f(b) for all a, b ∈ G .

Definition 2.4 [12] A nonempty subset H of a generalized group G is a generalized subgroup of G if and only

if for all a, b ∈ H , ab−1 ∈ H .

Definition 2.5 A generalized subgroup N of the generalized group G is called a generalized normal subgroup

if there exist a generalized group H and a homomorphism f : G → H such that for all a ∈ G , Na = ∅ or

Na = kerfa , where Na = N ∩Ga , Ga = {g ∈ G | e(g) = e(a)} , and fa = f |Ga .

Example 2.5 [15] Let G be a generalized group of Example 2.3. Then N = {(a, b) : a = b or a = 3b} is a

generalized normal subgroup of G .

Theorem 2.6 [12] Let f : G→ H be a homomorphism of the distinct generalized groups G and H . Then

i) f(e(a)) = e(f(a)) is an identity element in H for all a ∈ G .

ii) f(a−1) = (f(a))−1

iii) If K is a generalized subgroup of G , then f(K) is a generalized subgroup of H .

Now we state a theorem without proof from [2] that will be used later in the proof of Theorem 5.2.

Theorem 2.7 Let G be a normal generalized group in which e(a)b−1 = b−1e(a) , ∀a, b ∈ G . Then (ab)−1 =

b−1a−1 , ∀a, b ∈ G .

Let us now recall the generalized action of a generalized group on a set, which is defined by Molaei.

Definition 2.6 [15] We say that a generalized group G acts on a set S if there exists a function

· : G× S → S

(g, x) 7→ g ·x,

which is called a generalized action such that

i) (g1g2)
·x = g1

·(g2
·x) , for all g1, g2 ∈ G and x ∈ S .

ii) For all x ∈ S , there exists e(g) ∈ G such that e(g) ·x = x .
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Example 2.8 [15] Let G = IR× (IR \ {0}) with the multiplication (a, b) · (c, d) = (bc, bd) . Since

f : G→ IR, (a, b) 7→ a

b

is a generalized group homomorphism, when the multiplication of IR is ab = b , the function

: G× IR→ IR

((a, b), c)) 7→
(ac
b

)
is a generalized action.

Corollary 2.9 If we take G as an abelian generalized group in Definition 2.6, then we obtain the known action

of the group G on the set S .

If we take set S in the definition of Molaei as a generalized group, we can define the generalized action of

a generalized group G on a generalized group S as follows. This definition will be used for defining the concept

of a generalized crossed module in section 4.

Definition 2.7 Let G and S be two generalized groups. Then a generalized action of the generalized group G

on the generalized group S is a function

· : G× S → S, (g, x) 7→ g ·x

such that the following conditions are satisfied.

i) (g1g2)
·x = g1

·(g2
·x) , ∀g1, g2 ∈ G and x ∈ S

ii) g ·(x1x2) = (g ·x1)(g
·x2) , ∀g ∈ G and x1, x2 ∈ S

iii) For ∀x ∈ S , there exists an element e(g) ∈ G such that e(g) ·x = x .

We can also add the following condition to these conditions. However, this condition can be easily obtained

from the other conditions.

iv) g ·e(x) = e(x) for ∀g ∈ G and x ∈ S .

Example 2.10 A generalized group G acts on itself with the product g · h = h .

Let us show that the conditions in Definition 2.7 hold.

i) We have (gh) · k = k and g · (h · k) = g · k = k for ∀g, h, k ∈ G . Hence (gh) · k = g · (h · k) . That is, the

first condition is verified.

ii) We have g · (hk) = hk and (g · h)(g · k) = hk for ∀g, h, k ∈ G . Hence, we obtain the equality g · (hk) =
(g · h)(g · k) .

iii) Since e(g) ·h = h for ∀h ∈ G , there exists element e(g) ∈ G . That is, the existence of e(g) follows directly

from the definition of the action.

iv) Since g · (e(h)) = e(h) for ∀g, h ∈ G , the fourth condition is verified.
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Proposition 2.11 The semidirect product of two generalized groups is also a generalized group.

Proof Let A and B be two generalized groups. We consider the generalized action of B on A . Namely, we

have the map

· : B ×A→ A, (b, a) 7→ b · a

satisfying the conditions in Definition 2.7. Let us now define the multiplication on the set B ⋉A as follows:

(b, a)(b1, a1) = (bb1, a(b · a1))

According to this multiplication, the identity of (b, a) ∈ B ⋉ A is e(b, a) = (e(b), e(a)), and the inverse of

(b, a) ∈ B ⋉A is (b, a)−1 =
(
b−1, (b−1 · a−1)

)
.

Indeed,

(b, a) (e(b, a)) = (b, a) (e(b), e(a))

= (be(b), a (b · e(a)))

= (b, ae(a))

= (b, a)

and

(e(b, a)) (b, a) = (e(b), e(a)) (b, a)

= (e(b)b, e(a) (e(b) · a))

= (b, e(a)a)

= (b, a).

On the other hand,

(b, a) (b, a)
−1

= (b, a)
(
b−1, b−1 · a−1

)
=

(
bb−1, a

(
b ·

(
b−1 · a−1

)))
=

(
e(b), a

((
bb−1

)
· a−1

))
=

(
e(b), a

(
e(b) · a−1

))
=

(
e(b), aa−1

)
= (e(b), e(a))

= e(b, a)
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and

(b, a)
−1

(b, a) =
(
b−1, b−1 · a−1

)
(b, a)

=
(
b−1b,

(
b−1 · a−1

) (
b−1 · a

))
=

(
e(b), b−1 · (a−1a)

)
=

(
e(b), b−1 · e(a)

)
= (e(b), e(a))

= e(b, a).

If we show that the associativity law holds, then the proof is completed.

For all (b, a), (b1, a1), (b2, a2) ∈ B ⋉A ,

((b, a)(b1, a1)) (b2, a2) = (bb1, a (b · a1)) (b2, a2)

= ((bb1)b2, a (b · a1) ((bb1) · a2))

= (bb1b2, a (b · (a1 (b1 · a2)))) (2.1)

and

(b, a) ((b1, a1)(b2, a2)) = (b, a) (b1b2, a1 (b1 · a2))

= (b(b1b2), a (b · (a1 (b1 · a2)))) (2.2)

Hence from (2.1) and (2.2), we get ((b, a)(b1, a1)) (b2, a2) = (b, a) ((b1, a1)(b2, a2)).

Thus, the semidirect product B ⋉A is a generalized group. 2

2.2. Groupoids

In this section, we introduce the elementary concepts of the groupoid theory. Then some recalls about the

concept of group-groupoid, which is a group object in the category of groupoids, are given.

Definition 2.8 [5, 9] A groupoid consists of two sets G and G0 , called the groupoid and the base, respectively,

together with two maps α and β from G to G0 , called respectively the source and the target maps, a map

ϵ : G0 → G , x 7→ ϵ(x) =
∼
x = 1x , called the object inclusion map, a map i : G→ G , x 7→ i(x) = x−1 , called the

inversion, and a partial multiplication (x, y) 7→ m(x, y) = xy in G defined on the set G2 = G ∗ G = {(x, y) |
β(x) = α(y)} . These maps verify the following conditions:

G1) (associativity): x(yz) = (xy)z for all x, y, z ∈ G such that β(x) = α(y) and β(y) = α(z) .

G2) (units): For each x ∈ G , we have (ϵ (α (x)) , x) ∈ G2 , (x, ϵ (β (x))) ∈ G2and ϵ (α (x))x = xϵ (β (x)) = x .

G3) (inverses): For each x ∈ G , we have (x, i(x)) ∈ G2 , (i(x), x) ∈ G2and xi(x) = ϵ (α (x)) , i(x)x = ϵ (β (x)) .

The maps α, β,m, ϵ, i are called structure maps of groupoids. For a groupoid G on G0 and x, y ∈ G0 ,

we will write StGx for α−1(x), CoStGy for β−1(y), and G(x, y) for StGx ∩ CoStGy . The set StGx is the

1540
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star of G at x and CoStGy is the co-star of G at y . The set G(x, x), which is obviously a group under the

restriction of the partial multiplication in G , is called the vertex group at x .

Although the following examples of groupoids are well known, they are given here since they are going

to be essential later.

Example 2.12 [5, 9] A group can be regarded as a groupoid with only one object.

Example 2.13 [5, 9] Any set G can be regarded as a groupoid on itself with α = β = idG and every element

a unity.

Example 2.14 [5] For a set X , the cartesian product X×X is a groupoid over X , called the Banal groupoid.

The maps α and β are the natural projections onto the second and first factors, respectively. The object

inclusion map is x 7→ (x, x) and the partial multiplication is given by (x, y)(y, z) = (x, z) . The inverse of (x, y)

is simply (y, x) .

Definition 2.9 [5, 9] Let G and G
′
be groupoids on B and B

′
, respectively. A homomorphism G→ G

′
is a

pair of (f, f0) of maps f : G→ G
′
, f0 : B → B

′
such that α

′ ◦f = f0 ◦α , β
′ ◦f = f0 ◦β , and f(ab) = f(a)f(b)

∀(a, b) ∈ G2 .

We denote the groupoid homomorphism (f, f0) by f for brevity.

Thus, we can construct the category Gpd of the groupoids and their homomorphisms.

Now let us recall the concept of group-groupoid, which is a group object in the category of groupoids.

Let (G,α, β,m, ϵ, i, G0) be a groupoid. We suppose that on G is defined a group structure w : G×G→ G ,

(x, y) 7→ w(x, y) = x+y . The identity element of the group is denoted by e , that is v : {λ} → G , λ 7→ v(λ) = e

(here {λ} is a singleton). The inverse of x ∈ G is denoted by
−
x , that is σ : G→ G , x 7→ σ(x) =

−
x . Moreover,

we suppose that on G0 is defined as a group structure w0 : G0 × G0 → G0 , (x, y) 7→ w(u, v) = u + v . The

identity element of the group G0 is denoted by e0 , that is v0 : {λ} → G0 , λ 7→ v0(λ) = e0 . The inverse of

u ∈ G0 is denoted by
−
u , that is σ0 : G0 → G0 , u 7→ σ0(u) =

−
u .

Definition 2.10 A group-groupoid is a groupoid (G,G0) such that the following conditions hold:

i) (G,w, v, σ) and (G0, w0, v0, σ0) are groups.

ii) The maps (w,w0) : (G×G,G0×G0) → (G,G0) , v : {λ} → G and (σ, σ0) : (G,G0) → (G,G0) are groupoid

homomorphisms.

Moreover, there exists an interchange law between the groupoid composition and the group multiplication:

w (m (b, a) ,m (d, c)) = m (w (b, d) , w (a, c)) .

We shall denote a group-groupoid by (G,α, β,m, ϵ, i,+, G0) or (G,α, β,m,+, G0) [6].

The above interchange law is generally denoted by (b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c).
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Example 2.15 [16] Let G be a group. Then the cartesian product G ×G is a group-groupoid with the object

set G .

Definition 2.11 [6, 16] Let G and H be two group-groupoids. A homomorphism f : G→ H of group-groupoids

is a homomorphism of underlying groupoids preserving group structure, that is f (m1(a, b)) = m2 (f(a), f(b)) ,

where m1 and m2 are compositions of G and H , respectively.

Thus, the group-groupoids and their homomorphisms form a category denoted by GGd .

3. Generalized group-groupoids

In this section we present the concept of generalized group-groupoid, which is a generalized group object in the

category of groupoids. Additionally, we construct the category of generalized group-groupoids.

Definition 3.1 A generalized group-groupoid is a groupoid (G,G0) such that the following conditions hold:

i) (G,w, v, σ) and (G0, w0, v0, σ0) are generalized groups.

ii) The maps (w,w0) : (G×G,G0×G0) → (G,G0) , v : {λ} → G and (σ, σ0) : (G,G0) → (G,G0) are groupoid

homomorphisms.

Furthermore, there exists an interchange law between the groupoid composition and the generalized group

operation:

w (m (b, a) ,m (d, c)) = m (w (b, d) , w (a, c)) .

We shall denote a generalized group-groupoid by (G,α, β,m, ϵ, i,+, G0) .

We use the following equality for the interchange law:

(b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c) .

Example 3.1 Let G be a generalized group. Then we constitute a generalized group-groupoid G×G with object

set G . Indeed, it is obvious that G × G is a groupoid over G from Example 2.14. On the other hand, since

G is a generalized group, G × G is also a generalized group with the operation (x, y) + (z, t) = (x + z, y + t)

defined by the operation of G . The identity element of (x, y) ∈ G×G is (e(x), e(y)) , and the inverse of (y, x)

is (−y,−x) .
Now let us show that the generalized group structure maps of G×G are groupoid homomorphisms.

For w : (G×G)× (G×G) → (G×G) ,(
(z, y) +

(
z

′
, y

′
))

◦
(
(y, x) +

(
y

′
, x

′
))

=
(
z + z

′
, y + y

′
)
◦
(
y + y

′
, x+ x

′
)

=
(
z + z

′
, x+ x

′
)

and

((z, y) ◦ (y, x)) +
((
z

′
, y

′
)
◦
(
y

′
, x

′
))

= (z + x) +
(
z

′
, x

′
)

=
(
z + z

′
, x+ x

′
)
.

Hence, the generalized group operation is a groupoid homomorphism.

1542
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Similarly, it can be shown that the unit map and the inverse map of the generalized group are groupoid

homomorphisms.

Consequently, G×G is a generalized group-groupoid.

Definition 3.2 Let G and H be two generalized group-groupoids. A homomorphism f : G→ H of generalized

group-groupoids is a homomorphism of underlying groupoids preserving the generalized group structure.

Thus, the generalized group-groupoids and their homomorphisms form a category denoted by GG−Gd .

Proposition 3.2 There is a functor from the category GG of generalized groups to the category GG−Gd of

the generalized group-groupoids.

Proof Let G be a generalized group. Then, from Example 3.1, the cartesian product G×G is a generalized

group-groupoid. If f : G1 → G2 is a homomorphism of the generalized groups, then

Γ(f) : G1 ×G1 −→ G2 ×G2

(a, b) 7−→ (f(a), f(b))

is a homomorphism of the generalized group-groupoids. Thus, Γ is a functor from the category GG to the

category GG−Gd . 2

Remark 3.3 In the last section, we prove the category of generalized group-groupoids whose object sets are

abelian generalized groups and the category of generalized crossed modules. Thus, we have to emphasize the

following at this point: the category of generalized group-groupoids whose object sets are abelian generalized

groups is a full subcategory of the category of generalized group-groupoids and we denote it by GG−Gd/Ab .

4. Generalized crossed modules

In this section, we define the concept of crossed module over the generalized group,s that is a generalized crossed

module. A generalized crossed module is a generalization of the crossed module over groups.

Definition 4.1 A generalized crossed module (M,P, δ) consists of two generalized groups M and P together

with a generalized group homomorphism δ :M → P and a generalized action of P on M , written (m, p) 7→ m·p ,
such that the following conditions are satisfied.

GCM1) δ(m · p) = pδ(m)p−1 , ∀m ∈M and ∀p ∈ P

GCM2) δ(m) · n = mnm−1 , ∀m,n ∈M .

Example 4.1 Let K be a generalized group and the set

I(K) =
{
fk | fk : K → K, fk(k

′
) = kk

′
k−1, k, k

′
∈ K

}
be generalized group of the inner automorphisms of K . Then we obtain a generalized crossed module with the

generalized group homomorphism

δ : K −→ I(K), k 7−→ δ(k) = fk
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and the generalized action

I(K)×K −→ K(
fk, k

′
)
7−→ fk · k = fk(k

′
) = kk

′
k−1

Indeed,

GCM1) δ
(
fk · k′

)
= δ

(
fk(k

′
)
)
= δ

(
kk

′
k−1

)
= δ (k) δ

(
k

′
)
δ
(
k−1

)
= fkδ

(
k

′
)
f−1
k ,

GCM2) δ (k) · k′
= fk · k′

= fk(k
′
) = kk

′
k−1 .

Example 4.2 Let G be a generalized group and N be generalized normal subgroup of G . Then we constitute

a generalized crossed module with the inclusion homomorphism δ = i : N → G, n 7→ n , and the generalized

action

G×N → N, (g, n) 7→ g · n = gng−1.

Indeed,

GCM1) δ (g · n) = δ
(
gng−1

)
= gng−1 = gδ(n)g−1 ,

GCM2) δ(n) · n′
= n · n′

= nn
′
n−1 .

Now, for this example to be more elementary, let us apply this to the generalized group G and the

generalized normal subgroup N in Example 2.3 and Example 2.5, respectively.

Example 4.3 Consider the inclusion homomorphism δ = i : N → G , (a, b) 7→ (a, b) and the generalized action

G×N → N

((a, b), (c, d)) 7→
(
da

b
, d

)
.

The generalized action is defined by gng−1 using the operations in G and N . Namely,

(a, b) · (c, d) = (a, b)(c, d)(a, b)−1

= (a, b)

[
(c, d)

(
a

b2
,
1

b

)]
= (a, b)

(
da

b2
,
d

b

)
=

(
bda

b2
,
bd

b

)
=

(
da

b
, d

)
.

Now let us control the conditions to be a generalized crossed module.
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GCM1) For (a, b) ∈ G and (c, d) ∈ N ,

δ ((a, b) · (c, d)) = δ

(
da

b
, d

)
=

(
da

b
, d

)
and

(a, b)δ(c, d)(a, b)−1 = (a, b)δ(c, d)

(
a

b2
,
1

b

)
= (a, b)(c, d)

(
a

b2
,
1

b

)
=

(
da

b
, d

)
.

Hence, it follows δ ((a, b) · (c, d)) = (a, b)δ(c, d)(a, b)−1.

GCM2) For (c, d), (m,n) ∈ N ,

δ(c, d) · (m,n) = (c, d) · (m,n) =
(nc
d
, n

)
and

(c, d)(m,n)(c, d)−1 = (c, d)(m,n)

(
c

d2
,
1

d

)
=

(nc
d
, n

)
.

Hence, it follows that δ(c, d) · (m,n) = (c, d)(m,n)(c, d)−1

Now let us define the concept of homomorphism of generalized crossed modules.

Definition 4.2 Let (C,G, δ) and (C
′
, G

′
, δ

′
) be two generalized crossed modules. A generalized crossed module

homomorphism (φ,ψ) : (C,G, δ) → (C
′
, G

′
, δ

′
) is a pair of generalized group homomorphisms φ : C → C

′
and

ψ : G→ G
′
satisfying the equalities ψδ(c) = δ

′
φ(c) and φ(g · c) = ψ(g) · φ(c) for all c ∈ C and g ∈ G .

Thus, we obtain the category GCM of the generalized crossed modules and their homomorphisms.

5. The equivalence of the categories

In this section, we show that the category of the generalized crossed modules is equivalent to that of generalized

group-groupoids whose object sets are abelian generalized groups.

Theorem 5.1 Let G be a generalized group-groupoid whose object set is an abelian generalized group. Then G

induces a generalized crossed module φ(G) .

Proof We proceed as follows to obtain a generalized crossed module φ(G) = (A,B, δ) within a generalized

group-groupoid G .

i) A = CoStGe(x), ∀x ∈ G0 , is a generalized group.

ii) The set B = G0 is a generalized group.
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iii) δ : A→ B is a generalized group homomorphism.

iv) · : B ×A→ A is a generalized action.

When we set up the above construction, we obtain a generalized crossed module within a generalized

group-groupoid. Let us examine these steps in detail now.

i) Let us show that the set A = CoStGe(x), ∀x ∈ G0 , has a structure of a generalized group. Since the

object set G0 is an abelian generalized group, it is actually a group. Thus it has a unique identity. Hence,

the identity e(x) is actually one element for all the object x ∈ G0 . Let us denote this unique identity by

e . On the other hand, the elements of A are arrows ended at e . According to these,

• Let us take α(m1) = x , α(m2) = y and α(m3) = z for all m1,m2,m3 ∈ CoStGe . Since G0 is an

abelian generalized group, we have (x+ y) + z = x+ (y + z). Hence, the equality (m1 +m2) +m3 =

m1 + (m2 +m3) follows.

• For all m ∈ A = CoStGe with α(m) = x , there exists only one arrow e(m) ∈ A with α(e(m)) = e(x)

such that
m+ e(m) = e(m) +m = m.

Moreover, since e(x) = e for all x in G0 , we have α (e(m)) = e .

• For all m ∈ A = CoStGe with α(m) = x , there exists only one arrow −m ∈ A with α(−m) = −x
such that

m+ (−m) = (−m) +m = e(m).

Thus, A = CoStGe is a generalized group.

ii) Because of the hypothesis, the set B = G0 is a generalized group.

iii) δ : A = CoStGe → B = G0 is a generalized group homomorphism. Indeed, since δ is a restriction

to A of the source map β and β is a generalized group homomorphism, δ is also a generalized group

homomorphism.

iv) Let us define a generalized action of the generalized group B = G0 on the generalized group A = CoStGe

by

· : B ×A→ A

(x,m) 7→ x ·m = 1x +m− 1x.

Now let us show that the conditions of generalized action are satisfied.

• For all x, x1 ∈ B and m ∈ A ,

(x+ x1) ·m = 1x+x1 +m− 1x+x1

= 1x + 1x1 +m− 1x − 1x1

= 1x + (x1 ·m)− 1x

= x · (x1 ·m).
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GÜRSOY et al./Turk J Math

• For all x ∈ B and m ∈ A , we have e(x) · m = m . Indeed, since e(x) = e , the source of the arrow

e ·m = 1e +m− 1e is x . That is, the arrows e ·m and m are the same.

• For all x ∈ B and m1,m2 ∈ A ,

x · (m1 +m2) = 1x + (m1 +m2)− 1x

= 1x +m1 − 1x + 1x +m2 − 1x

= x ·m1 + x ·m2.

• We have x · e = e , because the action x · e = 1x + e− 1x is the arrow e such that α(e) = e = β(e).

Thus, all conditions of the generalized action hold.

Finally, let us show that the conditions of the generalized crossed module are satisfied.

GCM1) For all x ∈ B and m ∈ A , we have

δ(x ·m) = δ(1x +m− 1x)

= δ(1x) + δ(m) + δ(−1x)

= δ(1x) + δ(m) + δ(1−x)

= x+ δ(m)− x.

GCM2) For all m,m1 ∈ A with α(m) = x and α(m1) = y , we have

δ(m) ·m1 = 1δ(m) +m1 − 1δ(m) = 1α(m) +m1 − 1α(m)

= 1x +m1 − 1x.

On the other hand, the source of the arrow m + m1 − m is also x + y − x . Hence, it follows that

δ(m) ·m1 = m+m1 −m.

Consequently, φ(G) = (CoStGe,G0, β|CoStGe) is a generalized crossed module. 2

From now on, we assume that B is an abelian generalized group and A is a normal generalized group

satisfying the equality e(a)b−1 = b−1e(a) for any a, b ∈ A . Thus, we have a new category whose objects consist

of the generalized crossed modules satisfying the above conditions. This category is a full subcategory of the

category GCM , and we denote it by GCM∗ .

Theorem 5.2 Let (A,B, δ) be a generalized crossed module. Then (A,B, δ) induces a generalized group-

groupoid.

Proof Since (A,B, δ) is a generalized crossed module, there exists a generalized action

· : B ×A→ A, (b, a) 7→ b · a

of B on A such that the following conditions hold:

GCM1) δ(b · a) = bδ(a)b−1

GCM2) δ(a) · a1 = aa1a
−1 .
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Let us now show how a generalized group-groupoid from the generalized crossed module is obtained.

Set of objects : Our object set is the generalized group B .

Set of morphisms : Our morphism set is the semidirect product B ⋉ A , which is a generalized group

from Proposition 2.11.

The source map: The source map α : B⋉A→ B is defined by α(b, a) = b . Moreover, α is a generalized

group homomorphism, because

α ((b, a)(b1, a1)) = α (bb1, a(b · a1))

= bb1

= α(b, a)α(b1, a1).

The target map : The target map β : B ⋉ A → B is defined by β(b, a) = δ(a)b . We can prove that β

is a generalized group homomorphism in the following way:

β ((b, a) (b1, a1)) = β (bb1, a (b · a1))

= δ (a (b · a1)) bb1

= δ(a)δ(b · a1)bb1

= δ(a)bδ(a1)b
−1bb1

= δ(a)bδ(a1)e(b)b1 (5.1)

and

β (b, a)β (b1, a1) = δ(a)bδ(a1)b1. (5.2)

If we remember that B is an abelian generalized group, it follows that the equalities (5.1) and (5.2) are

the same. Thus, β is also a generalized group homomorphism.

The object map : For all a ∈ A , the object map ϵa : B → B ⋉ A is defined by b 7→ ϵa(b) = (b, e(a)).

Now let us show that the object map is a generalized group homomorphism. For ∀a ∈ A and ∀b, b1 ∈ B ,

ϵa(bb1) = (bb1, e(a)) (5.3)

and

ϵa(b)ϵa(b1) = (b, e(a))(b1, e(a))

= (bb1, e(a) (b · e(a)))

= (bb1, e(a)e(a))

= (bb1, e(a)) . (5.4)

Hence from (5.3) and (5.4), it follows that β is a generalized group homomorphism.

The inverse map : We define the inverse map η : B⋉A→ B⋉A by (b, a) 7→ (b, a)−1 =
(
δ(a)b, a−1

)
. It

follows that η is a generalized group homomorphism after the following steps. For ∀a, a1 ∈ A and ∀b, b1 ∈ B ,
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η ((b, a)(b1, a1)) = η (bb1, a (b · a1))

=
(
δ (a (b · a1)) bb1, (a (b · a1))−1

)
=

(
δ(a)δ(b · a1)bb1, (a (b · a1))−1

)
=

(
δ(a)bδ(a1)b

−1bb1, (a (b · a1))−1
)

=
(
δ(a)bδ(a1)b1, (a (b · a1))−1

)
(5.5)

and

η (b, a) η (b1, a1) =
(
δ(a)b, a−1

) (
δ(a1)b1, a

−1
1

)
=

(
δ(a)bδ(a1)b1, a

−1
(
(δ(a)b) · a−1

1

))
=

(
δ(a)bδ(a1)b1, a

−1
(
δ(a) ·

(
b · a−1

1

)))
=

(
δ(a)bδ(a1)b1, a

−1a
(
b · a−1

1

)
a−1

)
=

(
δ(a)bδ(a1)b1, e(a)

(
b · a−1

1

)
a−1

)
=

(
δ(a)bδ(a1)b1,

(
b · a−1

1

)
a−1e(a)

)
=

(
δ(a)bδ(a1)b1,

(
b · a−1

1

)
a−1

)
=

(
δ(a)bδ(a1)b1, (a (b · a1))−1

)
. (5.6)

As can be seen from the above steps, in order to show that (5.5) and (5.6) are the same, we have used

that A has the property e(a1)a
−1
2 = a−1

2 e(a1) for any a1, a2 ∈ A .

The composition of groupoid : We define the composition of the groupoid by

◦ : B ⋉A×B ⋉A→ B ⋉A

((b, a), (b1, a1)) 7→ (b1, a1) ◦ (b, a) = (b, a1a),

where β(b, a) = δ(a)b = b1 = α(b1, a1) for b, b1 ∈ B and a, a1 ∈ A .

Let us show that the interchange law between the composition of the groupoid and the multiplication of

the generalized group is verified. Namely, we must show that the equality

[(b1, a1) ◦ (b, a)] [(b3, a3) ◦ (b2, a2)] = [(b1, a1) (b3, a3)] ◦ [(b, a) (b2, a2)] (5.7)

holds.

Firstly, consider the following part, which is the left-hand side of the equality (5.7):

[(b1, a1) ◦ (b, a)] [(b3, a3) ◦ (b2, a2)] (5.8)

The statement 5.8 is defined under the cases

β(b, a) = δ(a)b = b1 = α(b1, a1) (5.9)
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and
β(b2, a2) = δ(a2)b2 = b3 = α(b3, a3). (5.10)

Then we have

[(b1, a1) ◦ (b, a)] [(b3, a3) ◦ (b2, a2)] = (b, a1a) (b2, a3a2)

= (bb2, a1a (b · (a3a2)))

= (bb2, a1a (b · a3) (b · a2)) ...(∗)

On the other hand, we have

[(b1, a1) (b3, a3)] ◦ [(b, a) (b2, a2)] = (bb2, a (b · a2)) ◦ (b1b3, a1 (b1 · a3))

= (bb2, a1 (b1 · a3) a (b · a2)) ...(∗∗)

In order for (∗) and (∗∗) to be equal, we must satisfy the following equality

a1a (b · a3) (b · a2) = a1 (b1 · a3) a (b · a2) . (5.11)

Equality (5.11) follows directly from b1 = δ(a)b and the property e(a)b−1 = b−1e(a), a, b ∈ A for the

normal generalized group A . 2

Finally, using the Theorems 5.1 and 5.2, let us state the following theorem, which is the main result of

this paper.

Theorem 5.3 The categories GG−Gd/Ab and GCM∗ are equivalent.

Proof Let M = (A,B, δ) and M
′
= (A

′
, B

′
, δ

′
) be two generalized crossed modules, and (f1, f2) : (A,B, δ) →

(A
′
, B

′
, δ

′
) be a generalized crossed module homomorphism. Then, according to Theorem 5.1, there exists a

functor θ : GCM∗ → GG−Gd/Ab defined by θ(f1, f2) = (f2×f1, f2) on morphisms and by θ(M) = (B,B⋉A)
on objects.

Conversely, let G = (G0, G1) and H = (H0,H1) be two generalized group-groupoids, and f = (f0, f1) :

G → H be a generalized group-groupoid homomorphism. Then, according to Theorem 5.2, there exists a functor
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Γ : GG−Gd/Ab → GCM∗ defined by Γ(f0, f1) = (f1|Kerα, f0) on morphisms and by Γ(G) = (Kerα,G0, β|Kerα)

on objects.

It is obvious that θΓ ≃ 1GG−Gd/Ab
and Γθ ≃ 1GCM∗ . 2
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