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Abstract: We find the universal central extension of the matrix superalgebras sl(m,n,A) , where A is an associative

superalgebra and m+n = 3, 4, and its relation with the Steinberg superalgebra st(m,n,A) . We calculate H2

(
sl(m,n,A)

)
and H2

(
st(m,n,A)

)
. Finally, we introduce a new method using the nonabelian tensor product of Lie superalgebras to

find the connection between H2

(
sl(m,n,A)

)
and the cyclic homology of associative superalgebras for m+ n ≥ 3.
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1. Introduction

The study of central extensions plays an important role in the theory of groups or Lie algebras and has numerous

applications going through physics, representation theory, or homological algebra. They have been studied by

many people in the context of Lie algebras as [8, 15], etc. The universal central extension is a key object in

this study, since it simplifies the task of finding all central extensions and, moreover, its kernel is the second

homology group. In [4] the universal central extension of Lie algebras is constructed as a nonabelian tensor

product, extended to Lie superalgebras in [7]; and in [9, 13] some of the results of [8] are extended to Lie

superalgebras and the universal central extension is constructed. The main problem of these constructions is

that they are usually hard to compute.

The concrete problem of finding the universal central extension of sln(A) for n ≥ 5 was solved in [11].

It is a very important result that involves Steinberg Lie algebras (see [2, 5]) and allowed the development of the

additive K -theory. If n ≥ 5, stn(A) is the universal central extension of sln(A) and if A is K -free, the kernel

is isomorphic to the first cyclic homology HC1(A). The problem of finding the universal central extension of

sln(A) and stn(A) for n = 3, 4 was solved years later in [6]. In [12] the universal central extension of the Lie

superalgebras sl(m,n,A) and st(m,n,A) is computed with m+n ≥ 5, where A is an associative algebra, and

the remaining cases where m+ n = 3, 4 are solved in [14].

If A is an associative superalgebra, the universal central extension of sln(A) is computed in [3] for all

n ≥ 3. The case sl(m,n,A) is studied in [7] for m+n ≥ 5, leaving as an open problem the cases m+n = 3, 4.

In this paper, we will solve these specific cases in order to complete the computation of the universal central

extension of sl(m,n,A) where A is an associative superalgebra and m+n ≥ 3, and therefore giving a complete

characterization of the second homology H2

(
st(m,n,A)

)
for m+n ≥ 3 (Theorem 8.1). Moreover, we introduce
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a new technique using the nonabelian tensor product of Lie superalgebras defined in [7] to relate H2

(
st(m,n,A)

)
and the cyclic homology of associative superalgebras for m+ n ≥ 3 (Theorem 8.2).

The organization of this paper is as follows. In Section 2 we give some preliminary well-known results and

some technical lemmas about sl(m,n,A) and st(m,n,A). In Section 3 we adapt the classical construction of a

central extension from a super 2-cocycle in Lie superalgebras. In Section 4 we start with the case of sl(2, 1, A)

and we show that its universal central extension is st(2, 1, A), constructing a (unique) homomorphism to any

central extension. In Section 5 we find the universal central extension of st(3, 1, A) (which consequently will be

the universal central extension of sl(3, 1, A)) via the construction of a super 2-cocycle, repeating the procedure

for st(2, 2, A) in Section 6. In Section 7 we relate the second homology of sl(m,n,A) with cyclic homology.

Finally, in Section 8 we give concluding remarks establishing a combination of the results presented here with

results of [3, 7] to give the full computation of H2

(
st(m,n,A)

)
and H2

(
sl(m,n,A)

)
for m+ n ≥ 3.

2. The Lie superalgebras sl(m,n,A) and st(m,n,A)

Throughout this paper we consider K as a unital commutative ring and A = A0̄⊕A1̄ an associative unital K -

superalgebra. For any m,n ∈ Z+ , let {1, . . . ,m}∪{m+1, . . . ,m+n} be the Z2 -graded set, where the first set

is the even part and the second one the odd part. We now consider Mat(m,n,A) the (m+n)×(m+n) matrices

with coefficients in A . It is defined a Z2 -graduation where homogeneous elements are matrices, denoted by

Eij(a), having a ∈ A0̄, A1̄ at position (i, j) and zero elsewhere and |Eij(a)| = |i|+|j|+|a| . With this graduation

we define the associative superalgebra gl(m,n,A) whose underlying set is Mat(m,n,A) with the usual matrix

product and it is endowed by a Lie superalgebra structure with the usual bracket [x, y] = xy − (−1)|x||y|yx .

Assuming that m+ n ≥ 3, we define the special Lie superalgebra

sl(m,n,A) = [gl(m,n,A), gl(m,n,A)].

It is generated by the elements Eij , 1 ≤ i ̸= j ≤ m+ n , a ∈ A , with bracket

[Eij(a), Ekl(b)] = δjkEil(ab)− (−1)|Eij(a)||Ekl(b)|δliEkj(ba).

In [1] is introduced a generalization of the supertrace for x ∈ gl(m,n,A), defined as follows:

Str1(x) =

m+n∑
i=1

(−1)|i|(|i|+|xii|)xii,

where xii represents the element of x in the position (i, i). It is straightforward that sl(m,n,A) = {x ∈
gl(m,n,A) : Str1(x) ∈ [A,A]} and that sl(m,n,A) is perfect.

For m + n ≥ 3, the Steinberg Lie superalgebra st(m,n,A) is defined as the Lie superalgebra over K

generated by homogeneous Fij(a), 1 ≤ i ̸= j ≤ m + n , and a ∈ A homogeneous, with grading |Fij(a)| =
|i|+ |j|+ |a| , satisfying the following relations:

a 7→ Fij(a) is a K-linear map, (1)

[Fij(a), Fjk(b)] = Fik(ab), for distinct i, j, k, (2)

[Fij(a), Fkl(b)] = 0, for j ̸= k, i ̸= l, (3)
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where a, b ∈ A , 1 ≤ i, j, k, l ≤ m + n . Note that st(m,n,A) is a perfect Lie algebra and there is a canonical

central extension

φ : st(m,n,A) → sl(m,n,A), φ
(
Fij(a)

)
7→ Eij(a).

Using a completely new technique, in [7] it is shown that if m+n ≥ 5, this epimorphism is the universal

central extension of sl(m,n,A). The remaining cases, when m+ n = 3 or 4, are left as an open problem and

they are the object of study of this paper. Our procedure to solve the problem is to find the universal central

extension of st(m,n,A) and by [13, Corollary 1.9] it will be the universal central extension of sl(m,n,A).

We begin giving some relations in st(m,n,A) that will be useful. Let

Hij(a, b) = [Fij(a), Fji(b)],

h(a, b) = H1j(a, b)− (−1)|a||b|H1j(1, ba),

for 1 ≤ i ̸= j ≤ m+ n, a ∈ A . It is well defined since h(a, b) does not depend on j , for j ̸= 1. We recall that

|Hij(a, b)| = |a|+ |b| for homogeneous a, b ∈ A .

Lemma 2.1 We have the following identities in st(m,n,A) ,

Hij(a, b) = −(−1)(|i|+|j|+|a|)(|i|+|j|+|b|)Hji(b, a), (4)

[Hij(a, b), Fik(c)] = Fik(abc), (5)

[Hij(a, b), Fki(c)] = −(−1)(|a|+|b|)(|i|+|k|+|c|)Fki(cab), (6)

[Hij(a, b), Fkj(c)] = (−1)(|i|+|j|+|a|)(|i|+|j|+|b|)+(|a|+|b|)(|j|+|k|+|c|)Fkj(cba) (7)

[Hij(a, b), Fij(c)] = Fij

(
abc+ (−1)(|i|+|j|+|a||b|+|b||c|+|c||a|)cba

)
, (8)

[Hij(a, b), Fkl(c)] = 0, (9)

[h(a, b), F1i(c)] = F1i

(
(ab− (−1)|a||b|ba)c

)
, (10)

[h(a, b), Fjk(c)] = 0 for j, k ≥ 2. (11)

for homogeneous a, b, c ∈ A and i, j, k, l distinct.

Proof Relations (4)–(9) are just consequences of antisymmetry and Jacobi identities. To check (10) and (11)

we need to apply (5) and (9) to the definition of h(a, b). 2

The following lemma gives a better understanding of the structure of st(m,n,A).

Lemma 2.2 Let Fij(A) be the subalgebra generated by Fij(a) , N+ the subalgebra generated by Fij(a) for

1 ≤ i < j ≤ m + n , N− the subalgebra generated by Fij(a) for 1 ≤ j < i ≤ m + n , and H the subalgebra

generated by Hij(a, b) , for all a, b ∈ A . Then

N+ =
⊕

1≤i<j≤m+n

Fij(A),

N− =
⊕

1≤j<i≤m+n

Fij(A),

H = h(A,A)⊕
(m+n⊕

j=2

H1j(1, A)

)
,
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and we have the decomposition

st(m,n,A) = N+ ⊕H⊕N− = h(A,A)⊕
(m+n⊕

j=2

H1j(1, A)

) ⊕
1≤i̸=j≤m+n

Fij(A).

Definition 2.3 Let Im be the graded ideal of A generated by the elements ma (i.e. a+ · · ·+a , m times) and

ab− (−1)|a||b|ba . Let Am = A/ Im be the quotient algebra and denote by ā = a+ Im its elements.

Lemma 2.4 ([3]) Im = mA+A[A,A] and [A,A]A = A[A,A] .

3. Central extensions of sl(m,n,A) and cocycles

Definition 3.1 Let L be a Lie superalgebra and W be a K -free supermodule. A super 2-cocycle is a K -bilinear

map ψ : L× L→ W such that

ψ(x, y) = −(−1)|x||y|ψ(y, x),

(−1)|x||z|ψ([x, y], z) + (−1)|x||y|ψ([y, z], x) + (−1)|y||z|ψ([z, x], y) = 0,

ψ(x0̄, x0̄) = 0,

for all x, y, z ∈ L , x0̄ ∈ L0̄ .

Given an even super 2-cocycle ψ , we can construct a central extension ([13]) L ⊕W → L , (x,w) 7→ x ,

where the bracket is given by [(x,w1), (y, w2)] =
(
[x, y], ψ(x, y)

)
(see [13]). In the particular case of L =

st(m,n,A) and the super 2-cocycle being surjective, this construction can be described in a different way using

generators and relations.

Definition 3.2 Let ψ : st(m,n,A) × st(m,n,A) → W be an even super 2-cocycle, i.e. a super 2-cocycle such

that |ψ(x, y)| = |x|+ |y| for homogeneous x, y ∈ st(m,n,A) . Let st(m,n,A)♯ be the Lie superalgebra generated

by the elements Fij(a)
♯ with homogeneous a ∈ A , 1 ≤ i ̸= j ≤ m+ n , with degree |F ♯

ij(a)| = |i|+ |j|+ |a| and
by the elements of W , with the relations

a 7→ F ♯
ij(a) is a K-linear map,

[W,W] = [F ♯
ij(a),W] = 0,

[F ♯
ij(a), F

♯
jk(b)] = F ♯

ik(ab) + ψ
(
Fij(a), Fjk(b)

)
for distinct i, j, k,

[F ♯
ij(a), F

♯
kl(b)] = ψ

(
Fij(a), Fkl(b)

)
for i ̸= j ̸= k ̸= l ̸= i,

where a, b ∈ A .

Lemma 3.3 If st(m,n,A)′ = st(m,n,A) ⊕ W is a central extension constructed from a surjective super 2-

cocycle ψ : st(m,n,A) × st(m,n,A) → W then there is an isomorphism ρ : st(m,n,A)♯ → st(m,n,A)′ where

ρ
(
F ♯
ij(a)

)
= Fij and ρ(w) = w .
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Proof The proof of [3, Lemma 1] can be easily adapted. 2

As before, we denote H♯
ij(a, b) = [F ♯

ij(a), F
♯
ji(b)] and h

♯(a, b) = H♯
1j(a, b)−(−1)|a||b|H♯

1j(1, ba). Therefore,

h♯ is independent of j and we have the analogue decomposition lemma.

Lemma 3.4 We can decompose the Lie superalgebra st(m,n,A)♯ generated by a surjective super 2-cocycle

ψ : st(m,n,A)× st(m,n,A) → W in the following way:

st(m,n,A)♯ = W ⊕ h♯(A,A)⊕
(m+n⊕

j=2

H♯
1j(1, A)

) ⊕
1≤i ̸=j≤m+n

F ♯
ij(A).

4. Universal central extension of st(2, 1, A)

In this section we study the case when m+ n = 3 and prove that st(2, 1, A) is the universal central extension

of sl(2, 1, A).

Theorem 4.1 If τ : s̃t(2, 1, A) → st(2, 1, A) is a central extension, then there exists a unique section η : st(2, 1, A) →

s̃t(2, 1, A) .

Proof We will directly obtain a Lie superalgebra homomorphism η : st(2, 1, A) → s̃t(2, 1, A), such that

τ ◦ η = id and since st(2, 1, A) is perfect it must be unique. Let

0 // V // s̃t(2, 1, A)
τ // st(2, 1, A) // 0

be a central extension. We choose a preimage for Fij(a) denoted by F̃ij(a) and extend it by K -linearity to all

a ∈ A .

We define H̃ij(a, b) = [F̃ij(a), F̃ji(b)] , since it is independent of the choice of F̃ij(a). By identity (4) we

know that [H̃ik(1, 1), F̃ij(a)] = F̃ij(a)+vij(a), where vij(a) ∈ V and so we will replace F̃ij(a) by F̃ij(a)+vij(a).

It suffices to show that these F̃ij(a) satisfy relations (1)–(3) because our K -linear section η : st(2, 1, A) →

s̃t(2, 1, A), Fij(a) 7→ F̃ij(a) will be a Lie superalgebra homomorphism and the result is proved. The first relation

is immediate by definition.

To see the second one, we use Jacobi identity and the fact that V is in the centre of s̃t(2, 1, A).

F̃ij(ab) = [H̃ik(1, 1), F̃ij(ab)] =
[
H̃ik(1, 1), [F̃ik(a), F̃kj(b)]

]
=

[
[H̃ik(1, 1), F̃ik(a)], F̃kj(b)

]
+
[
F̃ik(a), [H̃ik(1, 1), F̃kj(b)]

]
= [F̃ik(a+ (−1)|i|+|k|a), F̃kj(b)] + [F̃ik(a),−(−1)(|i|+|k|)(|i|+|k|)F̃kj(b)]

= [F̃ik(a), F̃kj(b)].

Now we check that the remaining brackets vanish.

[F̃ij(a), F̃ij(b)] =
[
F̃ij(a), [F̃ik(b), F̃kj(1)]

]
=

[
[F̃ij(a), F̃ik(b)], F̃kj(1)

]
+ (−1)(|i|+|j|+|a|)(|i|+|k|+|b|)[F̃ik(b), [F̃ij(a), F̃kj(1)]

]
= 0.
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To see that [F̃ij(a), F̃ik(b)] = 0 we can assume |i|+ |j| = 1̄; then

0 = (−1)1̄+|a|[H̃ij(1, 1), [F̃ij(a), F̃ik(b)]
]

= (−1)1̄+|a|[[H̃ij(1, 1), F̃ij(a)], F̃ik(b)
]

+ (−1)(1̄+|a|)+(|i|+|j|)(|i|+|j|+|a|)[F̃ij(a), [H̃ij(1, 1), F̃ik(b)]
]

= (−1)1̄+|a|[F̃ij(a+ (−1)1̄a), F̃ik(b)] + [F̃ij(a), F̃ik(b)] = [F̃ij(a), F̃ik(b)].

If |i| + |j| = 0̄, we have that |i| + |k| = 1̄ and the calculation is the same. Therefore, [F̃ij(a), F̃kl(b)] = 0 if

j ̸= k and i ̸= l , satisfying relation (3) and completing the proof. 2

Corollary 4.2 The universal central extension of sl(2, 1, A) and st(2, 1, A) is st(2, 1, A) . Moreover,

H2

(
st(2, 1, A)) = 0 .

5. Universal central extension of st(3, 1, A)

In this section we find the universal central extension of sl(3, 1, A). Let S4 be the symmetric group of degree

4, i.e. the set of all quadruples (i, j, k, l) where 1 ≤ i, j, k, l ≤ 4 distinct. We quotient S4 by Klein’s subgroup,

formed by {(1, 2, 3, 4), (3, 2, 1, 4), (1, 4, 3, 2), (3, 4, 1, 2)} , obtaining 6 cosets denoted by Pm . We have a map θ

that sends (i, j, k, l) 7→ θ
(
(i, j, k, l)

)
= m when (i, j, k, l) ∈ Pm .

Let Π(A2) be the K -supermodule A2 (see Definition 2.3) with the parity changed, i.e.
(
Π(A2)

)
0̄
= (A2)1̄

and
(
Π(A2)

)
1̄
= (A2)0̄ . Let W = Π(A2)

6 be the K -supermodule formed by the direct sum of six copies of

Π(A2) and consider the maps ϵm : Π(A2) → W , ϵm(ā) 7→ (0, . . . , ā, . . . , 0), in the position m .

Using the decomposition of Lemma 2.2 we consider the K -bilinear map

ψ : st(3, 1, A)× st(3, 1, A) → W,

where

ψ
(
Fij(a), Fkl(b)

)
= ϵ

θ
(
(i,j,k,l)

)(ab),
ψ(x, y) = 0 if x or y belongs to H.

Lemma 5.1 The K -bilinear map ψ is a super 2-cocycle.

Proof Since the grading in W is changed and exactly one index is odd, we have that

|ψ
(
Fij(a), Fkl(b)

)
| = |i|+ |j|+ |a|+ |k|+ |l|+ |b| = |a|+ |b|+ 1̄ = |ϵ

θ
(
(i,j,k,l)

)(ab)|,
for homogeneous a, b ∈ A and so ψ is even.

To complete the proof we can just follow the steps of [6, Lemma 2.2] since ā = −ā and signs do not play

any important role. 2
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By the previous lemma, we have a central extension

0 // W // st(3, 1, A)♯
π // st(3, 1, A) // 0,

where st(3, 1, A)♯ = st(3, 1, A) ⊕ W is the Lie superalgebra constructed by the surjective super 2-cocycle ψ ,

defined by the following relations

a 7→ F ♯
ij(a) is a K-linear map, (12)

[W,W] = [F ♯
ij(a),W] = 0, (13)

[F ♯
ij(a), F

♯
jk(b)] = F ♯

ik(ab) for distinct i, j, k, (14)

[F ♯
ij(a), F

♯
ij(a)] = 0, (15)

[F ♯
ij(a), F

♯
ik(b)] = 0, (16)

[F ♯
ij(a), F

♯
kl(b)] = ϵ

θ
(
(i,j,k,l)

)(ab) for distinct i, j, k, l. (17)

Theorem 5.2 The central extension 0 → W → st(3, 1, A)♯ → st(3, 1, A) is universal.

Proof Let

0 // V // s̃t(3, 1, A)
τ // st(3, 1, A) // 0

be a central extension. We need to show that there exists a Lie superalgebra homomorphism ρ : st(3, 1, A)♯ →

s̃t(3, 1, A) such that τ ◦ ρ = π .

We choose a preimage F̃ij(a) of Fij(a) K -linearly for all a ∈ A . Since V ⊂ Z(s̃t(3, 1, A)), we have that

[F̃ik(a), F̃kj(b)] = F̃ij(ab) + vijk(a, b),

for distinct i, j, k , where vijk(a, b) ∈ V . Using Jacobi identity we have

[F̃ik(a), F̃kj(cb)] =
[
F̃ik(a), [F̃kl(c), F̃lj(b)]

]
=

[
[F̃ik(a), F̃kl(c)], F̃lj(b)

]
+ (−1)(|i|+|k|+|a|)(|k|+|l|+|c|)[F̃kl(c), [F̃ik(a), F̃lj(b)]

]
= [F̃il(ac), F̃lj(b)],

and so choosing c = 1 we have the identities vijk(a, b) = vijl(a, b) and [F̃ik(a), F̃kj(b)] = [F̃il(a), F̃lj(b)] . This

means that vijk(a, b) is independent of the choice of k and so we have

[F̃ik(a), F̃kj(b)] = F̃ij(ab) + vij(a, b),

and

[F̃ik(1), F̃kj(b)] = F̃ij(b) + vij(1, b).

Therefore, we can replace F̃ij(b) by F̃ij(b) + vij(1, b). We want to define ρ
(
F ♯
ij(a)

)
= F̃ij(a) and so will

see that these elements satisfy relations (12)–(17).
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Relations (12), (13), and (14) are straightforward by definition. To see relation (15), we choose i, j, k

distinct

[F̃ij(a), F̃ij(b)] =
[
F̃ij(a), [F̃ik(b), F̃kj(1)]

]
=

[
[F̃ij(a), F̃ik(b)], F̃kj(1)

]
+ (−1)(|i|+|j|+|a|)(|i|+|k|+|b|)[F̃ik(b), [F̃ij(a), F̃kj(1)]

]
= 0.

For relation (16), taking i, j, k, l distinct, we have

[F̃ij(a), F̃ik(b)] =
[
F̃ij(a), [F̃il(b), F̃ik(1)]

]
=

[
[F̃ij(a), F̃il(b)], F̃ik(1)

]
+ (−1)(|i|+|j|+|a|)(|i|+|l|+|b|)[F̃il(b), [F̃ij(a), F̃ik(1)]

]
= 0.

To check relation (17) we define H̃ij(a, b) = [F̃ij(a), F̃ji(b)] and following the steps of Lemma 2.1 we can

check that for distinct i, j, k, l ,

H̃ij(a, b) = −(−1)(|i|+|j|+|a|)(|i|+|j|+|b|)H̃ji(b, a),

[H̃ij(a, b), F̃ik(c)] = F̃ik(abc),

[H̃ij(a, b), F̃ki(c)] = −(−1)(|a|+|b|)(|i|+|k|+|c|)F̃ki(cab),

[H̃ij(a, b), F̃kj(c)] = (−1)(|i|+|j|+|a|)(|i|+|j|+|b|)+(|a|+|b|)(|j|+|k|+|c|)F̃kj(cba),

[H̃ij(a, b), F̃ij(c)] = F̃ij(abc+ (−1)(|i|+|j|+|a||b|+|b||c|+|c||a|)cba),

[H̃ij(a, b), F̃kl(c)] = 0.

When i, j, k, l are distinct we denote

[F̃ij(a), F̃kl(1)] = vijkl(a),

where vijkl(a) ∈ V . We want that ρ(ϵ
θ
(
(i,j,k,l)

)(ab)) = vijkl(ab), since

[F̃ij(a), F̃kl(b)] = [ρ
(
F ♯
ij(a)

)
, ρ
(
F ♯
kl(b)

)
]

= ρ
(
[F ♯

ij(a), F
♯
kl(b)]) = ρ(ϵ

θ
(
(i,j,k,l)

)(ab)) = vijkl(ab).

Thus, we have to check that

(R1) 2vijkl(a) = 0,

(R2) vijkl(a) = vkjil(a) = vilkj(a) = vklij(a),
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(R3) vijkl(a[b, c]) = 0,

(R4) [F̃ij(a), F̃kl(b)] = vijkl(ab).

Assume |i|+ |j| = 0̄,

0 =
[
H̃ij(a, b), [F̃ij(c), F̃kl(1)]

]
=

[
[H̃ij(a, b), F̃ij(c)], F̃kl(1)

]
−
[
F̃ij(a), [H̃ij(1, 1), F̃kl(1)]

]
= [F̃ij(abc+ (−1)|i|+|j|+|a||b|+|b||c|+|c||a|cba), F̃kl(1)]

= vijkl(abc+ (−1)|a||b|+|b||c|+|c||a|cba).

If b = c = 1, we have that

vijkl(2a) = 2vijkl(a) = 0,

proving (R1).

If c = 1, we have that

vijkl(ab− (−1)|a||b|ba) = 0,

and so

0 = vijkl(abc+ (−1)|a||b|+|b||c|+|c||a|cba) = vijkl
(
(ab+ (−1)|a||b|ba)c

)
,

implying (R2). If |k|+ |l| = 0̄, the calculation is the same.

On the other hand,

[F̃ij(a), F̃kl(b)] =
[
[F̃ik(a), F̃kj(1)], F̃kl(b)

]
=

[
F̃ik(a), [F̃kj(1), F̃kl(b)]

]
− (−1)(|i|+|k|+|a|)(|k|+|j|)[F̃kj(1), [F̃ik(a), F̃kl(b)]

]
= (−1)(|l|+|k|+|b|)(|k|+|j|)[F̃il(ab), F̃kj(1)]

= vilkj(ab),

since the sign does not play any role. Choosing b = 1 and using (R1), we have that

vijkl(a) = vilkj(a).

Doing the same but changing the indexes we have relations (R3) and (R4).

Thus, the morphism ρ : st(3, 1, A)♯ → s̃t(3, 1, A) defined by

ρ
(
F ♯
ij(a)

)
= F̃ij(a) and ρ(ϵ

θ
(
(i,j,k,l)

)(ab)) = vijkl(ab)

is actually a Lie superalgebra homomorphism completing the proof. 2

Corollary 5.3 The universal central extension of sl(3, 1, A) is st(3, 1, A)♯ ∼= sl(3, 1, A) ⊕ Π(A2)
6 . Moreover,

H2

(
st(3, 1, A)

) ∼= W ∼= Π(A2)
6 .
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6. Universal central extension of st(2, 2, A)

In this section we find the universal central extension of st(2, 2, A). As in the previous section we consider the

partition of S4 but with a small difference. Not all the cosets will be considered as equals. The coset formed by

{(1, 3, 2, 4), (1, 4, 2, 3), (2, 3, 1, 4), (2, 4, 1, 3)},

is named P5 and the one formed by

{(3, 1, 4, 2), (3, 2, 4, 1), (4, 1, 3, 2), (4, 2, 3, 1)},

is named P6 . The order of the other cosets P1, . . . , P4 , will not be relevant. Note that all the elements of P5

and P6 have the property that |i| = |k|, |j| = |l| and |i|+ |j| = |k|+ |l| = 1̄.

Let σ : S4 → {−1, 1} be a map defined by

σ
(
(i, j, k, l)

)
= 1 if (i, j, k, l) ∈ P1, P2, P3 or P4,

in P5 ,

σ
(
(i, j, k, l)

)
= 1 if (i, j, k, l) = (1, 3, 2, 4) or (2, 4, 1, 3),

σ
(
(i, j, k, l)

)
= −1 if (i, j, k, l) = (1, 4, 2, 3) or (2, 3, 1, 4),

and in P6 ,

σ
(
(i, j, k, l)

)
= 1 if (i, j, k, l) = (3, 1, 4, 2) or (4, 2, 3, 1),

σ
(
(i, j, k, l)

)
= −1 if (i, j, k, l) = (3, 2, 4, 1) or (4, 1, 3, 2).

Furthermore, let W = A4
2 ⊕ A2

0 be K -supermodule formed by the direct sum of four copies of A2 and

two copies of A0 and the maps ϵm(ā) = (0, . . . , ā, . . . , 0) in position m .

Using the decomposition of Lemma 2.2 we consider the K -bilinear map

ψ : st(2, 2, A)× st(2, 2, A) → W,

where

ψ
(
Fij(a), Fkl(b)

)
= ϵ

θ
(
(i,j,k,l)

)(ab), if (i, j, k, l) ∈ P1, P2, P3, P4

ψ
(
Fij(a), Fkl(b)

)
= (−1)|b|σ

(
(i, j, k, l)

)
ϵ
θ
(
(i,j,k,l)

)(ab), if (i, j, k, l) ∈ P5 or P6,

ψ(x, y) = 0 if x or y belongs to H.

Lemma 6.1 The K -bilinear map ψ is a super 2-cocycle.

Proof The map is even since |i|+ |j|+ |k|+ |l| = 0̄. To check antisymmetry, it suffices to see what happens

when (i, j, k, l) ∈ P5 or P6 since in the other cases the signs do not make any difference since A2 and A0 are

commutative. Let (i, j, k, l) ∈ P5 , and we know that |i|+ |j| = |k|+ |l| = 1̄,
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−(−1)|Fij(a)||Fkl(b)|ψ
(
Fkl(b), Fij(a)

)
= −(−1)(|i|+|j|+|a|)(|k|+|l|+|b|)ψ

(
Fkl(b), Fij(a)

)
= −(−1)(1̄+|a|)(1̄+|b|)(−1)|a|σ

(
(k, l, i, j)

)
ϵ5(ba)

= (−1)|b|+|a||b|σ
(
(k, l, i, j)

)
ϵ5((−1)|a||b|ab)

= (−1)|b|σ
(
(i, j, k, l)

)
ϵ
θ
(
(i,j,k,l)

)(ab)
= ψ

(
Fij(a), Fkl(b)

)
,

since σ
(
(i, j, k, l)

)
= σ

(
(k, l, i, j)

)
and ab = (−1)|a||b|ba . If (i, j, k, l) belongs to P6 it is analogue.

The identity ψ(x0̄, x0̄) = 0 where x0̄ ∈
(
st(2, 2, A)

)
0̄
is straightforward by definition. The last step is to

check Jacobi identity. In order to ease notation, we denote by J(x, y, z) the expression

(−1)|x||z|ψ([x, y], z) + (−1)|x||y|ψ([y, z], x) + (−1)|y||z|ψ([z, x], y).

We have to check that J(x, y, z) = 0 for all x, y, z ∈ st(2, 2, A).

Let ψ([x, y], z) ̸= 0. Using the decomposition of Lemma 2.2 we see that at most one of x, y belongs to

H . We can assume that x ∈ H . To exclude trivial cases we need that y = Fij(a) and z = Fkl(b), where i, j, k, l

are distinct. If (i, j, k, l) ∈ P1, . . . , P4 , the signs do not make any difference and so the proof is the same as in

[6, Lemma 2.2]. Therefore, we just need to check when (i, j, k, l) = (1, 3, 2, 4) ∈ P5 since the other cases are

similar.

If x = h(c, d), then

J(x, y, z) = (−1)(|c|+|d|)(|b|+1̄)ψ
(
[h(c, d), F13(a)], F24(b)

)
+ (−1)(|a|+1̄)(|b|+1̄)ψ

(
[F24, h(c, d)], F13(b)

)
= (−1)(|c|+|d|)(|b|+1̄)ψ

(
F13

(
(ab− (−1)|a||b|ba)c

)
, F24(b)

)
+ 0

= (−1)(|c|+|d|)(|b|+1̄)+|b|σ
(
(1, 3, 2, 4)

)
ϵ5
(
(ab− (−1)|a||b|ba)cb

)
= 0.
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If x = H12(1, c), then

J(x, y, z) = (−1)|c|(|a|+1̄)ψ
(
[H12(1, c), F13(a)], F24(b)

)
+ (−1)(|a|+1̄)(|b|+1̄)ψ

(
[F24(b),H12(1, c)], F13(a)

)
= (−1)|c|(|a|+1̄)ψ

(
F13(ca), F24(b)

)
+ (−1)(|a|+1̄)(|b|+1̄)+|c|(|b|+1̄)ψ

(
F24(cb), F13(a)

)
= (−1)|c|(|b|+1̄)+|a|σ

(
(1, 3, 2, 4)

)
ϵ5(cab)

+ (−1)(|a|+|c|+1̄)(|b|+1̄)+|b|σ
(
(2, 4, 1, 3)

)
ϵ5(cba)

= (−1)|c|(|b|+1̄)
(
(−1)|a|ϵ5(cab) + (−1)(|a|+1̄)(|b|+1̄)+|b|ϵ5(cba)

)
= (−1)|c|(|b|+1̄)+|a|(ϵ5(cab− (−1)|a||b|cba)

)
= 0.

If x = H13(1, c), then

J(x, y, z) = (−1)|c|(|a|+1̄)ψ
(
[H13(1, c), F13(a)], F24(b)

)
= ψ

(
F13(ca+ (−1)1̄+|a||c|ac), F24(b)

)
= (−1)|b|σ

(
(1, 3, 2, 4)

)
ϵ5((ca− (−1)|a||c|ac)b)

= 0.

If x = H14(1, c), then

J(x, y, z) = (−1)|c|(|b|+1̄)ψ
(
[H14(1, c), F13(a)], F24(b)

)
+ (−1)(|a|+1̄)(|b|+1̄)ψ

(
[F24(b),H14(1, c)], F13(a)

)
= (−1)|c|(|b|+1̄)ψ

(
F13(ca), F24(b)

)
+ (−1)(|a|+1̄)(|b|+1̄)+|c|ψ

(
F24(bc), F13(a)

)
= (−1)|c|(|b|+1̄)+|b|σ

(
(1, 3, 2, 4)

)
ϵ5(cab)

+ (−1)(|a|+1̄)(|b|+1̄)+|c|+|a|σ
(
(2, 4, 1, 3)

)
ϵ5(bca)

= (−1)|b|+|c|((−1)|c||b|ϵ5(cab)− (−1)|a||b|ϵ5(bca)
)

= (−1)|b|+|c|((−1)|c||b|+|b||c|+|a||b|ϵ5(bca)− (−1)|a||b|ϵ5(bca)
)

= 0.

Assume now that neither x, y, z ∈ H . If ψ([x, y], z) ̸= 0 we must have ψ
(
[Fik(a), Fkj(b)], Fkl(c)

)
or

ψ
(
[Fil(a), Flj(b)], Fkl(c)

)
. Again, if (i, j, k, l) ∈ P1, . . . , P4 , the sign does not matter and so the proof is the

same as in [6]. Assume that (i, j, k, l) = (1, 3, 2, 4) ∈ P5 .
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GARCÍA-MARTÍNEZ and LADRA/Turk J Math

If x = F12(a), y = F23(b), and z = F24(c), then

J(x, y, z) = (−1)|a|(|c|+1̄)ψ
(
F13(ab), F24(c)

)
− (−1)(|b|+1̄)(|c|+1̄)+|a|(|c|+1̄)ψ

(
F14(ac), F23(b)

)
= (−1)|a|(|c|+1̄)+|c|σ

(
(1, 3, 2, 4)

)
ϵ5(abc)

− (−1)(|a|+|b|+1̄)(|c|+1̄)+|b|σ
(
(1, 4, 2, 3)

)
ϵ5(acb)

= (−1)|a|(|c|+1̄)+|c|(ϵ5(abc) + (−1)|b||c|+1̄ϵ5(acb)
)

= (−1)|a|(|c|+1̄)+|c|ϵ5
(
a(bc− (−1)|b||c|cb)

)
= 0.

If x = F14(a), y = F43(b), and z = F24(c), then

J(x, y, z) = (−1)(|a|+1̄)(|c|+1̄)ψ
(
F13(ab), F24(c)

)
− (−1)|b|(|a|+1̄)+|b|(|c|+1̄)ψ

(
F23(ac), F14(b)

)
= (−1)(|a|+1̄)(|c|+1̄)+|c|σ

(
(1, 3, 2, 4)

)
ϵ5(abc)

− (−1)|b|(|a|+|c|)+|a|σ
(
(2, 3, 1, 4)

)
ϵ5(cba)

= −(−1)|a|ϵ5
(
(−1)|a||c|abc− (−1)|a||b|+|b||c|cba

)
= −(−1)|a|ϵ5

(
(−1)|a||c|abc− (−1)|a||b|+|b||c|+|c|(|b|+|a|)bac

)
= −(−1)|a|+|a||c|ϵ5

(
(ab− (−1)|a||b|)c

)
= 0.

2

We have a central extension

0 // W // st(2, 2, A)♯
π // st(2, 2, A) // 0,

where st(2, 2, A)♯ = st(2, 2, A) ⊕ W is the Lie superalgebra constructed by the surjective super 2-cocycle ψ ,

defined by the following relations

a 7→ F ♯
ij(a) is a K-linear map, (18)

[W,W] = [F ♯
ij(a),W] = 0, (19)

[F ♯
ij(a), F

♯
jk(b)] = F ♯

ik(ab) for distinct i, j, k, (20)

[F ♯
ij(a), F

♯
ij(a)] = 0, (21)

[F ♯
ij(a), F

♯
ik(b)] = 0, (22)

[F ♯
ij(a), F

♯
kl(b)] = ϵ

θ
(
(i,j,k,l)

)(ab) if (i, j, k, l) ∈ P1, P2, P3, P4 (23)

[F ♯
ij(a), F

♯
kl(b)] = (−1)|b|σ

(
(i, j, k, l)

)
ϵ
θ
(
(i,j,k,l)

)(ab) if (i, j, k, l) ∈ P5, P6. (24)
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Theorem 6.2 The central extension 0 → W → st(2, 2, A)♯ → st(2, 2, A) → 0 is universal.

Proof Let

0 // V // s̃t(2, 2, A)
τ // st(2, 2, A) // 0

be a central extension. As done in Theorem 4.1, we need a Lie superalgebra homomorphism ρ : st(2, 2, A)♯ →

s̃t(2, 2, A) such that τ ◦ ρ = π . Choosing preimages F̃ij(a) of τ , we have to check they satisfy relations (18)–

(24). Doing the analogue computations as in Theorem 4.1 it is obvious that relations (18)–(22) are satisfied.

We have to check that the F̃ij(a) follow (23) and (24) to complete the proof.

As in the previous section, when i, j, k, l are distinct, denote

[F̃ij(a), F̃kl(1)] = vijkl(a).

To satisfy relations (23) and (24) we want to define the homomorphism from W by the expression

ρ(ϵ
θ
(
(i,j,k,l)

)(ab)) = σ
(
(i, j, k, l)

)
vijkl(ab). If (i, j, k, l) ∈ P1, . . . , P4 , we have to check the conditions

(R1) 2vijkl(a) = 0,

(R2) vijkl(a) = vkjil(a) = vilkj(a) = vklij(a),

(R3) vijkl(a[b, c]) = 0,

(R4) [F̃ij(a), F̃kl(b)] = vijkl(ab).

Note that every permutation in P1, . . . , P4 , has an element such that |i|+ |j| = 0̄. Thus, recovering some

computations of the previous section we have that

0 =
[
H̃ij(1, 1), [F̃ij(a), F̃kl(1)]

]
= [F̃ij(a+ (−1)|i|+|j|a), F̃kl(1)]

= vijkl(a+ (−1)|i|+|j|a).

If |i|+ |j| = 0̄, we have that [F̃ij(a), F̃kl(1)] = −[F̃ij(a), F̃kl(1)] . Then

[F̃il(a), F̃kj(1)] = −(−1)(|k|+|l|)(|k|+|j|+|b|)[F̃ij(a), F̃kl(1)],

and so [F̃il(a), F̃kj(1)] = −[F̃il(a), F̃kj(1)] . Changing the indexes we obtain (R1) and (R2), and proceeding as

in the proof of Theorem 5.2, conditions (R3) and (R4) are satisfied.

If (i, j, k, l) ∈ P5, P6 , we have that

[F̃ij(a), F̃kl(b)] = [ρ
(
F ♯
ij(a)

)
, ρ
(
F ♯
kl(b)

)
]

= ρ
(
[F ♯

ij(a), F
♯
kl(b)])

= ρ
(
(−1)|b|σ

(
(i, j, k, l)

)
ϵ
θ
(
(i,j,k,l)

)(ab))
= (−1)|b|vijkl(ab)

= (−1)|b|[F̃ij(ab), F̃kl(1)].
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Thus, we have to check the following conditions:

(C1) vijkl(a) = −vkjil(a) = −vilkj(a) = vklij(a),

(C2) [F̃ij(a), F̃kl(b)] = (−1)|b|[F̃ij(ab), F̃kl(1)] ,

(C3) vijkl(a[b, c]) = 0.

To see (C1),

vijkl(a) = [F̃ij(a), F̃kl(1)]

=
[
F̃ij(a), [F̃ki(1), F̃il(1)]

]
=

[
[F̃ij(a), F̃ki(1)], F̃il(1)

]
= −(−1)(|i|+|j|+|a|)(|k|+|i|)[F̃kj(a), F̃il(1)]

= −[F̃kj(a), F̃il(1)] = −vkjil(a),

and

vijkl(a) = [F̃ij(a), F̃kl(1)]

=
[
F̃ij(a), [F̃kj(1), F̃jl(1)]

]
=

= (−1)(|i|+|j|+|a|)(|k|+|j|)[F̃kj(1), [F̃ij(a), F̃jl(1)]
]

= (−1)(|i|+|j|+|a|)(|k|+|j|)[F̃kj(1), F̃il(a)] =

= −(−1)(|k|+|j|)(|l|+|j|)[F̃il(a), F̃kj(1)] =

= −[F̃il(a), F̃kj(1)] = −vilkj(a).

To check (C2),

[F̃ij(a), F̃kl(b)] =
[
F̃ij(a), [F̃kj(1), F̃jl(b)]

]
= (−1)(|i|+|j|+|a|)(|k|+|j|)[F̃kj(1), [F̃ij(a), F̃jl(b)]

]
= (−1)(|i|+|j|+|a|)(|k|+|j|)[F̃kj(1), F̃il(ab)

]
− (−1)(|j|+|l|+|b|)(|k|+|j|)[F̃il(ab), F̃kj(1)]

= −(−1)|b|[F̃il(ab), F̃kj(1)] = (−1)|b|[F̃ij(ab), F̃kl(1)]

= (−1)|b|vijkl(ab),

by part (C1).

Using (C2) and the fact that |k|+ |l| = 1̄,

vijkl(a[b, c]) = [F̃ij(a[b, c]), F̃kl(1)]

= (−1)|b|+|c|σ
(
(i, j, k, l)

)
[F̃ij(a), F̃kl(bc− (−1)|b||c|cb)]

= (−1)|b|+|c|σ
(
(i, j, k, l)

)[
F̃ij(a), [H̃kl(b, c), F̃kl(1)]

]
= 0,
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by Jacobi identity, we have that (C3) is satisfied.

Thus, we obtained a Lie superalgebra homomorphism ρ : st(2, 2, A)♯ → s̃t(2, 2, A) completing the proof.
2

Corollary 6.3 The universal central extension of sl(2, 2, A) is st(2, 2, A)♯ ∼= sl(2, 2, A)⊕ A4
2 ⊕ A2

0 . Moreover,

H2

(
st(2, 2, A)

) ∼= W ∼= A4
2 ⊕A2

0 .

7. Nonabelian tensor product and cyclic homology

In this section, we will consider the associative superalgebra A free as a K -supermodule. This assumption is

needed in the definition of cyclic homology via a complex.

Definition 7.1 ([10]) Let Cn(A) = A⊗n/In be the chain complex for n ≥ 0 where In is the submodule

generated by the relations

a0 ⊗ a1 ⊗ · · · ⊗ an − (−1)n+|a0|
∑n−1

i=0 |ai|an ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an−1,

for ai ∈ A homogeneous. The boundary maps dn are defined on generators by

dn(a0 ⊗ a1 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ ai+1 ⊗ · · · an

+ (−1)n+|an|
∑n−1

i=0 |ai|ana0 ⊗ a1 ⊗ · · · ⊗ an−1,

for ai ∈ A homogeneous. The cyclic homology HCn(A) of the associative superalgebra A is the homology of

the chain complex C∗(A) .

In [7], the nonabelian tensor product of two Lie superalgebras acting on each other is introduced. For

the sake of simplicity, we recover the definition in the particular case of a Lie superalgebra L acting on itself

by the canonical action, also called nonabelian tensor square.

Definition 7.2 Let L be a Lie superalgebra. The nonabelian tensor square L⊗̂L is the tensor product of

supermodules L⊗ L quotient by the submodule generated by the relations

(i) [x, y]⊗ z = x⊗ [y, z]− (−1)|x||y|y ⊗ [x, z] ,

(ii) x⊗ [y, z] = (−1)|z|(|x|+|y|)([z, x]⊗ y)− (−1)|x||y|([y, x]⊗ z) ,

for all x, y, z ∈ L . It has a Lie superalgebra structure with bracket

[x⊗ y, z ⊗ w] = [x, y]⊗ [z, w].

It is shown in [7] that if L is perfect, the homomorphism u : L⊗̂L → L , x⊗ y 7→ [x, y] , is the universal

central extension of L and Ker u = H2(L). Therefore, the universal central extension of sl(m,n,A) is the same

as the universal central extension of st(m,n,A), which is st(m,n,A)⊗̂st(m,n,A). Additionally, we know that

the universal central extension of st(m,n,A) is just itself plus a K -supermodule, which will be denoted by

W(m,n,A), possibly zero.
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Theorem 7.3 Let m+ n ≥ 3 . Then there is an isomorphism of K -supermodules

H2(sl(m,n,A)) ∼= HC1(A)⊕W(m,n,A).

Proof We consider the following diagram

0 // HC1(A)⊕W(m,n,D) // A⊗A

Im d2
⊕W(m,n,A)

µ





d1 // [A,A]

E11(−)





// 0

0 // H2

(
sl(m,n,A)

)
// st(m,n,A)⊗̂st(m,n,A)

Str2

OO

ω // sl(m,n,A)

Str1

OO

// 0,

where µ(a⊗ b) = F1j(a)⊗ Fj1(b)− (−1)|a||b|F1j(ba)⊗ Fj1(1), µ
(
vijkl(a)

)
= Fij(a)⊗ Fkl(b) and

Str2
(
Fij(a)⊗ Fkl(b)

)
=


a⊗ b, if i = j and k = l ,

vijkl(ab), when it makes sense depending on m,n ,

0, otherwise.

It is a straightforward computation that µ ◦ Str2 and E11(−) ◦ Str1 are the identity maps and that the

diagram is commutative. Then the restriction of Str2 to the kernel of ω is also a split epimorphism, with µ

restricted to the kernel of d1 as section. Let us see that these restrictions are indeed isomorphisms. An element

in the kernel of ω is a sum of elements of the form Fij(a) ⊗ Fji(b) plus the elements of W(m,n,D). Any

element of Kerω can be written as an element of Imµ plus
∑m+n

i=2 F1i(ai)⊗ Fi1(1), since

Fij(a)⊗ Fji(b) = Fi1(a)⊗ F1i(b)− (−1)(|Fij(a)|)(|Fji(b)|)Fj1(ba)⊗ F1j(1),

and

F1j(a)⊗ Fj1(b) = F1j(a)⊗ Fj1(b)− (−1)|a||b|Fj1(ba)⊗ F1j(1) + (−1)|a||b|Fj1(ba)⊗ F1j(1).

Furthermore, if it is in the kernel of ω , all the ai must be zero. Then the restriction of µ to the kernel

of d1 is surjective. 2

8. Concluding remarks

Combining the main theorems presented here with the main theorems of [3, 7] we have a complete characteri-

zation of H2

(
st(m,n,A)

)
and H2

(
sl(m,n,A)

)
for m+ n ≥ 3.

Theorem 8.1 Let K be a unital commutative ring and A an associative unital K -superalgebra. Then

H2

(
st(m,n,A)

)
=



0 for m+ n ≥ 5 or m = 2, n = 1 ,

A6
3 for m = 3, n = 0 ,

A6
2 for m = 4, n = 0 ,

Π(A2)
6 for m = 3, n = 1 ,

A4
2 ⊕A2

0 for m = 2, n = 2 ,

where Am is the quotient of A by the ideal mA+A[A,A] (Definition 2.3) and Π is the parity change functor.
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Theorem 8.2 Let K be a unital commutative ring and A an associative unital K -superalgebra with a K -basis

containing the identity. Then

H2

(
sl(m,n,A)

)
=



HC1(A) for m+ n ≥ 5 or m = 2, n = 1 ,

HC1(A)⊕A6
3 for m = 3, n = 0 ,

HC1(A)⊕A6
2 for m = 4, n = 0 ,

HC1(A)⊕Π(A2)
6 for m = 3, n = 1 ,

HC1(A)⊕A4
2 ⊕A2

0 for m = 2, n = 2 ,

where Am is the quotient of A by the ideal mA+A[A,A] (Definition 2.3) and Π is the parity change functor.

Acknowledgments

The authors were supported by Ministerio de Economı́a y Competitividad (Spain), grant MTM2016-79661-P,

and by Xunta de Galicia, grant GRC2013-045 (European FEDER support included). The first author was also

supported by an FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain) and a Fundación Barrié
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