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On Hölder continuity of approximate solution maps to vector equilibrium

problems

Lam QUOC ANH1, Kien TRUNG NGUYEN1, Tran NGOC TAM2,3,∗

1Department of Mathematics, Teacher College, Can Tho University, Can Tho, Vietnam
2Division of Computational Mathematics and Engineering, Institute for Computational Science,

Ton DucThang University, Ho Chi Minh City, Vietnam
3Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received: 02.07.2015 • Accepted/Published Online: 07.02.2017 • Final Version: 23.11.2017

Abstract: In this article, we consider parametric vector equilibrium problems in normed spaces. Sufficient conditions

for Hölder continuity of approximate solution mappings where they are set-valued are established. As applications of

these results, the Hölder continuity of the approximate solution mappings for vector optimization problems and vector

variational inequalities are derived at the end of the paper. Our results are new and include the existing ones in the

literature.
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1. Introduction

The equilibrium problem [19] has been of great interest since it is the unified framework of many important

problems in optimization theory and applications such as the optimization problem, the variational inequality

problem, the fixed-point and coincidence problems, and the Nash equilibrium problem. To date, many papers

have been devoted to the solution existence, an important issue focusing on the center of any mathematical

theory, for the equilibrium problems and related problems [15, 16, 22–25, 28, 29]. The next important issue

recently investigated that received growing attention from many researchers is the stability and sensitivity

analyses of solution mappings. The stability and sensitivity analyses may be understood in two ways. The

first is the semicontinuity, continuity (or Hausdorff continuity) of solution mappings [3, 5, 7, 10, 20, 26, 30, 31]

and references therein. The second is the Hölder/Lipschitz continuity of solution mappings [1, 2, 4, 6, 8, 9, 13,

17, 18, 21, 32–34]. Observing that most of the works on the Hölder/Lispchitz continuity of the solutions maps

imposed strong monotonicity/convexity properties in the data, the solution sets of the problems will be singleton

in the neighborhood of the considered point. However, for a parametric equilibrium problem, in general, the

solution mapping is set-valued but not single-valued. Thus, such results are not applicable. One of the most

interesting attentions paid by researchers is to study the sufficient conditions for the Hölder/Lipschitz continuity

to solution mappings when they are set-valued ones. There are some contributions to this field. In [33, 34], the

authors impose an assumption involving the solutions sets. This assumption is hard to verify since when the
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stability and sensitivity analyses of the problems are studied, it is assumed that the solution sets are unknown.

In addition, if the solutions are defined, one often checks directly its desired Hölder property instead of checking

many similar Hölder properties of the problem data. In [11], the authors replaced assumptions related to strong

monotonicity with convexity/concavity assumptions and they obtained the Hölder continuity for approximate

solution mappings of scalar problems. Recently, [12, 14] obtained sufficient conditions for Hölder continuity in

the sense of calmness, a term of the weaker Hölder continuity. In these cases, the solution set may be set-valued,

except for the considered point. In this paper, we give the sufficient conditions for the approximate solution

mappings of the parametric vector equilibrium problems being Hölder continuity when the solution mappings

are not singleton. Our results are new and include the existing ones.

The layout of the remainder of the paper is as follows. Section 2 introduces the vector equilibrium

problems and recalls some definitions used in the next sections. Next, in Section 3, we establish the sufficient

conditions for the Hölder continuity of the solution mapping for the parametric vector equilibrium problem.

Finally, Section 4 presents applications of the Hölder continuity of the approximate solution mappings of vector

optimization and vector variational inequalities.

2. Preliminaries

Our notations are almost standard. We use ∥.∥ for the norm in any normed space. d(x,A) is the distance

from x to subset A . For a normed space X , X∗ is the topological dual space of X and R+ is the set of

nonnegative real numbers. B(x, r) denotes the closed ball of radius r ≥ 0 and centered at x . intA stands for

the interior of a subset A . The diameter of A is diamA = supx,z∈A ∥x− z∥ . For a set-valued map G : X ⇒ Y ,

grG = {(x, y) ∈ X × Y : y ∈ G(x)} is the graph of G . L(X,Y ) is the collection of all continuous linear

mappings of X into Y .

Throughout this paper, if not explicitly stated otherwise, let X,Λ,M be normed spaces and A ⊆ X be

a nonempty subset. Let Y be a linear normed space and Y ∗ be the dual space of Y . C ⊂ Y is a pointed

closed convex cone with intC ̸= ∅ . The multifunction K : Λ ⇒ A has nonempty bounded convex values and

f : A × A × M → Y is a vector-valued function. For (λ, µ) ∈ Λ × M , we consider the following parametric

vector equilibrium problem.

(WEP): Find x̄ ∈ K(λ) such that, for all y ∈ K(λ),

f(x̄, y, µ) /∈ −intC.

To provide the motivations of our problem setting, we consider some special cases of this problem.

(i) If g : A×M → Y and f(x, y, µ) = g(y, µ)−g(x, µ), then (WEP) reduces the following vector optimization

problem.

(VOP): Find x̄ ∈ K(λ) such that, for all y ∈ K(λ), g(y, µ)− g(x̄, µ) /∈ −intC.

In the case of Y = R , (VOP) is the scalar optimization problem (OP).

(OP): Find x̄ ∈ K(λ) such that g(x̄, µ) = miny∈K(λ) g(y, µ).

(ii) If ϕ : A×M → L(X,Y ) and set f(x, y, µ) = ⟨ϕ(x, µ), y − x⟩ , then (WEP) reduces the vector variational

inequality as follows.

(VVI): Find x̄ ∈ K(λ) such that, for all y ∈ K(λ), ⟨ϕ(x̄, µ), y − x̄⟩ /∈ −intC.
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If Y = R , then (VVI) is the following variational inequality.

(VI): Find x̄ ∈ K(λ) such that, for all y ∈ K(λ), ⟨ϕ(x̄, µ), y − x̄⟩ ≥ 0.

(iii) When X ≡ Y,M are Hilbert spaces, let φ : A×M → A . The fixed point problem is,

(FP): Find x̄ ∈ A such that φ(x̄, µ) = x̄. This problem is equivalent to the following special case of

(WEP).

(WEP’): Find x̄ ∈ A such that, for all y ∈ A , ⟨x− φ(x, µ), y − x⟩ /∈ −intC.

Indeed, if x̄ is a solution of (FP), then ⟨x̄−φ(x̄, µ), y− x̄⟩ = 0 for all y ∈ A , and hence x̄ solves (WEP’).

Conversely, let x̄ be a solution of (WEP′), i.e. ⟨x̄ − φ(x̄, µ), y − x̄⟩ /∈ −intC for all y ∈ A . Taking

y = φ(x̄, µ), we have ⟨x̄ − φ(x̄, µ), φ(x̄, µ) − x̄⟩ /∈ −intC and thus we must have equality, i.e. x̄ is a

solution of (FP).

For each (λ, µ) ∈ Λ×M , ε ≥ 0 and e ∈ intC , we denote the ε-solution set of (WEP) corresponding to

(ε, λ, µ) by

Π(ε, λ, µ) = {x ∈ K(λ) : f(x, y, µ) + εe /∈ −intC, ∀y ∈ K(λ)}.

Set C∗ = {ξ ∈ Y ∗ : ξ(y) ≥ 0, ∀y ∈ C} as the dual cone of C . Let e ∈ intC be given and

B∗
e = {ξ ∈ C∗ : ξ(e) = 1} be a weak∗ compact base of C∗ .

Lemma 2.1 (Xem [27]) If Y is a real topological linear space and C is a convex cone with intC ̸= ∅ , then

intC = {y ∈ Y : ⟨ξ, y⟩ > 0, ∀ξ ∈ C∗ \ {0}}.

For every ξ ∈ B∗
e , we denote

Πξ(ε, λ, µ) = {x ∈ K(λ) : ξ(f(x, y, µ)) + ε ≥ 0, ∀y ∈ K(λ)},

which is the ξ -approximate solution set of (WEP).

Now we recall some notions that are needed in the sequel.

Definition 2.2 (a) A vector-valued function f : X → Y is termed l.α -Hölder continuous around x0 ∈ X ,

if there is a neighborhood V of x0 such that, for all x1, x2 ∈ V ,

f(x1) ∈ f(x2) + l∥x1 − x2∥αB(0, 1).

(b) A set-valued function K : Λ ⇒ A is said to be l.α -Hölder continuous around λ0 ∈ Λ if there is a

neighborhood U of λ0 such that, for all λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l∥λ1 − λ2∥αB(0, 1).

The Hölder continuity is called a Lipschitz continuity if α = 1.

Definition 2.3 (a) A vector-valued function f : X → Y is said to be C -convex in convex set A ⊆ X if

for any x1, x2 ∈ A and t ∈ [0, 1],

tf(x1) + (1− t)f(x2) ∈ f(tx1 + (1− t)x2) + C.
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(b) A vector-valued function f : X → Y is said to be C -convex-like in set B ⊆ X if for any x1, x2 ∈ B

and t ∈ [0, 1], there is x3 ∈ B such that

tf(x1) + (1− t)f(x2) ∈ f(x3) + C.

As usual, we say that f is C -concave (concave-like, respectively) if −f is C -convex (convex-like,

respectively).

Definition 2.4 A mapping g : X → L(X,Y ) is called monotone in A ⊆ X if, for all x1, x2 ∈ A ,

⟨g(x1)− g(x2), x1 − x2⟩ ∈ C.

Lemma 2.5 If for each ξ ∈ B∗
e , y ∈ A and µ ∈ M , f(·, y, µ) is C -convex (C -concave, respectively) in A

then ξ(f(·, y, λ)) is convex (concave, respectively) in A .

Proof We omit the proof since it is trivial. □
The following lemma shows the relation between the ε-approximate solution set and ξ -efficient approxi-

mate solution sets of (WEP).

Lemma 2.6 If for each λ ∈ Λ , x ∈ K(λ) and µ ∈ M , f(x, ·, µ) is C -convex-like on K(λ) then

Π(ε, λ, µ) =
∪

ξ∈B∗
e

Πξ(ε, λ, µ).

Proof Pick any x ∈
∪

ξ∈B∗
e
Πξ(ε, λ, µ). Then there exists ξ

′ ∈ B∗
e such that x ∈ Πξ′ (ε, λ, µ). Hence,

ξ
′
(f(x, y, µ)) + ε ≥ 0, for all y ∈ K(λ). If f(x, y, µ) + εe ∈ −intC , then there is z ∈ intC satisfying

z = −f(x, y, µ) − εe , and thus ξ
′
(z) = −ξ

′
(f(x, y, λ)) − ε ≤ 0. This contradicts Lemma 2.1. Consequently,

f(x, y, µ) + εe /∈ −intC , i.e. x ∈ Π(ε, λ, µ).

Conversely, take any x ∈ Π(ε, λ, µ). Then x ∈ K(λ) and, for all y ∈ K(λ), f(x, y, µ) + εe /∈ −intC .

Therefore,
(f(x,K(λ), µ) + εe) ∩ (−intC) = ∅,

which implies

(f(x,K(λ), µ) + C + εe) ∩ (−intC) = ∅. (2.1)

For each λ ∈ Λ, x ∈ K(λ), and µ ∈ M , as f(x, ·, µ) is C -convex-like on K(λ), one has f(x,K(λ), µ)+C + εe

is a convex subset of Y . Indeed, take any z1, z2 ∈ f(x,K(λ), µ) + C + εe and t ∈ [0, 1]. Then there are

y1, y2 ∈ K(λ) and c1, c2 ∈ C satisfying z1 = f(x, y1, µ) + c1 + εe and z2 = f(x, y2, µ) + c2 + εe . By the

C -convex-likeness of f on K(λ), there is y3 ∈ K(λ) such that

tf(x, y1, µ) + (1− t)f(x, y2, µ) ∈ f(x, y3, µ) + C.

Hence,
tz1 + (1− t)z2 = t(f(x, y1, µ) + c1 + εe) + (1− t)(f(x, y2, µ) + c2 + εe)

= (tf(x, y1, µ) + (1− t)f(x, y2, µ)) + (tc1 + (1− t)c2) + εe

∈ f(x, y3, µ) + C + C + εe

⊂ f(x,K(λ), µ) + C + εe.

This means that f(x,K(λ), µ) + C + εe is a convex set.
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From (2.1), using the separation theorem of Eidelheit, there are a continuous linear function ξ̄ ∈ Y ∗ \{0}
and a real number ν such that

ξ̄(ĉ) < ν ≤ ξ̄(z + c+ εe),

for all ĉ ∈ −intC, z ∈ f(x,K(λ), µ), and c ∈ C . Since C is a cone, ξ̄(ĉ) ≤ 0, ∀ĉ ∈ −intC . Thus,

ξ̄(c̄) ≥ 0,∀c̄ ∈ C , i.e. ξ̄ ∈ C∗ \ {0} . On the other hand, as c ∈ C and ĉ ∈ −intC can be chosen arbitrarily close

to 0 ∈ Y , the continuity of ξ̄ gives ξ̄(z) + ξ̄(εe) ≥ 0. It follows from the fact that e ∈ intC and ξ̄ ∈ C∗ \ {0} ,

ξ̄(e) > 0. By setting ξ =
ξ̄

ξ̄(e)
, we see that ξ ∈ B∗

e and ξ(z) + εξ(e) = ξ(z) + ε ≥ 0,∀z ∈ f(x,K(λ), µ). This

implies, for all y ∈ K(λ), ξ(f(x, y, µ)) + ε ≥ 0, i.e., x ∈ Πξ(ε, λ, µ) ⊂
∪

ξ∈B∗
e
Πξ(ε, λ, µ). This completes the

proof. □
For A,B ⊆ X , the Hausdorff distance between A and B is defined by

H(A,B) = max{H∗(A,B),H∗(B,A)},

where H∗(A,B) = sup
a∈A

d(a,B) and d(x,A) = inf
y∈A

d(x, y). Note that H(·, ·) may not be a metric in the space

of the subsets of X , since it can take the value ∞ .

3. Hölder continuity of approximate solutions mappings

In this section, we present the main results of the paper. First, we give the sufficient conditions for the

Hölder continuity of the ξ -approximate solution mappings. Then we apply this result to establish the sufficient

conditions for the Hölder property of the approximate solution mappings to equilibrium problems.

Theorem 3.1 For (WEP), assume that for each ξ ∈ B∗
e , the ξ -approximate solutions exist in a neighborhood

of the considered point (λ0, µ0) ∈ Λ×M . Furthermore, assume that the following conditions hold.

(i) K is l.α-Hölder continuous around λ0 , i.e. there exists a neighborhood U of λ0 such that for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l∥λ1 − λ2∥αB(0, 1).

(ii) There is a neighborhood V of µ0 such that for each y ∈ K(U) and µ ∈ V , f(·, y, µ) is C -concave in

K(U) .

(iii) For x, y ∈ K(U) , f(x, y, ·) is h.β -Hölder continuous in V .

(iv) For µ ∈ V and x ∈ K(U), f(x, ·, µ) is q.δ -Hölder in K(U) .

Then, for any ε̄ > 0 and ξ̄ ∈ B∗
e , there exist open neighborhoods N(ξ̄) of ξ̄ , Nξ̄(λ0) of λ0 and Nξ̄(µ0) of

µ0 such that the ξ -approximate solution mapping Πξ(·, ·, ·) satisfies the following Hölder property in [ε̄,+∞)×
Nξ̄(λ0)×Nξ̄(µ0) , i.e.

H(Πξ(ε1, λ1, µ1),Πξ(ε2, λ2, µ2)) ≤ k1|ε1 − ε2|+ k2||µ1 − µ2||β + k3||λ1 − λ2||αδ,

where ξ ∈ N(ξ̄), (εi, λi, µi) ∈ [ε̄,+∞)×Nξ̄(λ0)×Nξ̄(µ0), i = 1, 2 , and k1, k2, k3 are positive and depend on ε̄ ,

l, α, h, β, etc.
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Proof Let ξ̄ ∈ B∗
e , let N(ξ̄) × Nξ̄(λ0) × Nξ̄(µ0) ⊂ B∗

e × U × V be open. Let (ε1, λ1, µ1), (ε2, λ2, µ2) ∈
[ε̄,+∞)×Nξ̄(λ0)×Nξ̄(µ0) be arbitrarily given. Without loss of generality, we always assume that ε1 < ε2 .

Step 1 For 0 < ε1 < ε2 with ε̄ < ε2 , (λ1, µ1) ∈ Nξ̄(λ0) × Nξ̄(µ0) and ξ ∈ N(ξ̄), we provide an

estimation of H(Πξ(ε1, λ1, µ1),Πξ(ε2, λ1, µ1)).

Put ρ := diamK(λ0) + 2l(diam(U))α. We first show that for all (λ, µ) ∈ U × V and ξ ∈ B∗
e ,

H(Πξ(ε1, λ, µ),Πξ(ε2, λ, µ)) ≤
ρ

ε2
|ε1 − ε2|. (3.1)

Obviously, we see that Πξ(ε1, λ, µ) ⊆ Πξ(ε2, λ, µ). Therefore,

H∗(Πξ(ε1, λ, µ),Πξ(ε2, λ, µ)) = 0. (3.2)

Take any x2 ∈ Πξ(ε2, λ, µ), x0 ∈ Πξ(0, λ, µ). Then for all y ∈ K(λ), we have

min{ξ(f(x2, y, µ)) + ε2, ξ(f(x0, y, µ))} ≥ 0.

This inequality leads to, for y ∈ K(λ),

ε1
ε2

ξ(f(x2, y, µ)) + ε1 +
ε2 − ε1

ε2
ξ(f(x0, y, µ)) ≥ 0.

By the linearity of ξ , one has

ξ

(
ε1
ε2

f(x2, y, µ) +
ε2 − ε1

ε2
f(x0, y, µ)

)
+ ε1 ≥ 0. (3.3)

On the other hand, due to assumption (ii), we get

ε1
ε2

f(x2, y, µ) +
ε2 − ε1

ε2
f(x0, y, µ) ∈ f(

ε1
ε2

x2 +
ε2 − ε1

ε2
x0, y, µ)− C.

Hence, there exists c1 ∈ C , such that

ε1
ε2

f(x2, y, µ) +
ε2 − ε1

ε2
f(x0, y, µ) = f(

ε1
ε2

x2 +
ε2 − ε1

ε2
x0, y, µ)− c1,

which implies

ξ

(
ε1
ε2

f(x2, y, µ) +
ε2 − ε1

ε2
f(x0, y, µ)

)
= ξ

(
f(

ε1
ε2

x2 +
ε2 − ε1

ε2
x0, y, µ)

)
− ξ(c1).

As c1 ∈ C , ξ(c1) ≥ 0. Thus,

ξ

(
ε1
ε2

f(x2, y, µ) +
ε2 − ε1

ε2
f(x0, y, µ)

)
≤ ξ

(
f(

ε1
ε2

x2 +
ε2 − ε1

ε2
x0, y, µ)

)
. (3.4)

It follows from (3.3) and (3.4), ξ
(
f( ε1ε2x2 +

ε2−ε1
ε2

x0, y, µ)
)
+ ε1 ≥ 0. Consequently,

x1 :=
ε1
ε2

x2 +
ε2 − ε1

ε2
x0 ∈ Πξ(ε1, λ, µ).
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Then

||x2 − x1|| =
|ε1 − ε2|

ε2
||x2 − x0||.

We observe that, for all λ ∈ U , K(λ) ⊆ K(λ0) + lB(0, ∥λ − λ0∥α), one has diamK(λ) ≤ ρ. Therefore,

∥x2 − x1∥ ≤ ρ

ε2
|ε1 − ε2|, and thus

H∗(Πξ(ε2, λ, µ),Πξ(ε1, λ, µ)) ≤
ρ

ε2
|ε1 − ε2|. (3.5)

From (3.2) and (3.5), we have (3.1) proved. Since ε2 ∈ [ε̄,+∞), (3.1) derives

H(Πξ(ε1, λ1, µ1),Πξ(ε2, λ1, µ1)) ≤ ρ

ε̄
|ε1 − ε2|

:= k1|ε1 − ε2|.

Step 2 Now we estimate H(Πξ(ε2, λ1, µ1),Πξ(ε2, λ1, µ2)) with ε̄ < ε2 , λ1 ∈ Nξ̄(λ0), ξ ∈ N(ξ̄) and

µ1, µ2 ∈ Nξ̄(µ0) such that µ1 ̸= µ2 .

First, we show that for x, y ∈ K(U), µ1, µ2 ∈ Nξ̄(µ0) and ξ ∈ N(ξ̄),

|ξ(f(x, y, µ1))− ξ(f(x, y, µ2))| ≤ h∥µ1 − µ2∥β . (3.6)

Indeed, by virtue of assumption (iii), for any x, y ∈ K(U) and µ1, µ2 ∈ Nξ̄(µ0),

f(x, y, µ1) ∈ f(x, y, µ2) + h∥µ1 − µ2∥βB(0, 1).

Then, for each ξ ∈ N(ξ̄),

|ξ(f(x, y, µ1))− ξ(f(x, y, µ2))| ≤ h∥µ1 − µ2∥β sup{ξ(ē) : ē ∈ B(0, 1)}

≤ h∥µ1 − µ2∥β .

Thus, we get (3.6).

Now we divide Step 2 into two cases.

Case 1. h∥µ1 − µ2∥β ≤ ε2 . Let r = h∥µ1 − µ2∥β . Then 0 < r ≤ ε2 . We conclude that Πξ(ε2 − r, λ1, µ1) ⊆
Πξ(ε2, λ1, µ2). Indeed, let x̄ ∈ Πξ(ε2 − r, λ1, µ1). Then, for all y ∈ K(λ1),

ξ (f(x̄, y, µ2)) + ξ (f(x̄, y, µ1))− ξ (f(x̄, y, µ2)) + ε2 − r ≥ 0.

This inequality together with (3.6) implies that ξ(f(x̄, y, µ2))+ε2 ≥ 0 for all y ∈ K(λ1), i.e. x̄ ∈ Πξ(ε2, λ1, µ2).

Hence, using the result of Step 1, it results in the following estimates:

H∗(Πξ(ε2, λ1, µ1),Πξ(ε2, λ1, µ2)) ≤ H∗(Πξ(ε2, λ1, µ1),Πξ(ε2 − r, λ1, µ1))

≤ H(Πξ(ε2, λ1, µ1),Πξ(ε2 − r, λ1, µ1))

≤ ρr

ε2

≤ ρh

ε̄
∥µ1 − µ2∥β .
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In the same way, we get

H∗(Πξ(ε2, λ1, µ2),Πξ(ε2, λ1, µ1)) ≤
ρh

ε̄
∥µ1 − µ2∥β .

Hence,

H(Πξ(ε2, λ1, µ1),Πξ(ε2, λ1, µ2)) ≤ ρh

ε̄
∥µ1 − µ2∥β .

Case 2. h∥µ1 − µ2∥β > ε2 . Let ρ1 = diamV . Then there exists a natural number n such that ρ1

n ≤
(
ε̄
h

)1/β
.

Let P1 = {v1 = µ1, v2, ..., vn+1 = µ2} be a partition of segment [µ1, µ2] such that

∥vi − vi+1∥ =
∥µ1 − µ2∥

n
.

Then we have ∥vi − vi+1∥β =
(

∥µ1−µ2∥
n

)β

≤
(
ρ1

n

)β ≤ ε̄
h ≤ ε2

h . Hence, using the result of Case 1, one gets

H(Πξ(ε2, λ1, µ1),Πξ(ε2, λ1, µ2)) ≤
n∑

i=1

H(Πξ(ε2, λ1, vi),Πξ(ε2, λ1, vi+1))

≤ ρ1h

ε̄

n∑
i=1

∥vi − vi+1∥β

≤ nρ1h

ε̄
∥µ1 − µ2∥β

:= k2∥µ1 − µ2∥β .

Step 3 We estimate H(Πξ(ε2, λ1, µ2),Πξ(ε2, λ2, µ2)) for λ1 ̸= λ2 . We have also two cases.

Case 1. ∥λ1 − λ2∥α ≤ 1
l (

ε2
q )

1/δ . Let r′ = lδq||λ1 − λ2||αδ . Then 0 < r′ ≤ ε2 . We first claim that

Πξ(ε2−r′, λ1, µ2) ⊆ Πξ(ε2, λ2, µ2). Indeed, for any x′ ∈ Πξ(ε2−r′, λ1, µ2) and y2 ∈ K(λ2), there is y1 ∈ K(λ1)

such that

||y1 − y2|| ≤ l||λ1 − λ2||α,

and

ξ(f(x′, y2, µ2)) + ξ(f(x′, y1, µ2))− ξ(f(x′, y2, µ2)) + ε2 − r′ ≥ 0.

It follows from (iv) that

f(x′, y1, µ2)) ∈ f(x′, y2, µ2)) + q∥y1 − y2∥δB(0, 1).

Thus,

|ξ(f(x′, y1, µ2))− ξ(f(x′, y2, µ2))| ≤ q∥y1 − y2∥δ sup{ξ(e′) : e′ ∈ B(0, 1)}

≤ q∥y1 − y2∥δ

≤ qlδ∥λ1 − λ2∥αδ

≤ r′.
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Hence, for all y2 ∈ K(λ2),

ξ(f(x′, y2, µ2)) + ε2 ≥ 0,

i.e. x′ ∈ Πξ(ε2, λ2, µ2), resulting in

Πξ(ε2 − r′, λ1, µ2) ⊆ Πξ(ε2, λ2, µ2).

Applying this and the result of Step 1, one has the following estimates:

H∗(Πξ(ε2, λ1, µ2),Πξ(ε2, λ2, µ2)) ≤ H(Πξ(ε2, λ1, µ2),Πξ(ε2 − r′, λ1, µ2))

≤ ρqlδ

ε2
∥λ1 − λ2∥αδ

≤ ρqlδ

ε̄
∥λ1 − λ2∥αδ.

Similarly,

H∗(Πξ(ε2, λ2, µ2),Πξ(ε2, λ1, µ2)) ≤
ρqlδ

ε̄
||λ1 − λ2||αδ.

Thus,

H(Πξ(ε2, λ1, µ2),Πξ(ε2, λ2, µ2)) ≤
ρqlδ

ε̄
∥λ1 − λ2∥αδ.

Case 2. ∥λ1−λ2∥α >
1

l

(
ε2
q

)1/δ

. Let ε0 =

[
1
l

(
ε̄
q

)1/δ
]1/α

and ℘ = diam(U) < +∞ . There exists a natural

number N such that ℘
N ≤ ε0 . Let P2 be a partition of segment [λ1, λ2] with N + 1 nodes u1, ..., uN+1 such

that

u1 = λ1, uN+1 = λ2, ∥uj − uj+1∥ =
∥λ1 − λ2∥

N
.

Hence,

∥uj − uj+1∥α ≤ (
℘

N
)α ≤ 1

l

(
ε̄

q

)1/δ

≤ 1

l

(
ε2
q

)1/δ

.

Applying the result of Case 1, one has

H(Πξ(ε2, λ1, µ2),Πξ(ε2, λ2, µ2)) ≤
ρqlδ

ε̄

N∑
j=1

||uj − uj+1||αδ

≤ Nρqlδ

ε̄

[
1

l

(
ε2
q

)1/δ
]δ

≤ Nρqlδ

ε̄
∥λ1 − λ2∥αδ := k3∥λ1 − λ2∥αδ.
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Step 4 Now we are ready to complete the proof. Combining the results of the preceding three steps,

we obtain

H(Πξ(ε1, λ1, µ1),Πξ(ε2, λ2, µ2)) ≤ H(Πξ(ε1, λ1, µ1),Πξ(ε2, λ1, µ1))

+H(Πξ(ε2, λ1, µ1),Πξ(ε2, λ1, µ2))

+H(Πξ(ε2, λ1, µ2),Πξ(ε2, λ2, µ2))

≤ k1|ε1 − ε2|+ k2∥µ1 − µ2∥β

+k3∥λ1 − λ2∥αδ.

□
By using Theorem 3.1 and a suitable technique, we obtain the Hölder continuity of the approximate solution

mappings to (WEP). Concretely, we have the following result.

Theorem 3.2 For (WEP), assume that for each ξ ∈ B∗
e , the ξ -approximate solutions exist in a neighborhood

of the considered point (λ0, µ0) ∈ Λ×M . Furthermore, assume that the following conditions hold.

(i) K is l.α-Hölder continuous around λ0 , i.e. there exists a neighborhood U of λ0 such that for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l∥λ1 − λ2∥αB(0, 1).

(ii) There is a neighborhood V of µ0 such that for each y ∈ K(U) and µ ∈ V , f(·, y, µ) is C -concave in

K(U) .

(iii) For x, y ∈ K(U) , f(x, y, ·) is h.β -Hölder continuous in V .

(iv) For µ ∈ V and x ∈ K(U), f(x, ·, µ) is C -convex as well as q.δ -Hölder in K(U) .

Then, for any ε̄ > 0 , there exist open neighborhoods N ′(λ0) of λ0 and N ′(µ0) of µ0 such that the approximate

solution set Π(·, ·, ·) satisfies the following Hölder property in [ε̄,+∞)×N ′(λ0)×N ′(µ0) , i.e.

H(Π(ε1, λ1, µ1),Π(ε2, λ2, µ2)) ≤ k1|ε1 − ε2|+ k2||µ1 − µ2||β + k3||λ1 − λ2||αδ,

where (εi, λi, µi) ∈ [ε̄,+∞)×N ′(λ0)×N ′(µ0), i = 1, 2 , and k1, k2, k3 are positive and depend on ε̄ , l, α, h, β,

etc.

Proof We see that B∗
e is a weak∗ compact set and in Theorem 3.1 the system of {N(ξ̄)}ξ̄∈B∗

e
is an open

covering of B∗
e . Consequently, there is a finite number of points ξi ∈ B∗

e ( i = 1, ..., n) satisfying

B∗
e ⊂

n∪
i=1

N(ξi). (3.7)

Let N ′(µ0) =
∩n

i=1 Nξi(µ0) and N ′(λ0) =
∩n

i=1 Nξi(λ0). Take arbitrarily (λ, µ) ∈ N ′(λ0)×N ′(µ0). Thanks to

(3.7), for any ξ ∈ B∗
e , there is i0 ∈ {1, ..., n} such that ξ ∈ N(ξi0). From the construction of the neighborhoods

N ′(λ0) and N ′(µ0), we have (λ, µ) ∈ Nξi0
(λ0)×Nξi0

(µ0). Thus, N
′(λ0) and N ′(µ0) are desired neighborhoods

of λ0 and µ0 , respectively.
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Due to assumption (iv) and in view of Lemma 2.6, one has

Π(ε, λ, µ) =
∪

ξ∈B∗
e

Πξ(ε, λ, µ).

For all (λ1, µ1), (λ2, µ2) ∈ N ′(λ0)×N ′(µ0), we now claim that

H(Π(ε1, λ1, µ1),Π(ε2, λ2, µ2)) ≤ k1|ε1 − ε2|+ k2∥µ1 − µ2||β + k3||λ1 − λ2||αδ. (3.8)

Indeed, for each x1 ∈ Π(ε1, λ1, µ1) =
∪

ξ∈B∗
e
Πξ(ε1, λ1, µ1), there is ξ̂ ∈ B∗

e such that x1 ∈ Πξ̂(ε1, λ1, µ1). As

Πξ̂(ε2, λ2, µ2) ⊆ Π(ε2, λ2, µ2) and applying Theorem 3.1, one has

d(x1,Π(ε2, λ2, µ2)) ≤ d(x1,Πξ̂(ε2, λ2, µ2))

≤ H∗(Πξ̂(ε1, λ1, µ1),Πξ̂(ε2, λ2, µ2))

≤ H(Πξ̂(ε1, λ1, µ1),Πξ̂(ε2, λ2, µ2)).

≤ k1|ε1 − ε2|+ k2∥µ1 − µ2||β + k3∥λ1 − λ2∥αδ,

where k1, k2, k3 are positive and depend on ε̄ , l, α, h, β, etc.

Therefore,

H∗(Π(ε1, λ1, µ1),Π(ε2, λ2, µ2)) ≤ k1|ε1 − ε2|+ k2∥µ1 − µ2||β + k3∥λ1 − λ2∥αδ. (3.9)

In a similar way, we also obtain that

H∗(Π(ε2, λ2, µ2),Π(ε1, λ1, µ1)) ≤ k1|ε1 − ε2|+ k2∥µ1 − µ2∥β + k3∥λ1 − λ2∥αδ. (3.10)

From (3.9) and (3.10), we have (3.8) proved. Hence the proof is complete. □

We now provide some examples to illustrate the essentialness of assumptions in Theorem 3.2. Firstly,

the concavity assumption of f cannot be dropped.

Example 3.3 Let ε̄ = 1
3 , X = A = R,Λ ≡ M = [0, 1],K(λ) = [−3, 3], Y = R2, C = R2

+, e = (1, 1) ∈ intC and

f(x, y, µ) =

{
(0, 0), x = 0,

(−1,−1), x ̸= 0.

Then we see that (i), (iii), (iv), and (v) of Theorem 3.2 are satisfied. Some direct computations give the

approximate solution set

Π(ε) =

{
[−3, 3], ε ≥ 1,
{0}, 1

3 ≤ ε < 1.

which is not Hölder continuous at ε0 = 1. The reason is that the concavity assumption with the first variable

of the objective function f is violated (for instance, take x1 = 0, x2 = 1 and t = 1
2 ).

The following example shows that the convexity of the constrained set cannot be dispensed.
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Example 3.4 Let X = A = R,Λ ≡ M = [0, 4],K(λ) = [1, 3] ∪ {4}, Y = R2, C = R2
+, e = (1, 1) ∈ intC and

f(x, y, µ) = (µ− x, µ− x). It is not hard to check that all assumptions of Theorem 3.2 are fulfilled. Obviously,

K is not convex. By direct computations, we have Π(ε, µ) = (−∞, µ+ ε] ∩ ([1, 3] ∪ {4}). We see that Π is not

Hölder continuous at µ0 = 3 for ε0 = 1.

The next example confirms that the boundedness of K is essential.

Example 3.5 Let X = A = R,Λ ≡ M = [0, 1],K(λ) = [0,+∞), Y = R2, C = R2
+, e = (1, 1) ∈ intC and

f(x, y, µ) = (−µx,−µx). Then all assumptions of Theorem 3.2 hold. Direct computations give Π(ε, 0) =

[0,+∞) and Π(ε, µ) =
[
0, ε

µ

]
, µ ̸= 0. It is easy to verify that Π is not Hölder continuous at µ0 = 0 for

ε0 = 1.

4. Applications

Since the vector equilibrium problem contains many optimization related problems as special cases, we will

apply the results presented in Section 3 to obtain sufficient conditions for Hölder continuity of approximate

solution sets of these particular cases. In this section, we only take the vector optimization problems, the vector

variational inequalities, and fixed-point problems as examples.

4.1. Vector optimization problems

For (ε, λ, µ) ∈ R+ × Λ × M , denote the approximate solution set of (VOP) by Π1(ε, λ, µ). Then, applying

Theorem 3.2, we get the following result.

Corollary 4.1 For (VOP), let Π1(ε, λ, µ) is nonempty for small ε > 0 in a neighborhood of the considered

point (λ0, µ0) ∈ Λ×M . Suppose that the following conditions hold:

(a) K is l1.α1 -Hölder continuous around λ0 , i.e. there is a neighborhood U of λ0 such that, for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l1B(0, ||λ1 − λ2||α1).

(b) There is a neighborhood V of µ0 such that, for each µ ∈ V, g(·, µ) is C -convex and q1.δ1 -Hölder

continuous in K(U) .

(c) For every x ∈ K(U), g(x, ·) is h1.β1 -Hölder continuous in V .

Then, for each ε̄ > 0 , Π1 is Hölder continuous in [ε̄,+∞) × U × V , i.e. for all ((ε1, λ1, µ1), (ε2, λ2, µ2)) ∈
[ε̄,+∞)× U × V ,

H(Π1(ε1, λ1, µ1),Π1(ε2, λ2, µ2)) ≤ κ1|ε1 − ε2|+ κ2∥µ1 − µ2∥β1 + κ3∥λ1 − λ2∥α1δ1 ,

where κ1, κ2, κ3 > 0 and depend on ε̄ , l1, α1, h1, β1, etc.
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Proof We will prove this corollary by checking the validity of Assumptions (ii), (iii), and (iv) of Theorem

3.2. We first verify (ii). Take arbitrarily x1, x2 ∈ K(U), t ∈ [0, 1], y ∈ K(U) and µ ∈ V . We have

f(tx1 + (1− t)x2, y, µ)− tf(x1, y, µ)− (1− t)f(x2, y, µ)

= g(y, µ)− g(tx1 + (1− t)x2, µ)− t[g(y, µ)− g(x1, µ)]− (1− t)[g(y, µ)− g(x2, µ)]

= tg(x1, µ) + (1− t)g(x2, µ)− g(tx1 + (1− t)x2, µ) ∈ C,

which is true due to the convexity of g(·, µ). Hence (ii) holds. Passing to (iii), taking any µ1, µ2 ∈ V and

x, y ∈ K(U), one sees that

∥f(x, y, µ1)− f(x, y, µ2)∥ = ∥(g(y, µ1)− g(y, µ2)) + (g(x, µ2)− g(x, µ1))∥

≤ h1∥µ1 − µ2∥β1 + h1∥µ1 − µ2∥β1

≤ 2h1||µ1 − µ2||β1 .

Thus, (iii) is satisfied with h = 2h1 and β = β1 .

For (iv), the convexity of f with the second component is checked similarly to the concavity with the

first one. Next, for any y1, y2 ∈ K(U), x ∈ K(U) and µ ∈ V , we have

∥f(x, y1, µ)− f(x, y2, µ)∥ = ∥g(y1, µ)− g(y2, µ)∥

≤ q1||y1 − y2||δ1 .

Thus, the Hölder continuity in (vi) holds with q = q1 and δ = δ1 . □

Remark 4.2 Recently, there have been many papers devoted to the Hölder continuity for optimization problems

[5, 9, 35]. However, since the imposed assumptions relate to strong monotonicity/convexity, the solution sets

are unique. Therefore, Corollary 4.1 is a new result.

In the case of Y = R , we have the following result for (OP).

Corollary 4.3 For (OP), let Π1(ε, λ, µ) be nonempty for small ε > 0 in a neighborhood of the considered point

(λ0, µ0) ∈ Λ×M . Suppose that the following conditions hold:

(a) K is l1.α1 -Hölder continuous around λ0 , i.e. there is a neighborhood U of λ0 such that, for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l1B(0, ||λ1 − λ2||α1).

(b) There is a neighborhood V of µ0 such that, for each µ ∈ V, g(·, µ) is convex and q1.δ1 -Hölder continuous

in K(U) .

(c) For every x ∈ K(U), g(x, ·) is h1.β1 -Hölder continuous in V .

Then, for each ε̄ > 0 , Π1 is Hölder continuous in [ε̄,+∞) × U × V , i.e. for all ((ε1, λ1, µ1), (ε2, λ2, µ2)) ∈
[ε̄,+∞)× U × V ,

H(Π1(ε1, λ1, µ1),Π1(ε2, λ2, µ2)) ≤ κ1|ε1 − ε2|+ κ2∥µ1 − µ2∥β1 + κ3∥λ1 − λ2∥α1δ1 ,

where κ1, κ2, κ3 > 0 and depend on ε̄ , l1, α1, h1, β1, etc.
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4.2. Vector variational inequalities

For (ε, λ, µ) ∈ R+ × Λ×M , we denote the approximate solution set of (VVI) by Π2(ε, λ, µ).

The following result is a consequence of Theorem 3.2.

Corollary 4.4 For (VVI), assume that Π2(ε, λ, µ) is nonempty for small ε > 0 . Suppose that the following

conditions hold:

(a) K is l2.α2 -Hölder continuous around λ0 , i.e. there is a neighborhood U of λ0 such that, for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l2B(0, ||λ1 − λ2||α2).

(b) There is a neighborhood V of µ0 such that, for each µ ∈ V , ϕ(·, µ) is bounded (i.e. there exists q2 > 0

such that ∥ϕ(x, µ)∥ ≤ q2, ∀x ∈ K(U)), monotone and affine in K(U) .

(c) For x ∈ K(U), ϕ(x, ·) is h2.β2 -Hölder continuous in V .

Then, for each ε̄ > 0 , the approximate solution Π2 satisfies the following Hölder property in [ε̄,+∞)×U × V :

H(Π2(ε1, λ1, µ1),Π2(ε2, λ2, µ2)) ≤ κ1|ε1 − ε2|+ κ2∥µ1 − µ2∥β2 + κ3∥λ1 − λ2∥α2 ,

where κ1, κ2, κ3 > 0 and depend on ε̄ , l2 , etc.

Proof Similarly to the proof of Corollary 4.1, we also examine Assumptions (ii), (iii), (iv), and (iv) of

Theorem 3.2. For (ii), taking arbitrarily x1, x2 ∈ K(U), t ∈ [0, 1], and y ∈ K(U), by (b) we have

f(tx1 + (1− t)x2, y, µ)− tf(x1, y, µ)− (1− t)f(x2, y, µ)

= ⟨tϕ(x1, µ) + (1− t)ϕ(x2, µ), y − tx1 − (1− t)x2⟩

−t⟨ϕ(x1, µ), y − x1⟩ − (1− t)⟨ϕ(x2, µ), y − x2⟩

= t⟨ϕ(x1, µ), (1− t)x1 − (1− t)x2⟩+ (1− t)⟨ϕ(x2, µ),−tx1 + tx2⟩

= t(1− t)⟨ϕ(x1, µ)− ϕ(x2, µ), x1 − x2⟩ ∈ C.

Thus, (ii) of Theorem 3.2 is satisfied. Turning to (iii) of Theorem 3.2, take any µ1, µ2 ∈ V and x, y ∈ K(U) to

see that
∥f(x, y, µ1)− f(x, y, µ2)∥ = ∥⟨ϕ(x, µ1)− ϕ(x, µ2), y − x⟩∥

≤ ∥ϕ(x, µ1)− ϕ(x, µ2)∥∥x− y∥

≤ h2ρ2∥µ1 − µ2∥β2 ,

where ρ2 = diamK(U). Thus, assumption (iii) is fulfilled with h = h2ρ2 and β = β2 .

The Hölder continuity in (iv) holds with q = q2 and δ = 1, since, for y1, y2 ∈ K(U), x ∈ K(U) and

µ ∈ V , we have

∥f(x, y1, µ)− f(x, y2, µ)∥ = ∥⟨ϕ(x, µ), y1 − x⟩ − ⟨ϕ(x, µ), y2 − x⟩∥

= ∥⟨ϕ(x, µ), y1 − y2⟩∥

≤ ∥ϕ(x, µ)∥∥y1 − y2||

≤ q2||y1 − y2||.

With the same arguments as for the concavity assumption in (i), we also get the convexity assumption in (iv).
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Therefore, the conclusion of Corollary 4.4 is implied from Theorem 3.2. □

Remark 4.5 In the literature, the Hölder continuity of solution mappings to variational inequality was inves-

tigated intensively [citeyen1, yenlee. Most of these works imposed assumptions related to strong monotonic-

ity/convexity and the solution sets were unique. It is worth noticing that, in Corollary 4.4, although the function

g is assumed to be monotone, the solutions sets may be not unique. This is illustrated by the following example.

Example 4.6 Let X = R,Λ ≡ M = [0, 1], A = [0, 1],K(λ) = [0, 1], Y = R2, C = R2
+ and ϕ(x, µ) = (0, 0).

Then all assumptions of Corollary 4.4 are fulfilled. Hence, Corollary 4.4 derives the Hölder continuity of Π2 .

By direct calculations we have, for all (ε, µ) ∈ R+ ×M , Π2(ε, µ) = [0, 1]. Obviously, Π2 is not a singleton.

If Y = R , we also have the result for (VI) as follows.

Corollary 4.7 For (VI), assume that Π2(ε, λ, µ) is nonempty for small ε > 0 . Suppose that the following

conditions hold:

(a) K is l2.α2 -Hölder continuous around λ0 , i.e. there is a neighborhood U of λ0 such that, for all

λ1, λ2 ∈ U ,

K(λ1) ⊆ K(λ2) + l2B(0, ||λ1 − λ2||α2).

(b) There is a neighborhood V of µ0 such that, for each µ ∈ V , ϕ(·, µ) is bounded (i.e. there exists q2 > 0

such that ∥ϕ(x, µ)∥ ≤ q2, ∀x ∈ K(U)), monotone and affine in K(U) .

(c) For x ∈ K(U), ϕ(x, ·) is h2.β2 -Hölder continuous in V .

Then, for each ε̄ > 0 , the approximate solution Π2 satisfies the following Hölder property in [ε̄,+∞)×U × V :

H(Π2(ε1, λ1, µ1),Π2(ε2, λ2, µ2)) ≤ κ1|ε1 − ε2|+ κ2∥µ1 − µ2∥β2 + κ3∥λ1 − λ2∥α2 ,

where κ1, κ2, κ3 > 0 and depend on ε̄ , l2 , etc.

4.3. Fixed-point problems

For ε ≥ 0 and µ ∈ M , we denote the ε-solution set of (FP) by Π3(ε, µ), i.e.

Π3(ε, µ) = {x̄ ∈ A : ∥x̄− g(x̄, µ)∥ ≤ ε}.

Corollary 4.8 Assume that Π3(ε, µ) is nonempty for small ε > 0 in a neighborhood of the considered point

µ0 ∈ M . Suppose that the following conditions hold:

(a) there is a neighborhood U of µ0 such that, for each µ ∈ U,φ(·, µ) is affine and x 7→ x − φ(x, µ) is

monotone in A ;

(b) for every x ∈ A , φ(x, ·) is h3.β3 -Hölder continuous in A .

Then, for each ε̄ > 0 , Π3 satisfies the following Hölder condition in [
√
ε̄,+∞)× U :

H(Π3(ε1, µ1),Π3(ε2, µ2)) ≤ k1|ε1 − ε2|+ k2∥µ1 − µ2∥β3 ,

where k1, k2 > 0 and depend on ε̄ , h3 , and β3 .

Proof We omit the proof because it is similar to the proof of Corollary 4.1 and 4.4. □
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[32] Li SJ, Li XB. Hölder continuity of solutions to parametric weak generalized Ky Fan inequality. J Optim Theory

Appl 2011; 149: 540-553.

[33] Li SJ, Li XB, Wang LN, Teo KL. The Hölder continuity of solutions to generalized vector equilibrium problems.

European J Oper Res 2009; 199: 334-338.

[34] Li SJ, Chen CR, Li XB, Teo KL. Hölder continuity and upper estimates of solutions to vector quasiequilibrium

problems. European J Oper Res 2011; 210: 148-157.
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