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Abstract: We introduce a family of Balakrishnan-Rubin-type hypersingular integrals depending on a parameter e
and generated by the Gauss—Weierstrass semigroup. Then the connection between the order of L,-smoothness of a

Ly, —function ¢ and the rate of L,-convergence of these families to ¢, as € tends to 0, is obtained.
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1. Introduction

For a sufficiently good function f on R™ the Riesz and Bessel potentials of order « are defined by

o) (g — L f () o 2TEL(S)
D@ = 5y L e ) = s (1)
Rea >0, a#nn+2,n+4,..
0 @) = 57 [ £ 0)Ga o =) d A (o) =277 (5) (12)

e =12 dt
Gq (x) = / t 2 e tT e Rea > 0.
0
These operators can be regarded (in a certain sense) as a negative “fractional” powers of the differential
operators, (—A) and (E — A), ie.

o

I*=(=A)"2% and J* = (E—A)" 2,

0? 0? 02
A= a—x% + a—xg 4+ 4 37%’ FE — is identity operator.
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If f e L,(R"), then the integral (1.1) converges a.e. for 1 < p < g2~ and the integral (1.2) converges
a.e. for 1 < p < 0o, and these conditions are accurate.

These potentials are of great importance in harmonic analysis and its applications; we refer to [10, 14, 19—
24, 29] for the basic properties and applications of these potentials. We should also mention that some significant
generalizations of potentials-type operators on space of homogeneous type and different hypergroups were
investigated in [11, 12, 15, 16] and in many others works.

In potentials theory one of the important problems is finding an inversion formula for the potential
operator, and hypersingular integrals theory has appeared as a result of these efforts and Stein [25], Lizorkin
[13], Wheeden [29], Fisher [10], Samko [21-23], Rubin [17-20] and many other mathematicians have investigated
the subject. In particular, the wavelet approach to inversion of the potentials was developed by Rubin [19, 20],
Rubin and Aliev [1], and Aliev [2]; see also [3-5, 27].

In the paper [18] Rubin introduced some family of “truncated” integrals D2 f and ©2f, (¢ > 0), gener-
ated by the Gauss—Weierstrass semigroup, and proved that under some conditions on a function ¢ € L, (R™)
and parameter « > 0, the expressions DXI%p and D¢J%p converge to ¢ as € — 01, pointwise (a.e.) and in
the L,-norm. Our main work is to find the relationship between the “order of L,-smoothness” of a function ¢
and the “rate of L,-convergence” of the families DEI%p and D2J%p to ¢ as e — 0T,

Some comments are in order. In the case of truncated hypersingular integrals generated by the Poisson
and metaharmonic semigroups, the analogous problem has been studied in [6] and also the rate of pointwise
convergence of the truncated hypersingular integrals generated by the Gauss—Weierstrass semigroup has been
studied in [7]. The essential difference between our main result and the analogous statement of the paper [7] is
as follows: in the paper [7] the rate of pointwise convergence of the families D&¢ and D%y, (e > 0), to ¢ as

e — 0T, at the some kind of smoothness point of ¢, is obtained, whereas in this work we find some relationships

between the “order of L,-smoothness” of function ¢ and the “rate of L,-convergence” of the families D¢ f

and D2f, (e >0), to p as ¢ — 0T.

2. Auxiliary definitions and lemmas

Let L, (R™) be the space of measurable functions on R™ with the finite norm

1
1f1l, = (/ |f (@) dx) 1 <p<oo; [[fllo = esssup|f ()]
R z€R"
The Gauss—Weierstrass semigroup, generated by a function f (z), « € R™, is defined by

Uf) (@, t)= | Wyt)f(z—y)dy, (t>0), (2.1)

R™

where W (y;t) is the Gauss—Weierstrass kernel,

n 1 2
W (y;t) = (4mt)” = e~ r , t > 0, which has W (y;t)dy =1, (¥t > 0) (2.2)
R‘IL

More information about this semigroup, (Uf)(-,t), can be found in [18] and [19, p. 223] (see also
[23, 26)).
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The modified Gauss-Weierstrass semigroup Uy, f is defined as
(U f) (z,t) = e " (Uf) (x,); t > 0,2 € R™. (2.3)

For t = 0 we are assuming that (Uf) (z,0) = (Unf) (2,0) = f (x).
The finite difference of the function g (t), (t € R') with order / € N and step 7 € R! is defined by

A=Y (l) (“1) gt + kr). (2.4)
k=0 k

Using the (U f) (x,t) and (Upsf) (z,t), we introduce the following Balakrishnan-Rubin-type “truncated”
integrals (cf. [19, p.224 and p.262]):

o R Sy AT | AT
0 @) = o [ LZ () V" @D ek >] m (25)
a 1 e l k dr
@) @) = o | [Z () 0" @ (mﬂ] R (26)
1 2 &€ =0

where the normalized coefficient Y, (%) is defined by

Xi (%) = /Oo (1—e )t %at, (o < % <l le N).
0

As shown in the following lemma, there is a close connection between the constructions (2.5)—(2.6) and

the potentials I%p and J%p.

Lemma 2.1 (Rubin [18], [19, p.224 and p.262]).
(a) Let p € Ly, (R"),(1 < p<o0) and 0 < a < 3. Then for any € >0 and for a.e. x € R",

(D21%9) (@) = [ K () W) (o) 27)
(b) Let ¢ € L, (R™), (1 <p<o0) and 0 < o < 0o. Then for any € > 0 and for a.e. x € R™,
©20°) (@) = [ K (1) Ware) (e, (23)
Here the function KV (n) is defined as

-3
2

K= e (e 3 (3] orta 1], oo
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The following lemma gives some properties of the function K g) (n) that will be used later.

Lemma 2.2 (see [23, p.125] and [19, p.158])
(a) KY (1) € Ly (0,00) and [ K ()dy = 1.

W,y _ [ 0w, ifn—ot
() KY (n)—{ Om3=1=1), if 5 o }

The following definition and the subsequent lemmas play crucial roles in the sequel.

Definition 2.3 Let p € (0,1) be a fized parameter and the function u(r), (0 <r < p) be continuous on [0, pl,
positive on (0, p] and 1 (0) = 0.
We say that a function ¢ € L, (R™),(1 < p < o0) has p-smoothness property in L,— sense if

My = M) = sup —s /| o= = ol do < o (2.10)

O<r§p7ﬂn/~L
1
here, as usual, |x| = (22 + ...+ 22)? and dz = dz;...dz, ).
1 n

Remark 2.4 Let the function p be defined as in Definition 2.5 and p, be the L,-modulus of continuity of
function ¢ € L,(R™), i.e.

pe (1) = 51 llp (=) =9 Ol (Jel = /o 402,

It is clear that if p,(r) < p(r), (0 <r < p) then the expression M, in (2.10) is finite.
Remark 2.5 From now on it will be assumed that p(t) > at,(0 <t < p), for some a >0 and p(t) = p(p)

for p <t < oo. It is well known that if p is modulus of continuity then p(At) < (A+1)u(t) for A >0 (see,
for instance [9, p. 41]).

Lemma 2.6 (cf.[7]; see also [8] and [28]) Let a function ¢ € L, (R"™), (1 <p<oo) have p-smoothness
property in L,— sense. Let, further, the function ¢ (r), (0 <r < p) be decreasing, nonnegative, and continuously

differentiable on [0, p]. Then

/| ol =) = e Ol ¥ el) de < M [0 ()0 )

+ /OP r"u(r) (= (1)) dr]. (2.11)

Proof
We give here a short proof of (2.11). Set g(z) = [l¢(t—z)—¢(t)[, and = = rf, where r = |z|

,0 € S»~1. Then

1= [ et el ehde = [ i) dn

lz|<p

_ /p P () (/ 9(r0)do (0))dr.

0 |o]=1
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By introducing the functions
r) = rf)do an r) = ' )1 .
A(r) /9|_1g( 0)do(6) and ©r) = [ Ar)~tar (2.12)

we have

IE/Opw(r))\(r)r"_ldr:/opw(r) ) = o (1) Q) |8—/OPQ(7")1// (r) dr

()2 + [ ")~ ()ar.
The condition (2.10) yields that
Qr) = T)\rtnfldtz z)dr = t—x)—@ @), dr <r"u(r)M,.
") / (r) /ﬂgm e = [ Jle(t=2) = o), do <" ulr)

Hence,

Lemma 2.7 Let a function ¢ have p-smoothness property and W (x;e) be the Gauss—Weierstrass kernel with
parameter € > 0 (cf(2.2)):

|z|2

W (z;6) = (4me) 2 e 1= (z € R").

Then
/|< e (t =) = o Oll, W (@:6) do < e (V&) Ve € (0,p) (2.13)

where ¢ > 0 does not depend on & < 1.
Proof We set ¢(|z|) = W(z;¢) in (2.11). Since ¥ (r) = (47r5)7% e , after simple calculation we get
2

—p (1) =cre 1 TEe =, ¢ = 2~ (D) =%

Putting this value of (=, (r)) into (2.11), we have for p < 1

[ et = e )1, () de < My [ ) () F e
z|<p
P n 2 n P 2 n 2
+/ crr™ i (r) sflffefﬂdr] <coMye 2 [/ T (r) e4€dr—|—62e4a} )
0 0

By changing variables as r = \/ct, we get

‘/|93|§p lo (t —x) — SD(t)Hpi/J (|z|) dz < c3 [/0

h

e

t2 n 2
"t (Vet) e_4dt+5_2e_251 : (2.14)
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From the inequality p(y/et) < (1 +1¢) pu(y/€) it follows that

/ﬁt"“u(ﬁt) e—édtgu(ﬁ)/ P+ e T db < cap (VE).
0

0

k

2
On the other hand, since for any k& > 0, lin%)s’ e~ =0, we have
e—

2
_n _ P
€ 2e %= < c54/e for some c5 > 0.

By making use of these in (2.14) we have
[ et =@l (e < e (1 (VE) + V2).
|<p
The condition w(t) > at, (0 <t <p, a>0) yields (u(ve) + v¢) < crpu(v/€), and the desired result

/||< o (t —2) — o (DI, W (250) da < ey (V)

follows.

3. Formulation and proof of the main theorem

Theorem 3.1 Let ¢ € L, (R"), (1 < p < 00) has the p-smoothness property in the L, -sense, i.e. the condition
(2.10) is satisfied. Further, let p(r) be a Ly,-modulus of continuity of ¢ that satisfies the inequality p(r) >
ar, (0 <r < p) for some a > 0. Assume that the operators DY and D2 are defined as in (2.5) — (2.6) and the

parameter | € N satisfies the condition | > § + 1. Then

(a) [|1D21%0 = ¢l = O (n(vE)) ase — 0¥, (3.1)
(0) 1D2J% —ol, =0 (u(VE)) ase — 07, (3.2)

Proof

By making use of the formula (2.7), Lemma 2.2 (a), and the Minkowski inequality, we have:

ipere— ol = | [ K9 o) Ceman= [T KL @ an
- [ 5P o worcem - o yan
< [ K9 @] 1we) C.em - o ()l (33)
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Further, since the integral of the Gauss—Weierstrass kernel is fR" W (y;t)dy = 1, it follows that

W (y;en) [p (t —y) — @ (t)] dy

1) () — o O, = \

R™ P
< RHW(y;fsn)\Iw(t—y)—so(t)llpdy
=) W(ysen) e (t—y) — @ Ol dy
+ e W (yien) |l (t —y) — @ @), dy = i1 (en) + iz (en) . (3.4)

Now we estimate the i; (en) and iz (en), separately.
As a result of (2.13) we have i1(en) < ¢1u(y/en). On the other hand, denoting by do(6) the area element

of the unit n—sphere, S"~1, we have

iz (en) = Wysen) lle (t—y) — e @), dy
ly|>p
<2|el, W (y;en) dy
ly|>p
. n ul2
oalell, [ (men)F e Erdy, (t > 0)
ly|>p

(set y=70,p <r <o0,0c S dy=r""tdrdo ()

oo 1 7‘2
r" e Aendr
P

o 1 2 ° 1 t2 t2
= 02/ t" et dt = 02/ t"TreTTe 2 dt

- — P
2/en 2./en

p2
< cge 8en,

|3

=c(en)

The equality iI;f(; (7’6%) = e yields that e 7 < %7’, and therefore is (en) < cyen, where ¢4 does not
T

depend on ¢ and 7. Then we have,

100) (rzm) — o O, € eapn (Vam) + eanen

and hence,

- (33) [
Iz el < [ K ) (o (B + caen)

(we use pu (ven) < (14 yn)p(Ve) )
<en(ve) [ |x

—~
—

") -+ v+ 1) dn. (3.5)

INI)

1382



ERYIGIT and COBANOGLU/Turk J Math

Finally, using the condition [ > Z +1 and keeping in mind the asymptotic behavior of the function K g) (n) as

17— oo (see Lemma 2.2(b)) we get that the integral at the right-hand side of (3.5) converges, that is,
IDET%0 = ¢ll, = O (n(VE)) ase— 07

The proof of part (a) is complete. The proof of (3.2) follows in a similar way and is based on the following
inequalities:
TR0
1927% —¢llp < /0 1Ko (I[(Une ) (56m) — 0 (-)l[pdt

and

[(Uue)(5em) —o()llp < (1 =e =N[[(Up)(5en)llp + [(Up)(5en) — o)l

Remark 3.2 [t is very interesting to solve an analogous problem by using the wavelet measure instead of the

finite difference; see, e.g. [1, 4], where wavelet-like transforms are used in inversion formulas for potentials.
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