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Abstract: We introduce a family of Balakrishnan–Rubin-type hypersingular integrals depending on a parameter ε

and generated by the Gauss–Weierstrass semigroup. Then the connection between the order of Lp –smoothness of a

Lp –function φ and the rate of Lp -convergence of these families to φ , as ε tends to 0, is obtained.
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1. Introduction

For a sufficiently good function f on Rn the Riesz and Bessel potentials of order α are defined by

(Iαf) (x) =
1

γn (α)

∫
Rn

f (y)

|x− y|n−α dy, γn (α) =
2απ

n
2 Γ

(
α
2

)
Γ
(
n−α
2

) (1.1)

Reα > 0, α ̸= n, n+ 2, n+ 4, ...

(Jαf) (x) =
1

λn (α)

∫
Rn

f (y)Gα (x− y) dy, λn (α) = 2nπ
n
2 Γ

(α
2

)
(1.2)

Gα (x) =

∫ ∞

0

t
α−n

2 e−t− |x|2
4t
dt

t
, Reα > 0.

These operators can be regarded (in a certain sense) as a negative “fractional” powers of the differential

operators,(−∆) and (E −∆), i.e.

Iα = (−∆)
−α

2 and Jα = (E −∆)
−α

2 ,

∆ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
, E − is identity operator.
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If f ∈ Lp (Rn), then the integral (1.1) converges a.e. for 1 ≤ p < n
Reα and the integral (1.2) converges

a.e. for 1 ≤ p <∞ , and these conditions are accurate.

These potentials are of great importance in harmonic analysis and its applications; we refer to [10, 14, 19–

24, 29] for the basic properties and applications of these potentials. We should also mention that some significant

generalizations of potentials-type operators on space of homogeneous type and different hypergroups were

investigated in [11, 12, 15, 16] and in many others works.

In potentials theory one of the important problems is finding an inversion formula for the potential

operator, and hypersingular integrals theory has appeared as a result of these efforts and Stein [25], Lizorkin

[13], Wheeden [29], Fisher [10], Samko [21–23], Rubin [17–20] and many other mathematicians have investigated

the subject. In particular, the wavelet approach to inversion of the potentials was developed by Rubin [19, 20],

Rubin and Aliev [1], and Aliev [2]; see also [3–5, 27].

In the paper [18] Rubin introduced some family of “truncated” integrals Dα
ε f and Dα

ε f, (ε > 0) , gener-

ated by the Gauss–Weierstrass semigroup, and proved that under some conditions on a function φ ∈ Lp (Rn)

and parameter α > 0, the expressions Dα
ε I

αφ and Dα
ε J

αφ converge to φ as ε → 0+, pointwise (a.e.) and in

the Lp -norm. Our main work is to find the relationship between the “order of Lp -smoothness” of a function φ

and the “rate of Lp -convergence” of the families Dα
ε I

αφ and Dα
ε J

αφ to φ as ε→ 0+.

Some comments are in order. In the case of truncated hypersingular integrals generated by the Poisson

and metaharmonic semigroups, the analogous problem has been studied in [6] and also the rate of pointwise

convergence of the truncated hypersingular integrals generated by the Gauss–Weierstrass semigroup has been

studied in [7]. The essential difference between our main result and the analogous statement of the paper [7] is

as follows: in the paper [7] the rate of pointwise convergence of the families Dα
ε ϕ and Dα

εφ, (ε > 0) , to φ as

ε→ 0+ , at the some kind of smoothness point of φ , is obtained, whereas in this work we find some relationships

between the “order of Lp–smoothness” of function φ and the “rate of Lp -convergence” of the families Dα
ε f

and Dα
ε f, (ε > 0) , to φ as ε→ 0+.

2. Auxiliary definitions and lemmas

Let Lp (Rn) be the space of measurable functions on Rn with the finite norm

∥f∥p =

(∫
Rn

|f (x)|p dx
) 1

p

, 1 ≤ p <∞; ∥f∥∞ = ess sup
x∈Rn

|f (x)| .

The Gauss–Weierstrass semigroup, generated by a function f (x) , x ∈ Rn , is defined by

(Uf) (x, t) =

∫
Rn

W (y; t) f (x− y) dy, (t > 0) , (2.1)

where W (y; t) is the Gauss–Weierstrass kernel,

W (y; t) = (4πt)
−n

2 e−
|y|2
4t , t > 0, which has

∫
Rn

W (y; t)dy = 1, (∀t > 0) (2.2)

More information about this semigroup, (Uf) (·, t) , can be found in [18] and [19, p. 223] (see also

[23, 26]).
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The modified Gauss-Weierstrass semigroup UMf is defined as

(UMf) (x, t) = e−t (Uf) (x, t) ; t > 0, x ∈ Rn. (2.3)

For t = 0 we are assuming that (Uf) (x, 0) = (UMf) (x, 0) = f (x) .

The finite difference of the function g (t) ,
(
t ∈ R1

)
with order l ∈ N and step τ ∈ R1 is defined by

∆l
τ [g] (t) ≡

l∑
k=0

(
l

k

)
(−1)

k
g (t+ kτ) . (2.4)

Using the (Uf) (x, t) and (UMf) (x, t), we introduce the following Balakrishnan–Rubin-type “truncated”

integrals (cf. [19, p.224 and p.262]):

(Dα
ε f) (x) =

1

χ
l

(
α
2

) ∫ ∞

ε

[
l∑

k=0

(
l

k

)
(−1)

k
(Uf) (x, kτ)

]
dτ

τ1+
α
2
; (2.5)

(Dα
ε f) (x) =

1

χ
l

(
α
2

) ∫ ∞

ε

[
l∑

k=0

(
l

k

)
(−1)

k
(UMf) (x, kτ)

]
dτ

τ1+
α
2
, (2.6)

where the normalized coefficient χ
l

(
α
2

)
is defined by

χ
l

(α
2

)
=

∫ ∞

0

(
1− e−t

)l
t−1−α

2 dt,
(
0 <

α

2
< l, l ∈ N

)
.

As shown in the following lemma, there is a close connection between the constructions (2.5)–(2.6) and

the potentials Iαφ and Jαφ.

Lemma 2.1 (Rubin [18], [19, p.224 and p.262]).

(a) Let φ ∈ Lp (Rn) , (1 ≤ p <∞) and 0 < α < n
p . Then for any ε > 0 and for a.e. x ∈ Rn,

(Dα
ε I

αφ) (x) =

∫ ∞

0

K
(l)
α
2
(η) (Uφ) (x, εη) dη; (2.7)

(b) Let φ ∈ Lp (Rn) , (1 ≤ p ≤ ∞) and 0 < α <∞. Then for any ε > 0 and for a.e. x ∈ Rn,

(Dα
ε J

αφ) (x) =

∫ ∞

0

K
(l)
α
2
(η) (UMφ) (x, εη) dη. (2.8)

Here the function K
(l)
α
2
(η) is defined as

K
(l)
α
2
(η) =

[
Γ
(
1 +

α

2

)
χ

l

(α
2

)]−1

η−1∆l
−1

[
η

α
2
+

]
, (2.9)

where in accordance (2.4),

∆l
−1

[
η

α
2
+

]
=

l∑
k=0

(
l

k

)
(−1)

k
(η − k)

α
2
+ and a

α
2
+ =

{
a

α
2 , if a > 0
0, if a ≤ 0

}
.
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The following lemma gives some properties of the function K
(l)
α
2
(η) that will be used later.

Lemma 2.2 (see [23, p.125] and [19, p.158])

(a) K
(l)
α
2
(η) ∈ L1 (0,∞) and

∫∞
0
K

(l)
α
2
(η) dη = 1.

(b) K
(l)
α
2
(η) =

{
O(η

α
2 −1), if η → 0+

O(η
α
2 −l−1), if η → ∞

}
.

The following definition and the subsequent lemmas play crucial roles in the sequel.

Definition 2.3 Let ρ ∈ (0, 1) be a fixed parameter and the function µ (r) , (0 ≤ r ≤ ρ) be continuous on [0, ρ] ,

positive on (0, ρ] and µ (0) = 0.

We say that a function φ ∈ Lp (Rn) , (1 ≤ p <∞) has µ-smoothness property in Lp−sense if

Mµ = Mµ(φ) ≡ sup
0<r≤ρ

1

rnµ (r)

∫
|x|≤r

∥φ (· − x)− φ (·)∥p dx <∞. (2.10)

(here, as usual, |x| =
(
x21 + ...+ x2n

) 1
2 and dx = dx1...dxn ).

Remark 2.4 Let the function µ be defined as in Definition 2.3 and µφ be the Lp–modulus of continuity of

function φ ∈ Lp(Rn) , i.e.

µφ (r) = sup
|x|≤r

∥φ (· − x)− φ (·)∥p ,
(
|x| =

√
x21 + · · ·x2n

)
.

It is clear that if µφ(r) ≤ µ(r), (0 ≤ r ≤ ρ) then the expression Mµ in (2.10) is finite.

Remark 2.5 From now on it will be assumed that µ (t) ≥ at, (0 ≤ t ≤ ρ) , for some a > 0 and µ (t) = µ (ρ)

for ρ ≤ t < ∞. It is well known that if µ is modulus of continuity then µ (λt) ≤ (λ+ 1)µ (t) for λ ≥ 0 (see,

for instance [9, p. 41]).

Lemma 2.6 (cf.[7] ; see also [8] and [28]) Let a function φ ∈ Lp (Rn) , (1 ≤ p <∞) have µ-smoothness

property in Lp−sense. Let, further, the function ψ (r) , (0 ≤ r ≤ ρ) be decreasing, nonnegative, and continuously

differentiable on [0, ρ] . Then∫
|x|≤ρ

∥φ (t− x)− φ (t)∥p ψ (|x|) dx ≤ Mµ

[
ρnµ (ρ)ψ (ρ)

+

∫ ρ

0

rnµ (r) (−ψ′ (r)) dr
]
. (2.11)

Proof

We give here a short proof of (2.11). Set g(x) = ∥φ (t− x)− φ (t)∥p and x = rθ , where r = |x|

, θ ∈ Sn−1. Then

I ≡
∫
|x|≤ρ

∥φ (t− x)− φ (t)∥p ψ (|x|) dx =

∫
|x|≤ρ

g(x)ψ (|x|) dx

=

∫ ρ

0

rn−1ψ (r) (

∫
|θ|=1

g(rθ)dσ(θ))dr.
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By introducing the functions

λ(r) =

∫
|θ|=1

g(rθ)dσ(θ) and Ω(r) =

∫ r

0

λ(r)tn−1dt (2.12)

we have

I ≡
∫ ρ

0

ψ (r)λ(r)rn−1dr =

∫ ρ

0

ψ (r) dΩ(r) = ψ (r)Ω(r) |ρ0 −
∫ ρ

0

Ω(r)ψ′ (r) dr

= ψ (ρ)Ω(ρ) +

∫ ρ

0

Ω(r)(−ψ′ (r))dr.

The condition (2.10) yields that

Ω(r) =

∫ r

0

λ(r)tn−1dt =

∫
|x|≤r

g(x)dx =

∫
|x|≤ρ

∥φ (t− x)− φ (t)∥p dx ≤ rnµ(r)Mµ.

Hence,

I ≤Mµ

[
ρnµ(ρ)Ψ(ρ) +

∫ ρ

0

rnµ(r)(−ψ′ (r))dr

]
.

2

Lemma 2.7 Let a function φ have µ–smoothness property and W (x; ε) be the Gauss–Weierstrass kernel with

parameter ε > 0 (cf(2.2)) :

W (x; ε) = (4πε)
−n

2 e−
|x|2
4ε (x ∈ Rn) .

Then ∫
|x|≤ρ

∥φ (t− x)− φ (t)∥pW (x; ε) dx ≤ cµ
(√
ε
)
, ∀ε ∈ (0, ρ) (2.13)

where c > 0 does not depend on ε≪ 1.

Proof We set ψ(|x|) =W (x; ε) in (2.11). Since ψ (r) = (4πε)
−n

2 e−
r2

4ε , after simple calculation we get

−ψ′ (r) = c1rε
−1−n

2 e−
r2

4ε ; c1 = 2−(n+1)π−n
2 .

Putting this value of (−ψ′
ε (r)) into (2.11), we have for ρ < 1∫

|x|≤ρ

∥φ (t− x)− φ (t)∥p ψ (|x|) dx ≤ Mµ

[
ρnµ (ρ) (4πε)

−n
2 e−

ρ2

4ε

+

∫ ρ

0

c1r
n+1µ (r) ε−1−n

2 e−
r2

4ε dr
]
≤ c2Mµε

−1−n
2

[∫ ρ

0

rn+1µ (r) e−
r2

4ε dr + ε−
n
2 e−

ρ2

4ε

]
.

By changing variables as r =
√
εt, we get

∫
|x|≤ρ

∥φ (t− x)− φ (t)∥p ψ (|x|) dx ≤ c3

[∫ ρ√
ε

0

tn+1µ
(√
εt
)
e−

t2

4 dt+ ε−
n
2 e−

ρ2

4ε

]
. (2.14)
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From the inequality µ (
√
εt) ≤ (1 + t)µ (

√
ε) it follows that

∫ ρ√
ε

0

tn+1µ
(√
εt
)
e−

t2

4 dt ≤ µ
(√
ε
) ∫ ∞

0

tn+1 (1 + t) e−
t2

4 dt ≤ c4µ
(√
ε
)
.

On the other hand, since for any k > 0, lim
ε→0

ε−ke−
ρ2

4ε = 0, we have

ε−
n
2 e−

ρ2

4ε ≤ c5
√
ε for some c5 > 0.

By making use of these in (2.14) we have

∫
|x|≤ρ

∥φ (t− x)− φ (t)∥p ψ (|x|) dx ≤ c6
(
µ
(√
ε
)
+
√
ε
)
.

The condition µ (t) ≥ at, (0 ≤ t ≤ ρ, a > 0) yields (µ (
√
ε) +

√
ε) ≤ c7µ (

√
ε), and the desired result

∫
|x|≤ρ

∥φ (t− x)− φ (t)∥pW (x; ε) dx ≤ cµ
(√
ε
)

follows. 2

3. Formulation and proof of the main theorem

Theorem 3.1 Let φ ∈ Lp (Rn) , (1 ≤ p <∞) has the µ-smoothness property in the Lp -sense, i.e. the condition

(2.10) is satisfied. Further, let µ (r) be a Lp -modulus of continuity of φ that satisfies the inequality µ (r) ≥
ar, (0 ≤ r ≤ ρ) for some a > 0 . Assume that the operators Dα

ε and Dα
ε are defined as in (2.5)− (2.6) and the

parameter l ∈ N satisfies the condition l > α
2 + 1. Then

(a) ∥Dα
ε I

αφ− φ∥p = O (µ (
√
ε)) as ε→ 0+, (3.1)

(b) ∥Dα
ε J

αφ− φ∥p = O (µ (
√
ε)) as ε→ 0+. (3.2)

Proof

By making use of the formula (2.7), Lemma 2.2 (a), and the Minkowski inequality, we have:

∥Dα
ε I

αφ− φ∥p =

∥∥∥∥∫ ∞

0

K
(l)
α
2
(η) (Uφ) (·, εη) dη −

∫ ∞

0

K
(l)
α
2
(η)φ (·) dη

∥∥∥∥
p

=

∥∥∥∥∫ ∞

0

K
(l)
α
2
(η) ((Uφ) (·, εη)− φ (·)) dη

∥∥∥∥
p

≤
∫ ∞

0

∣∣∣K(l)
α
2
(η)

∣∣∣ ∥(Uφ) (·, εη)− φ (·)∥p dη. (3.3)
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Further, since the integral of the Gauss–Weierstrass kernel is
∫
Rn W (y; t) dy = 1, it follows that

∥(Uφ) (·, εη)− φ (·)∥p =

∥∥∥∥∫
Rn

W (y; εη) [φ (t− y)− φ (t)] dy

∥∥∥∥
p

≤
∫
Rn

W (y; εη) ∥φ (t− y)− φ (t)∥p dy

=

∫
|y|≤ρ

W (y; εη) ∥φ (t− y)− φ (t)∥p dy

+

∫
|y|>ρ

W (y; εη) ∥φ (t− y)− φ (t)∥p dy = i1 (εη) + i2 (εη) . (3.4)

Now we estimate the i1 (εη) and i2 (εη), separately.

As a result of (2.13) we have i1(εη) ≤ c1µ(
√
εη). On the other hand, denoting by dσ(θ) the area element

of the unit n–sphere, Sn−1 , we have

i2 (εη) =

∫
|y|>ρ

W (y; εη) ∥φ (t− y)− φ (t)∥p dy

≤ 2 ∥φ∥p
∫
|y|>ρ

W (y; εη) dy

(2.2)
= 2 ∥φ∥p

∫
|y|>ρ

(4πεη)
−n

2 e−
|y|2
4εη dy, (t > 0)

(set y = rθ, ρ < r <∞, θ ∈ Sn−1; dy = rn−1drdσ (θ))

= c1 (εη)
−n

2

∫ ∞

ρ

rn−1e−
r2

4εη dr

= c2

∫ ∞

ρ
2
√

εη

tn−1e−t2dt = c2

∫ ∞

ρ
2
√

εη

tn−1e−
t2

2 e−
t2

2 dt

≤ c3e
− ρ2

8εη .

The equality inf
τ>0

(
τe

δ
τ

)
= eδ yields that e−

δ
τ ≤ 1

eδ τ, and therefore i2 (εη) ≤ c4εη, where c4 does not

depend on ε and η. Then we have,

∥(Uφ) (·, εη)− φ (·)∥p
(3.4)

≤ c1µ (
√
εη)) + c4εη

and hence,

∥Dα
ε I

αφ− φ∥p
(3.3)

≤
∫ ∞

0

∣∣∣K(l)
α
2
(η)

∣∣∣ (cµ (√εη) + c4εη) dη

(we use µ (
√
εη) ≤ (1 +

√
η)µ

(√
ε
)
)

≤ c5µ
(√
ε
) ∫ ∞

0

∣∣∣K(l)
α
2
(η)

∣∣∣ (η +√
η + 1) dη. (3.5)
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Finally, using the condition l > α
2 +1 and keeping in mind the asymptotic behavior of the function K

(l)
α
2
(η) as

η → ∞ (see Lemma 2.2(b)) we get that the integral at the right-hand side of (3.5) converges, that is,

∥Dα
ε I

αφ− φ∥p = O
(
µ
(√
ε
))

as ε→ 0+.

The proof of part (a) is complete. The proof of (3.2) follows in a similar way and is based on the following

inequalities:

∥Dα
ε J

αφ− φ∥p ≤
∫ ∞

0

|K(l)
α/2(η)|∥(UMφ)(·; εη)− φ(·)∥pdt

and

∥(UMφ)(·; εη)− φ(·)∥p ≤ (1− e−εη)∥(Uφ)(·; εη)∥p + ∥(Uφ)(·; εη)− φ(·)∥p

2

Remark 3.2 It is very interesting to solve an analogous problem by using the wavelet measure instead of the

finite difference; see, e.g. [1, 4], where wavelet-like transforms are used in inversion formulas for potentials.
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