Turk J Math
(2017) 41: $1618-1627$
(c) TÜBİTAK

т $\mathbf{~ B i ́ t a k ~}$
Research Article
doi:10.3906/mat-1512-19

Generalization of the Gauss-Lucas theorem for bicomplex polynomials

Mahmood BIDKHAM*, Sara AHMADI
Faculty of Mathematics, Statistics, and Computer Science, Semnan University, Semnan, Iran

| Received: 04.12 .2015 | Accepted/Published Online: 08.02 .2017 | \bullet | Final Version: 23.11 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

The aim of this paper is to extend the domain of the Gauss-Lucas theorem from the set of complex numbers to the set of bicomplex numbers. We also discuss a bicomplex version of another compact generalization of the Gauss-Lucas theorem.

Key words: Bicomplex polynomial, Gauss-Lucas theorem

1. Introduction

Corrado Segre published a paper [13] in 1892, in which he studied an infinite set of algebra whose elements he called bicomplex numbers. The work of Segre remained unnoticed for almost a century, but recently mathematicians have started taking interest in the subject and a new theory of special functions has started coming up [6, 9]. In this paper, we introduce the mathematical tools necessary to investigate the Gauss-Lucas theorem for bicomplex polynomials. We also discuss a bicomplex version of another compact generalization of the Gauss-Lucas theorem proved by Aziz and Rather [1] for complex polynomials.

Let $\mathbb{B C}$ denote the set of bicomplex numbers, i.e.

$$
\mathbb{B} \mathbb{C}=\left\{x_{1}+i x_{2}+j\left(x_{3}+i x_{4}\right): x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}
$$

with $i^{2}=-1, j^{2}=-1$ and $i j=j i$, and then we can write bicomplex number $Z=x_{1}+i x_{2}+j\left(x_{3}+i x_{4}\right)$ as $z_{1}+j z_{2}$ where $z_{1}, z_{2} \in \mathbb{C}$. The addition and the multiplication of two bicomplex numbers are defined in the usual way. If we denote $e_{1}=\frac{1+i j}{2}, e_{2}=\frac{1-i j}{2}$, then the bicomplex number $Z=z_{1}+j z_{2}, z_{1}, z_{2} \in \mathbb{C}$, is uniquely represented as $\left(z_{1}-i z_{2}\right) e_{1}+\left(z_{1}+i z_{2}\right) e_{2}$. It can be easily verified that for every two bicomplex numbers $Z_{1}=\alpha_{1} e_{1}+\beta_{1} e_{2}, Z_{2}=\alpha_{2} e_{1}+\beta_{2} e_{2}$, we can write the following:

$$
\begin{aligned}
& Z_{1}+Z_{2}=\left(\alpha_{1}+\alpha_{2}\right) e_{1}+\left(\beta_{1}+\beta_{2}\right) e_{2} \\
& Z_{1} Z_{2}=\left(\alpha_{1} \alpha_{2}\right) e_{1}+\left(\beta_{1} \beta_{2}\right) e_{2}
\end{aligned}
$$

If $Z_{1}, Z_{2} \in \mathbb{B C}$ and $Z_{1} Z_{2}=1$, then each of the elements Z_{1} and Z_{2} is said to be the inverse of the other. An element that has an inverse is said to be invertible. One can easily verify that $Z=\alpha e_{1}+\beta e_{2} \in \mathbb{B} \mathbb{C}$ is invertible iff $\alpha \neq 0, \beta \neq 0$; in this case, we have

$$
Z^{-1}=\frac{1}{\alpha} e_{1}+\frac{1}{\beta} e_{2}
$$

[^0]
BIDKHAM and AHMADI/Turk J Math

Also, we can define the usual norm of $Z=z_{1}+j z_{2}$ as

$$
|Z|=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

It is easy to prove that for any bicomplex number $Z=\alpha e_{1}+\beta e_{2}$,

$$
|Z|=\sqrt{\frac{|\alpha|^{2}+|\beta|^{2}}{2}}
$$

where $\alpha=z_{1}-i z_{2}, \beta=z_{1}+i z_{2}$.

Definition 1.1 Letting $X_{1}, X_{2} \subseteq \mathbb{C}$, we say that $X \subseteq \mathbb{B C}$ is a Cartesian set determined by X_{1} and X_{2} if

$$
X=X_{1} \times_{e} X_{2}:=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=\alpha e_{1}+\beta e_{2},(\alpha, \beta) \in X_{1} \times X_{2}\right\}
$$

A special Cartesian set in $\mathbb{B C}$, which is called a disk, is defined as follows:

Definition 1.2 Let $a=a_{1}+j b_{1}=\alpha_{1} e_{1}+\beta_{1} e_{2}$ where $a_{1}, b_{1}, \alpha_{1}, \beta_{1} \in \mathbb{C}$, be a fixed point in $\mathbb{B} \mathbb{C}$. We define the open disk $D\left(a ; r_{1}, r_{2}\right)$ and closed disk $\bar{D}\left(a ; r_{1}, r_{2}\right)$ with center a and radii r_{1} and r_{2} as follows:

$$
\begin{aligned}
& D\left(a ; r_{1}, r_{2}\right)=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=\alpha e_{1}+\beta e_{2},\left|\alpha-\alpha_{1}\right|<r_{1},\left|\beta-\beta_{1}\right|<r_{2}\right\} \\
& \bar{D}\left(a ; r_{1}, r_{2}\right)=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=\alpha e_{1}+\beta e_{2},\left|\alpha-\alpha_{1}\right| \leq r_{1},\left|\beta-\beta_{1}\right| \leq r_{2}\right\}
\end{aligned}
$$

In linear space L, we call the intersection of all convex sets containing a given set A in L the convex hull of A, denoted by $H(A)$. If $c_{k}, 1 \leq k \leq n$ are nonnegative real numbers such that $\sum_{k=1}^{n} c_{k}=1$, then $\alpha=\sum_{k=1}^{n} c_{k} \alpha_{k}$ is called a convex combination of $\alpha_{1}, \ldots, \alpha_{n} \in L$. One can easily verify that $H(A)$ consists precisely of all convex combination of elements of $A[5,12]$.
The well-known Gauss-Lucas theorem in complex analysis states that every critical point of a complex polynomial $p(z)$ lies in the convex hull of its zeros[8]. As a compact generalization of the Gauss-Lucas theorem, Aziz and Rather [1] proved the following result.

Theorem 1.3 If all the zeros of complex polynomial $p(z)$ of degree $n \geq 2$ lie in the disk $D:=\{z:|z-c| \leq$ $r\}$, then for every real or complex number β with $|\beta| \leq 1$ and $R \geq 1$, all the zeros of the polynomial $p(R z-c(R-1))-\beta p(z)$ also lie in D.

If z_{1}, \ldots, z_{n} are n, not necessarily distinct, complex numbers, then the incomplete polynomials of degree $n-1$, associated with z_{1}, \ldots, z_{n}, are the polynomials $g_{k}(z)=\prod_{\substack{m=1 \\ m \neq k}}^{n}\left(z-z_{m}\right)$. In this direction we have the following result due to Díaz-Barrero and Egozcue [4].

Theorem 1.4 Let z_{1}, \ldots, z_{n} be n, not necessarily distinct, complex numbers and $\lambda_{1}, \ldots, \lambda_{n}$ be nonnegative real numbers such that $\sum_{k=1}^{n} \lambda_{k}=1$. Then the polynomial $A_{n}^{\lambda}(z)=\sum_{k=1}^{n} \lambda_{k} g_{k}(z)$ has all its zeros in or on the convex
hull $H\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)$ of the zeros of $A_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)$, where

$$
g_{k}(z)=\prod_{\substack{m=1 \\ m \neq k}}^{n}\left(z-z_{m}\right), \quad 1 \leq k \leq n
$$

2. Main results

To prove our main results, we need the following lemmas.

Lemma 2.1 If X_{1} and X_{2} are convex sets in \mathbb{C}, then $X=X_{1} \times_{e} X_{2}$ is convex in $\mathbb{B} \mathbb{C}$ [10].

Lemma 2.2 Letting

$$
\begin{aligned}
& A_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n}: \alpha_{k} \in \mathbb{C}, 1 \leq k \leq n\right\} \\
& A_{2}=\left\{\beta_{1}, \ldots, \beta_{m}: \beta_{l} \in \mathbb{C}, 1 \leq l \leq m\right\}
\end{aligned}
$$

then
(i) $H\left(A_{1} \times{ }_{e}\right)=H\left(A_{1}\right) \times{ }_{e} H\left(A_{2}\right)$.
(ii) $H\left(A_{1} \times \mathbb{C}\right)=H\left(A_{1}\right) \times_{e} \mathbb{C}$.
(iii) $H\left(\mathbb{C} \times{ }_{e} A_{2}\right)=\mathbb{C} \times{ }_{e} H\left(A_{2}\right)$.

Proof (i) By Lemma 2.1, $H\left(A_{1}\right) \times_{e} H\left(A_{2}\right)$ is convex, and also $A_{1} \subseteq H\left(A_{1}\right)$ and $A_{2} \subseteq H\left(A_{2}\right)$; therefore,

$$
\begin{equation*}
H\left(A_{1} \times_{e} A_{2}\right) \subseteq H\left(A_{1}\right) \times_{e} H\left(A_{2}\right) \tag{2.1}
\end{equation*}
$$

For the converse, we first show the following:

$$
\begin{equation*}
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{m}\right\}\right) \subseteq H\left(A_{1} \times_{e} A_{2}\right) \tag{2.2}
\end{equation*}
$$

Letting $Z^{*} \in\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{m}\right\}\right)$, then there exist nonnegative real numbers $c_{l}, 1 \leq l \leq m$ with $\sum_{l=1}^{m} c_{l}=1$ such that

$$
Z^{*}=\alpha_{k} e_{1}+\left(\sum_{l=1}^{m} c_{l} \beta_{l}\right) e_{2}
$$

for some $1 \leq k \leq n$. Therefore,

$$
Z^{*}=\sum_{l=1}^{m} c_{l}\left(\alpha_{k} e_{1}+\beta_{l} e_{2}\right) \in H\left(A_{1} \times_{e} A_{2}\right)
$$

and hence

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{m}\right\}\right) \subseteq H\left(A_{1} \times_{e} A_{2}\right)
$$

Now, letting $Z \in H\left(A_{1}\right) \times{ }_{e} H\left(A_{2}\right)$, one can find nonnegative real numbers $c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{m}$, with $\sum_{k=1}^{n} c_{k}=1$ and $\sum_{l=1}^{m} d_{l}=1$, such that

$$
Z=\left(\sum_{k=1}^{n} c_{k} \alpha_{k}\right) e_{1}+\left(\sum_{l=1}^{m} d_{l} \beta_{l}\right) e_{2}
$$

By (2.2),

$$
\alpha_{k} e_{1}+\left(\sum_{l=1}^{m} d_{l} \beta_{l}\right) e_{2} \in H\left(A_{1} \times_{e} A_{2}\right)
$$

for all $1 \leq k \leq n$, and hence

$$
\begin{aligned}
\sum_{k=1}^{n} c_{k}\left(\alpha_{k} e_{1}+\left(\sum_{l=1}^{m} d_{l} \beta_{l}\right) e_{2}\right) & =\left(\sum_{k=1}^{n} c_{k} \alpha_{k}\right) e_{1}+\left(\sum_{l=1}^{m} d_{l} \beta_{l}\right) e_{2} \\
& =Z \in H\left(A_{1} \times{ }_{e} A_{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
H\left(A_{1}\right) \times_{e} H\left(A_{2}\right) \subseteq H\left(A_{1} \times_{e} A_{2}\right) \tag{2.3}
\end{equation*}
$$

and the result follows from (2.1) and (2.3).
(ii) It is obvious by Lemma 2.1 that $H\left(A_{1}\right) \times{ }_{e} \mathbb{C}$ is convex and $A_{1} \times \mathbb{C} \subseteq H\left(A_{1}\right) \times{ }_{e} \mathbb{C}$; hence,

$$
\begin{equation*}
H\left(A_{1} \times_{e} \mathbb{C}\right) \subseteq H\left(A_{1}\right) \times_{e} \mathbb{C} \tag{2.4}
\end{equation*}
$$

Letting $Z^{*} \in H\left(A_{1}\right) \times_{e} \mathbb{C}$, then it can be easily shown that there exist nonnegative real numbers c_{1}, \ldots, c_{n}, with $\sum_{k=1}^{n} c_{k}=1$, and a complex number β such that

$$
Z^{*}=\left(\sum_{k=1}^{n} c_{k} \alpha_{k}\right) e_{1}+\beta e_{2}
$$

or

$$
Z^{*}=\sum_{k=1}^{n} c_{k}\left(\alpha_{k} e_{1}+\beta e_{2}\right) \in H\left(A_{1} \times_{e} \mathbb{C}\right)
$$

so we have

$$
\begin{equation*}
H\left(A_{1}\right) \times_{e} \mathbb{C} \subseteq H\left(A_{1} \times_{e} \mathbb{C}\right) \tag{2.5}
\end{equation*}
$$

and the result follows from (2.4) and (2.5). Using a similar argument, we can easily verify (iii).

Lemma 2.3 Let Z_{1}, \ldots, Z_{n} be n bicomplex numbers and $Z_{k}=\alpha_{k} e_{1}+\beta_{k} e_{2}, 1 \leq k \leq n$; then $H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \times_{e}$ $H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)$ is the smallest convex Cartesian set that contains Z_{1}, \ldots, Z_{n}.

BIDKHAM and AHMADI/Turk J Math

Proof Let $X=H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)$; then $Z_{1}, \ldots, Z_{n} \in X$, and by Lemma 2.1, X is convex. If $T=T_{1} \times_{e} T_{2}$ is a convex Cartesian set that includes Z_{1}, \ldots, Z_{n}, then T_{1} and T_{2} are convex sets and

$$
\alpha_{1}, \ldots, \alpha_{n} \in T_{1} \quad, \quad \beta_{1}, \ldots, \beta_{n} \in T_{2}
$$

and hence

$$
H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \subseteq T_{1} \quad, \quad H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right) \subseteq T_{2}
$$

and it follows that $X \subseteq T$.
Let X be a set in $\mathbb{B C}$ and define functions $h_{1}: X \rightarrow \mathbb{C}$ and $h_{2}: X \rightarrow \mathbb{C}$ as follows:

$$
\begin{array}{ll}
h_{1}\left(z_{1}+j z_{2}\right)=z_{1}-i z_{2}, & z_{1}+j z_{2} \in X, \tag{2.6}\\
h_{2}\left(z_{1}+j z_{2}\right)=z_{1}+i z_{2}, & z_{1}+j z_{2} \in X .
\end{array}
$$

Lemma 2.4 Let X be a set in $\mathbb{B C}$, and let h_{1} and h_{2} map X into X_{1} and X_{2}, respectively. If X is an open set in $\mathbb{B} \mathbb{C}$, then X_{1} and X_{2} are open sets in \mathbb{C} [10].

Lemma 2.5 Let X be the open Cartesian set in $\mathbb{B} \mathbb{C}$, which is determined by X_{1} and X_{2}. Also let α_{1}, β_{1} be points respectively in the closure of X_{1}, X_{2}. If $f_{e_{1}}: X_{1} \rightarrow \mathbb{C}, f_{e_{2}}: X_{2} \rightarrow \mathbb{C}$ are two complex functions such that

$$
\lim _{\alpha \rightarrow \alpha_{1}} f_{e_{1}}(\alpha)=a_{1} \quad \text { and } \quad \lim _{\beta \rightarrow \beta_{1}} f_{e_{2}}(\beta)=b_{1}
$$

then $F: X \rightarrow \mathbb{B} \mathbb{C}$ is defined by

$$
F(Z)=F\left(\alpha e_{1}+\beta e_{2}\right):=f_{e_{1}}(\alpha) e_{1}+f_{e_{2}}(\beta) e_{2}, \quad \text { for } \alpha e_{1}+\beta e_{2} \in X
$$

which has the limit $A:=a_{1} e_{1}+b_{1} e_{2}$ at $Z_{1}:=\alpha_{1} e_{1}+\beta_{1} e_{2}$.
Proof It is easy to verify that Z_{1} is a point in the closure of X (see [10]). For $\varepsilon>0$, there exist $\delta_{1}, \delta_{2}>0$ such that for $\alpha \in X_{1}$ and $\beta \in X_{2}$, the conditions $0<\left|\alpha-\alpha_{1}\right|<\delta_{1}$ and $0<\left|\beta-\beta_{1}\right|<\delta_{2}$ imply that $\left|f_{e_{1}}(\alpha)-a_{1}\right|<\varepsilon$ and $\left|f_{e_{2}}(\beta)-b_{1}\right|<\varepsilon$, respectively. Let

$$
\delta:=\operatorname{Min}\left\{\delta_{1}, \delta_{2}\right\}
$$

and $Z=\alpha e_{1}+\beta e_{2} \in X$ with $0<\left|Z-Z_{1}\right|<\frac{\delta}{\sqrt{2}}$; then

$$
|F(Z)-A|=\sqrt{\frac{\left|f_{e_{1}}(\alpha)-a_{1}\right|^{2}+\left|f_{e_{2}}(\beta)-b_{1}\right|^{2}}{2}}<\varepsilon
$$

and it follows that $\lim _{Z \rightarrow Z_{1}} F(Z)$ exists and $\lim _{Z \rightarrow Z_{1}} F(Z)=A$.
By using a similar argument as used in the proof of Lemma 2.5, we can prove the following lemma:
Lemma 2.6 Let X be the open set in \mathbb{R}, R_{1} be a point in the closure of X, and $f_{e_{1}}: X \rightarrow \mathbb{C}, f_{e_{2}}: X \rightarrow \mathbb{C}$ such that

$$
\lim _{R \rightarrow R_{1}} f_{e_{1}}(R)=a_{1} \quad \text { and } \quad \lim _{R \rightarrow R_{1}} f_{e_{2}}(R)=b_{1}
$$

BIDKHAM and AHMADI/Turk J Math

If $F: X \rightarrow \mathbb{B} \mathbb{C}$ is defined by

$$
F(R)=F\left(R e_{1}+R e_{2}\right):=f_{e_{1}}(R) e_{1}+f_{e_{2}}(R) e_{2}, \quad \text { for } \quad R \in X
$$

then $\lim _{R \rightarrow R_{1}} F(Z)$ exists and

$$
\lim _{R \rightarrow R_{1}} F(Z)=a_{1} e_{1}+b_{1} e_{2}
$$

Let $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}$ be a bicomplex polynomial of degree n, with $Z=z_{1}+j z_{2}=\alpha e_{1}+\beta e_{2}$ and bicomplex coefficients $A_{k}=\gamma_{k} e_{1}+\delta_{k} e_{2}$, for $k=0,1, \ldots, n$. Then $Z^{k}=\alpha^{k} e_{1}+\beta^{k} e_{2}$ and we can rewrite $P(Z)$ as

$$
P(Z)=\sum_{k=0}^{n}\left(\gamma_{k} \alpha^{k}\right) e_{1}+\sum_{k=0}^{n}\left(\delta_{k} \beta^{k}\right) e_{2}=: \phi(\alpha) e_{1}+\psi(\beta) e_{2}
$$

where $\phi(\alpha)$ and $\psi(\beta)$ are complex polynomials of degree at most n. For bicomplex polynomials we have the following result [7]:

Lemma 2.7 (Analogue of the fundamental theorem of algebra for bicomplex polynomials) Consider a bicomplex polynomial $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}$. If all the coefficients A_{k} with the exception of the free term $A_{0}=\gamma_{0} e_{1}+\delta_{0} e_{2}$ are complex multiples of e_{1} (respectively of e_{2}), but A_{0} has $\delta_{0} \neq 0$ (respectively $\gamma_{0} \neq 0$), then $P(Z)$ has no roots. In all other cases, $P(Z)$ has at least one root.

Lemma 2.8 Let X_{1} and X_{2} be open sets in \mathbb{C}. If $f_{e_{1}}: X_{1} \longrightarrow \mathbb{C}$ and $f_{e_{2}}: X_{2} \longrightarrow \mathbb{C}$ are holomorphic functions in \mathbb{C} on domains X_{1} and X_{2}, respectively, then the function $f: X_{1} \times_{e} X_{2} \longrightarrow \mathbb{B} \mathbb{C}$ defined as

$$
f\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in X_{1} \times_{e} X_{2}
$$

is $\mathbb{B C}$-holomorphic on the open set $X_{1} \times_{e} X_{2}$ and

$$
f^{\prime}\left(z_{1}+j z_{2}\right)=f_{e_{1}}^{\prime}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}^{\prime}\left(z_{1}+i z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in X_{1} \times_{e} X_{2}
$$

This lemma was proved by Charak et al. [2] (see also [3] and [11]).

Remark 2.9 Let $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}=\phi(\alpha) e_{1}+\psi(\beta) e_{2}$ be a bicomplex polynomial. In the above lemma, if we take $X_{1}=X_{2}=\mathbb{B} \mathbb{C}$, then $P(Z)$ is $\mathbb{B} \mathbb{C}$-holomorphic on $\mathbb{B} \mathbb{C}$ and

$$
\begin{equation*}
P^{\prime}(Z)=P^{\prime}\left(z_{1}+j z_{2}\right)=\phi^{\prime}\left(z_{1}-i z_{2}\right) e_{1}+\psi^{\prime}\left(z_{1}+i z_{2}\right) e_{2}=: \phi^{\prime}(\alpha) e_{1}+\psi^{\prime}(\beta) e_{2} \tag{2.7}
\end{equation*}
$$

Now we first prove the analogue of the Gauss-Lucas theorem and Theorem 1.4 for bicomplex polynomials, respectively.

Theorem 2.10 (Analogue of Gauss-Lucas theorem) Let $P(Z)$ be a nonconstant bicomplex polynomial with at least one zero. Then every critical point of $P(z)$ lies in the convex hull of its zeros.

BIDKHAM and AHMADI/Turk J Math

Proof Let $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}=: \phi(\alpha) e_{1}+\psi(\beta) e_{2}$. If at least one of the ϕ or ψ is a complex polynomial of degree one, then by using (2.7) and Lemma 2.7, $P^{\prime}(Z)$ has no zeros and so we have nothing to prove. Assume that neither ϕ nor ψ is a complex polynomial of degree one and A is the set of distinct roots of $P(Z)$. By Lemma 2.7, $P(Z)$ has at least one zero and hence we should consider the following two cases:

Case 1. Let $\phi(\alpha)$ and $\psi(\beta)$ be complex polynomials of degree at least two. Let $A_{1}=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and $A_{2}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$, with $k, l \leq n$, be the sets of distinct roots of ϕ and ψ, respectively. If $A=A_{1} \times{ }_{e}$, then by Lemma 2.2,

$$
H(A)=H\left(A_{1}\right) \times_{e} H\left(A_{2}\right) .
$$

If $Z^{*}=\alpha^{*} e_{1}+\beta^{*} e_{2} \in \mathbb{B C}$ such that $P^{\prime}\left(Z^{*}\right)=0$, then by (2.7),

$$
\phi^{\prime}\left(\alpha^{*}\right)=0 \quad \text { and } \quad \psi^{\prime}\left(\beta^{*}\right)=0,
$$

and hence, by applying the Gauss-Lucas theorem for ϕ and ψ, we have

$$
\alpha^{*} \in H\left(A_{1}\right) \quad \text { and } \quad \beta^{*} \in H\left(A_{2}\right) ;
$$

therefore, $Z^{*} \in H(A)$.
Case 2. Let $\phi \equiv 0$ (respectively $\psi \equiv 0$), and $A_{1}=\mathbb{C}, A_{2}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$, with $l \leq n$, be the sets of distinct roots of ϕ and ψ, respectively. Then $P^{\prime}(Z)=\psi^{\prime}(\beta) e_{2}$. If $Z^{*}=\alpha^{*} e_{1}+\beta^{*} e_{2} \in \mathbb{B C}$ such that $P^{\prime}\left(Z^{*}\right)=0$, then $\psi^{\prime}\left(\beta^{*}\right)=0$ and by the Gauss-Lucas theorem for ψ, we have $\beta^{*} \in H\left(A_{2}\right)$; hence, $Z^{*} \in \mathbb{C} \times e H\left(A_{2}\right)$.

Theorem 2.11 Let Z_{1}, \ldots, Z_{n} be n, not necessarily distinct, bicomplex numbers where $Z_{k}=\alpha_{k} e_{1}+\beta_{k} e_{2}$, for $k=1, \ldots, n$, and $\lambda_{1}, \ldots, \lambda_{n}$ be nonnegative real numbers such that $\sum_{k=1}^{n} \lambda_{k}=1$. Then the polynomial $A_{n}^{\lambda}(Z)=\sum_{k=1}^{n} \lambda_{k} G_{k}(Z)$ has all its zeros in or on $H(A)$, where $A:=\left\{\alpha_{k} e_{1}+\beta_{l} e_{2}: 1 \leq k \leq n, 1 \leq l \leq n\right\}$, and

$$
G_{k}(Z)=\prod_{\substack{m=1 \\ m \neq k}}^{n}\left(Z-Z_{m}\right), \quad 1 \leq k \leq n
$$

Proof Letting $Z=z_{1}+j z_{2}=\alpha e_{1}+\beta e_{2}$ be a bicomplex number, we have

$$
\begin{aligned}
\lambda_{k} G_{k}(Z) & =\lambda_{k} \prod_{\substack{m=1 \\
m \neq k}}^{n}\left(Z-Z_{m}\right) \\
& =\left(\lambda_{k} e_{1}+\lambda_{k} e_{2}\right) \prod_{\substack{m=1 \\
m \neq k}}^{n}\left(\left(\alpha e_{1}+\beta e_{2}\right)-\left(\alpha_{m} e_{1}+\beta_{m} e_{2}\right)\right) \quad\left(e_{1}+e_{2}=1\right) \\
& =\left(\lambda_{k} \prod_{\substack{m=1 \\
m \neq k}}^{n}\left(\alpha-\alpha_{m}\right)\right) e_{1}+\left(\lambda_{k} \prod_{\substack{m=1 \\
m \neq k}}^{n}\left(\beta-\beta_{m}\right)\right) e_{2} \\
& =\lambda_{k} g_{k}(\alpha) e_{1}+\lambda_{k} h_{k}(\beta) e_{2},
\end{aligned}
$$

BIDKHAM and AHMADI/Turk J Math

where $g_{k}(\alpha)=\prod_{\substack{m=1 \\ m \neq k}}^{n}\left(\alpha-\alpha_{m}\right)$ and $h_{k}(\beta)=\prod_{\substack{m=1 \\ m \neq k}}^{n}\left(\beta-\beta_{m}\right)$.
Hence,

$$
\begin{align*}
A_{n}^{\lambda}(Z) & =\sum_{k=1}^{n} \lambda_{k} G_{k}(Z) \\
& =\left(\sum_{k=1}^{n} \lambda_{k} g_{k}(\alpha)\right) e_{1}+\left(\sum_{k=1}^{n} \lambda_{k} h_{k}(\beta)\right) e_{2} \\
& =\phi_{n}^{\lambda}(\alpha) e_{1}+\psi_{n}^{\lambda}(\beta) e_{2} \tag{2.8}
\end{align*}
$$

where $\phi_{n}^{\lambda}(\alpha)=\sum_{k=1}^{n} \lambda_{k} g_{k}(\alpha)$ and $\psi_{n}^{\lambda}(\beta)=\sum_{k=1}^{n} \lambda_{k} h_{k}(\beta)$.
If $W=w_{1}+j w_{2}=a e_{1}+b e_{2}$ is a zero of $A_{n}^{\lambda}(Z)$, then by (2.8) we have

$$
\phi_{n}^{\lambda}(a)=0, \quad \psi_{n}^{\lambda}(b)=0,
$$

and by Theorem 1.4,

$$
a \in H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right), \quad b \in H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)
$$

and hence $W \in H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)$, but by using (i) of Lemma 2.2, we have

$$
\left.H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \times_{e} H\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)=H\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \times_{e}\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right),
$$

and this completes the proof of Theorem 2.11.
Next, as an extension of Theorem 1.3 for bicomplex polynomials, we prove the following result.

Theorem 2.12 If all the zeros of bicomplex polynomial $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}=: \phi(\alpha) e_{1}+\psi(\beta) e_{2}$ of degree n lie in the disk $\bar{D}\left(C ; r_{1}, r_{2}\right)$ where $C=c_{1} e_{1}+c_{2} e_{2} \in \mathbb{B} \mathbb{C}$ and A_{k} is invertible for some $2 \leq k \leq n$, then for any bicomplex number $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2} \in D(0 ; 1,1)$ and $R \geq 1$, all the zeros of the polynomial $P(R Z-C(R-1))-\lambda P(Z)$ also lie in $\bar{D}\left(C ; r_{1}, r_{2}\right)$.

Proof Since A_{k} is invertible for some $2 \leq k \leq n$, it follows that ϕ and ψ are polynomials of degree at least 2. Let $D_{1}=\left\{\alpha \in \mathbb{C}:\left|\alpha-c_{1}\right| \leq r_{1}\right\}$ and $D_{2}=\left\{\beta \in \mathbb{C}:\left|\beta-c_{2}\right| \leq r_{2}\right\}$. Since $P(Z)$ has all its zeros in $\bar{D}\left(C ; r_{1}, r_{2}\right)=D_{1} \times D_{2}$, hence ϕ and ψ have all their zeros in D_{1} and D_{2}, respectively. For any $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2} \in D(0 ; 1,1)$ and $R \geq 1$, by applying Theorem 1.3, all the zeros of $\phi\left(R \alpha-c_{1}(R-1)\right)-\lambda_{1} \phi(\alpha)$ and $\psi\left(R \beta-c_{2}(R-1)\right)-\lambda_{2} \psi(\beta)$ lie in D_{1} and D_{2}, respectively; hence,

$$
\begin{aligned}
& P(R Z+C(R-1))-\lambda P(Z)= \\
& \left(\phi\left(R \alpha-c_{1}(R-1)\right)-\lambda_{1} \phi(\alpha)\right) e_{1}+\left(\psi\left(R \beta-c_{2}(R-1)\right)-\lambda_{2} \psi(\beta)\right) e_{2}
\end{aligned}
$$

has all its zeros in $\bar{D}\left(C ; r_{1}, r_{2}\right)$. This completes the proof of Theorem 2.12.
By Theorem 2.12, for $\lambda=e_{1}+e_{2}$, we can obtain the following result.

BIDKHAM and AHMADI/Turk J Math

Proposition 2.13 If all the zeros of bicomplex polynomial $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}=: \phi(\alpha) e_{1}+\psi(\beta) e_{2}$ of degree n lie in the disk $\bar{D}\left(C ; r_{1}, r_{2}\right)$ where $C=c_{1} e_{1}+c_{2} e_{2} \in \mathbb{B} \mathbb{C}$ and A_{k} is invertible for some $2 \leq k \leq n$, then all the zeros of $P^{\prime}(Z)$ also lie in $\bar{D}\left(C ; r_{1}, r_{2}\right)$.
Proof For each $\alpha \neq c_{1}, \beta \neq c_{2}$, and $R \neq 1$, we have

$$
\begin{align*}
\frac{P(R Z-C(R-1))-P(Z)}{(R-1)(Z-C)} & =\frac{\phi\left(R \alpha-c_{1}(R-1)\right)-\phi(\alpha)}{(R-1)\left(\alpha-c_{1}\right)} e_{1} \\
& +\frac{\psi\left(R \beta-c_{2}(R-1)\right)-\psi(\beta)}{(R-1)\left(\beta-c_{2}\right)} e_{2} \tag{2.9}
\end{align*}
$$

and also

$$
\begin{aligned}
& \lim _{R \rightarrow 1} \frac{\phi\left(R \alpha-c_{1}(R-1)\right)-\phi(\alpha)}{(R-1)\left(\alpha-c_{1}\right)}=\phi^{\prime}(\alpha), \\
& \lim _{R \rightarrow 1} \frac{\psi\left(R \beta-c_{2}(R-1)\right)-\psi(\beta)}{(R-1)\left(\beta-c_{2}\right)}=\psi^{\prime}(\beta),
\end{aligned}
$$

and hence by Lemma 2.6 and (2.9) we have

$$
\begin{aligned}
\lim _{R \rightarrow 1} \frac{P(R Z-C(R-1))-P(Z)}{(R-1)(Z-C)} & =\phi^{\prime}(\alpha) e_{1}+\psi^{\prime}(\beta) e_{2} \\
& =P^{\prime}(Z)
\end{aligned}
$$

Also, by Theorem 2.12, for $\lambda=e_{1}+e_{2}$ all the zeros of $P(R Z-C(R-1))-P(Z)$ lie in $\bar{D}\left(C ; r_{1}, r_{2}\right)$; therefore, $P^{\prime}(Z)$ has all its zeros in $\bar{D}\left(C ; r_{1}, r_{2}\right)$, and this completes the proof of Proposition 2.13.

Taking $C=0$ in Theorem 2.12, we have the following result.

Corollary 2.14 If all the zeros of bicomplex polynomial $P(Z)=\sum_{k=0}^{n} A_{k} Z^{k}=: \phi(\alpha) e_{1}+\psi(\beta) e_{2}$ of degree n lie in the disk $\bar{D}\left(0 ; r_{1}, r_{2}\right)$ and A_{k} is invertible for some $2 \leq k \leq n$, then for every bicomplex number $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2} \in D(0 ; 1,1)$ and $R \geq 1$, all the zeros of the polynomial $P(R Z)-\lambda P(Z)$ also lie in $\bar{D}\left(0 ; r_{1}, r_{2}\right)$.

References

[1] Aziz A, Rather NA. On an inequality of S. Bernstein and the Gauss-Lucas theorem. In: Rassias TM, editor. Analytic and Geometric Inequalities and Applications. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1999, pp. 29-35.
[2] Charak KS, Rochon D. On factorization of bicomplex meromorphic functions. In: Sabadini I, Shapiro M, Sommen F, editors. Hypercomplex Analysis. Trends in Mathematics. Basel, Switzerland: Birkhäuser Verlag, 2008, pp. 55-68.
[3] Charak KS, Rochon D, Sharma N. Normal families of bicomplex holomorphic functions. Fractals 2009; 17: 257-268.
[4] Díaz-Barrero JL, Egozcue JJ. A generalization of the Gauss-Lucas theorem. Czech Math J 2008; 58: 481-486.
[5] Frenk JBG, Kassay G. Handbook of Generalized Convexity and Generalized Monotonicity. New York, NY, USA: Springer-Verlag, 2005.

BIDKHAM and AHMADI/Turk J Math

[6] Luna-Elizarraras ME, Shapiro M, Struppa DC. On Clifford analysis for holomorphic mappings. Adv Geom 2014; 14: 413-426.
[7] Luna-Elizarraras ME, Shapiro M, Struppa DC, Vajiac A. Bicomplex numbers and their elementary functions. CUBO 2012; 14: 61-80.
[8] Marden M. Geometry of Polynomials. Providence, RI, USA: American Mathematical Society, 1966.
[9] Pogorui AA, Rodriguez-Dagnino RM. On the set of zeros of bicomplex polynomials. Complex Var Elliptic 2006; 51: 725-730.
[10] Price GB. An Introduction to Multicomplex Spaces and Functions. Monographs and Textbooks in Pure and Applied Mathematics. New York, NY, USA: Marcel Dekker, 1991.
[11] Riley JD. Contributions to the theory of functions of a bicomplex variable. Tohoku Math J 1953; 2: 132-165.
[12] Roberts AW, Varberg DE. Convex Functions. New York, NY, USA: Academic Press, 1973.
[13] Segre C. Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math Ann 1892; 40: 413-467 (in Italian).

[^0]: *Correspondence: mdbidkham@gmail.com
 2010 AMS Mathematics Subject Classification: 30C10, 30C15

