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Abstract:The aim of this paper is to extend the domain of the Gauss–Lucas theorem from the set of complex numbers to

the set of bicomplex numbers. We also discuss a bicomplex version of another compact generalization of the Gauss–Lucas

theorem.
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1. Introduction

Corrado Segre published a paper [13] in 1892, in which he studied an infinite set of algebra whose elements

he called bicomplex numbers. The work of Segre remained unnoticed for almost a century, but recently

mathematicians have started taking interest in the subject and a new theory of special functions has started

coming up[6, 9]. In this paper, we introduce the mathematical tools necessary to investigate the Gauss–Lucas

theorem for bicomplex polynomials. We also discuss a bicomplex version of another compact generalization of

the Gauss–Lucas theorem proved by Aziz and Rather [1] for complex polynomials.

Let BC denote the set of bicomplex numbers, i.e.

BC = {x1 + ix2 + j(x3 + ix4) : x1, x2, x3, x4 ∈ R},

with i2 = −1, j2 = −1 and ij = ji, and then we can write bicomplex number Z = x1 + ix2 + j(x3 + ix4)

as z1 + jz2 where z1, z2 ∈ C. The addition and the multiplication of two bicomplex numbers are defined in

the usual way. If we denote e1 = 1+ij
2 , e2 = 1−ij

2 , then the bicomplex number Z = z1 + jz2 , z1, z2 ∈ C ,

is uniquely represented as (z1 − iz2)e1 + (z1 + iz2)e2 . It can be easily verified that for every two bicomplex

numbers Z1 = α1e1 + β1e2, Z2 = α2e1 + β2e2, we can write the following:

Z1 + Z2 = (α1 + α2)e1 + (β1 + β2)e2,

Z1Z2 = (α1α2)e1 + (β1β2)e2.

If Z1, Z2 ∈ BC and Z1Z2 = 1, then each of the elements Z1 and Z2 is said to be the inverse of the other. An

element that has an inverse is said to be invertible. One can easily verify that Z = αe1+βe2 ∈ BC is invertible

iff α ̸= 0, β ̸= 0; in this case, we have

Z−1 =
1

α
e1 +

1

β
e2.
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Also, we can define the usual norm of Z = z1 + jz2 as

|Z| =
√

|z1|2 + |z2|2.

It is easy to prove that for any bicomplex number Z = αe1 + βe2,

|Z| =
√

|α|2 + |β|2

2
,

where α = z1 − iz2, β = z1 + iz2.

Definition 1.1 Letting X1, X2 ⊆ C , we say that X ⊆ BC is a Cartesian set determined by X1 and X2 if

X = X1 ×e X2 := {z1 + jz2 ∈ BC : z1 + jz2 = αe1 + βe2, (α, β) ∈ X1 ×X2}.

A special Cartesian set in BC , which is called a disk, is defined as follows:

Definition 1.2 Let a = a1+ jb1 = α1e1+β1e2 where a1, b1, α1, β1 ∈ C, be a fixed point in BC . We define the

open disk D(a; r1, r2) and closed disk D(a; r1, r2) with center a and radii r1 and r2 as follows:

D(a; r1, r2) = {z1 + jz2 ∈ BC : z1 + jz2 = αe1 + βe2, |α− α1| < r1, |β − β1| < r2},

D(a; r1, r2) = {z1 + jz2 ∈ BC : z1 + jz2 = αe1 + βe2, |α− α1| ≤ r1, |β − β1| ≤ r2}.

In linear space L , we call the intersection of all convex sets containing a given set A in L the convex hull of A ,

denoted by H(A). If ck, 1 ≤ k ≤ n are nonnegative real numbers such that
n∑

k=1

ck = 1, then α =
n∑

k=1

ckαk is

called a convex combination of α1, ..., αn ∈ L. One can easily verify that H(A) consists precisely of all convex

combination of elements of A [5, 12].

The well-known Gauss–Lucas theorem in complex analysis states that every critical point of a complex polyno-

mial p(z) lies in the convex hull of its zeros[8]. As a compact generalization of the Gauss–Lucas theorem, Aziz

and Rather [1] proved the following result.

Theorem 1.3 If all the zeros of complex polynomial p(z) of degree n ≥ 2 lie in the disk D := {z : |z − c| ≤
r}, then for every real or complex number β with |β| ≤ 1 and R ≥ 1 , all the zeros of the polynomial

p(Rz − c(R− 1))− βp(z) also lie in D .

If z1, ..., zn are n , not necessarily distinct, complex numbers, then the incomplete polynomials of degree n− 1,

associated with z1, ..., zn, are the polynomials gk(z) =
n∏

m=1
m ̸=k

(z − zm). In this direction we have the following

result due to Dı́az-Barrero and Egozcue [4].

Theorem 1.4 Let z1, ..., zn be n , not necessarily distinct, complex numbers and λ1, ..., λn be nonnegative real

numbers such that
n∑

k=1

λk = 1 . Then the polynomial Aλ
n(z) =

n∑
k=1

λkgk(z) has all its zeros in or on the convex
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hull H({z1, ..., zn}) of the zeros of An(z) =
n∏

k=1

(z − zk) , where

gk(z) =
n∏

m=1
m ̸=k

(z − zm), 1 ≤ k ≤ n.

2. Main results

To prove our main results, we need the following lemmas.

Lemma 2.1 If X1 and X2 are convex sets in C , then X = X1 ×e X2 is convex in BC [10].

Lemma 2.2 Letting

A1 = {α1, ..., αn : αk ∈ C, 1 ≤ k ≤ n},

A2 = {β1, ..., βm : βl ∈ C, 1 ≤ l ≤ m},

then

(i) H(A1 ×e A2) = H(A1)×e H(A2) .

(ii) H(A1 ×e C) = H(A1)×e C .

(iii) H(C×e A2) = C×e H(A2) .

Proof (i) By Lemma 2.1, H(A1)×e H(A2) is convex, and also A1 ⊆ H(A1) and A2 ⊆ H(A2); therefore,

H(A1 ×e A2) ⊆ H(A1)×e H(A2). (2.1)

For the converse, we first show the following:

{α1, ..., αn} ×e H({β1, ..., βm}) ⊆ H(A1 ×e A2). (2.2)

Letting Z∗ ∈ {α1, ..., αn} ×e H({β1, ..., βm}), then there exist nonnegative real numbers cl, 1 ≤ l ≤ m with
m∑
l=1

cl = 1 such that

Z∗ = αke1 + (

m∑
l=1

clβl)e2,

for some 1 ≤ k ≤ n. Therefore,

Z∗ =

m∑
l=1

cl(αke1 + βle2) ∈ H(A1 ×e A2),

and hence

{α1, ..., αn} ×e H({β1, ..., βm}) ⊆ H(A1 ×e A2).
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Now, letting Z ∈ H(A1)×eH(A2), one can find nonnegative real numbers c1, ..., cn, d1, ..., dm, with
n∑

k=1

ck = 1

and
m∑
l=1

dl = 1, such that

Z = (
n∑

k=1

ckαk)e1 + (
m∑
l=1

dlβl)e2.

By (2.2),

αke1 + (
m∑
l=1

dlβl)e2 ∈ H(A1 ×e A2),

for all 1 ≤ k ≤ n , and hence

n∑
k=1

ck(αke1 + (

m∑
l=1

dlβl)e2) = (

n∑
k=1

ckαk)e1 + (

m∑
l=1

dlβl)e2

= Z ∈ H(A1 ×e A2).

Therefore,

H(A1)×e H(A2) ⊆ H(A1 ×e A2), (2.3)

and the result follows from (2.1) and (2.3).

(ii) It is obvious by Lemma 2.1 that H(A1)×e C is convex and A1 ×e C ⊆ H(A1)×e C ; hence,

H(A1 ×e C) ⊆ H(A1)×e C. (2.4)

Letting Z∗ ∈ H(A1)×eC, then it can be easily shown that there exist nonnegative real numbers c1, ..., cn, with
n∑

k=1

ck = 1, and a complex number β such that

Z∗ = (

n∑
k=1

ckαk)e1 + βe2,

or

Z∗ =

n∑
k=1

ck(αke1 + βe2) ∈ H(A1 ×e C),

so we have

H(A1)×e C ⊆ H(A1 ×e C), (2.5)

and the result follows from (2.4) and (2.5). Using a similar argument, we can easily verify (iii). 2

Lemma 2.3 Let Z1, ..., Zn be n bicomplex numbers and Zk = αke1+βke2 , 1 ≤ k ≤ n ; then H({α1, ..., αn})×e

H({β1, ..., βn}) is the smallest convex Cartesian set that contains Z1, ..., Zn .
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Proof Let X = H({α1, ..., αn})×e H({β1, ..., βn}); then Z1, ..., Zn ∈ X , and by Lemma 2.1, X is convex. If

T = T1 ×e T2 is a convex Cartesian set that includes Z1, ..., Zn , then T1 and T2 are convex sets and

α1, ..., αn ∈ T1 , β1, ..., βn ∈ T2,

and hence
H({α1, ..., αn}) ⊆ T1 , H({β1, ..., βn}) ⊆ T2,

and it follows that X ⊆ T .

Let X be a set in BC and define functions h1 : X → C and h2 : X → C as follows:

h1(z1 + jz2) = z1 − iz2, z1 + jz2 ∈ X,

h2(z1 + jz2) = z1 + iz2, z1 + jz2 ∈ X.
(2.6)

2

Lemma 2.4 Let X be a set in BC, and let h1 and h2 map X into X1 and X2, respectively. If X is an open

set in BC , then X1 and X2 are open sets in C [10].

Lemma 2.5 Let X be the open Cartesian set in BC , which is determined by X1 and X2 . Also let α1, β1 be

points respectively in the closure of X1, X2 . If fe1 : X1 → C, fe2 : X2 → C are two complex functions such

that
lim

α→α1

fe1(α) = a1 and lim
β→β1

fe2(β) = b1,

then F : X → BC is defined by

F (Z) = F (αe1 + βe2) := fe1(α)e1 + fe2(β)e2, for αe1 + βe2 ∈ X,

which has the limit A := a1e1 + b1e2 at Z1 := α1e1 + β1e2.

Proof It is easy to verify that Z1 is a point in the closure of X (see [10]). For ε > 0, there exist δ1, δ2 > 0

such that for α ∈ X1 and β ∈ X2, the conditions 0 < |α − α1| < δ1 and 0 < |β − β1| < δ2 imply that

|fe1(α)− a1| < ε and |fe2(β)− b1| < ε , respectively. Let

δ :=Min{δ1, δ2},

and Z = αe1 + βe2 ∈ X with 0 < |Z − Z1| < δ√
2
; then

|F (Z)−A| =
√

|fe1(α)− a1|2 + |fe2(β)− b1|2

2
< ε,

and it follows that lim
Z→Z1

F (Z) exists and lim
Z→Z1

F (Z) = A . 2

By using a similar argument as used in the proof of Lemma 2.5, we can prove the following lemma:

Lemma 2.6 Let X be the open set in R , R1 be a point in the closure of X , and fe1 : X → C, fe2 : X → C
such that

lim
R→R1

fe1(R) = a1 and lim
R→R1

fe2(R) = b1.
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If F : X → BC is defined by

F (R) = F (Re1 +Re2) := fe1(R)e1 + fe2(R)e2, for R ∈ X,

then lim
R→R1

F (Z) exists and

lim
R→R1

F (Z) = a1e1 + b1e2.

Let P (Z) =
n∑

k=0

AkZ
k be a bicomplex polynomial of degree n , with Z = z1 + jz2 = αe1 + βe2 and bicomplex

coefficients Ak = γke1 + δke2, for k = 0, 1, ..., n. Then Zk = αke1 + βke2 and we can rewrite P (Z) as

P (Z) =

n∑
k=0

(γkα
k)e1 +

n∑
k=0

(δkβ
k)e2 =: ϕ(α)e1 + ψ(β)e2,

where ϕ(α) and ψ(β) are complex polynomials of degree at most n . For bicomplex polynomials we have the

following result [7]:

Lemma 2.7 (Analogue of the fundamental theorem of algebra for bicomplex polynomials) Consider a bicomplex

polynomial P (Z) =
n∑

k=0

AkZ
k. If all the coefficients Ak with the exception of the free term A0 = γ0e1 + δ0e2

are complex multiples of e1 (respectively of e2 ), but A0 has δ0 ̸= 0 (respectively γ0 ̸= 0), then P (Z) has no

roots. In all other cases, P (Z) has at least one root.

Lemma 2.8 Let X1 and X2 be open sets in C . If fe1 : X1 −→ C and fe2 : X2 −→ C are holomorphic

functions in C on domains X1 and X2 , respectively, then the function f : X1 ×e X2 −→ BC defined as

f(z1 + jz2) = fe1(z1 − iz2)e1 + fe2(z1 + iz2)e2, ∀z1 + jz2 ∈ X1 ×e X2,

is BC-holomorphic on the open set X1 ×e X2 and

f ′(z1 + jz2) = f ′e1(z1 − iz2)e1 + f ′e2(z1 + iz2)e2, ∀z1 + jz2 ∈ X1 ×e X2.

This lemma was proved by Charak et al. [2] (see also [3] and [11]).

Remark 2.9 Let P (Z) =
n∑

k=0

AkZ
k = ϕ(α)e1 + ψ(β)e2 be a bicomplex polynomial. In the above lemma, if we

take X1 = X2 = BC , then P (Z) is BC-holomorphic on BC and

P ′(Z) = P ′(z1 + jz2) = ϕ′(z1 − iz2)e1 + ψ′(z1 + iz2)e2 =: ϕ′(α)e1 + ψ′(β)e2. (2.7)

Now we first prove the analogue of the Gauss–Lucas theorem and Theorem 1.4 for bicomplex polynomials,

respectively.

Theorem 2.10 (Analogue of Gauss–Lucas theorem) Let P (Z) be a nonconstant bicomplex polynomial with at

least one zero. Then every critical point of P (z) lies in the convex hull of its zeros.
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Proof Let P (Z) =
n∑

k=0

AkZ
k =: ϕ(α)e1 + ψ(β)e2 . If at least one of the ϕ or ψ is a complex polynomial of

degree one, then by using (2.7) and Lemma 2.7, P ′(Z) has no zeros and so we have nothing to prove. Assume

that neither ϕ nor ψ is a complex polynomial of degree one and A is the set of distinct roots of P (Z). By

Lemma 2.7, P (Z) has at least one zero and hence we should consider the following two cases:

Case 1. Let ϕ(α) and ψ(β) be complex polynomials of degree at least two. Let A1 = {α1, ..., αk} and

A2 = {β1, ..., βl} , with k, l ≤ n, be the sets of distinct roots of ϕ and ψ , respectively. If A = A1 ×e A2, then

by Lemma 2.2,

H(A) = H(A1)×e H(A2).

If Z∗ = α∗e1 + β∗e2 ∈ BC such that P ′(Z∗) = 0, then by (2.7),

ϕ′(α∗) = 0 and ψ′(β∗) = 0,

and hence, by applying the Gauss–Lucas theorem for ϕ and ψ , we have

α∗ ∈ H(A1) and β∗ ∈ H(A2);

therefore, Z∗ ∈ H(A).

Case 2. Let ϕ ≡ 0 (respectively ψ ≡ 0), and A1 = C , A2 = {β1, ..., βl} , with l ≤ n, be the sets of distinct

roots of ϕ and ψ , respectively. Then P ′(Z) = ψ′(β)e2. If Z
∗ = α∗e1 + β∗e2 ∈ BC such that P ′(Z∗) = 0, then

ψ′(β∗) = 0 and by the Gauss–Lucas theorem for ψ , we have β∗ ∈ H(A2); hence, Z
∗ ∈ C×e H(A2).

2

Theorem 2.11 Let Z1, ..., Zn be n , not necessarily distinct, bicomplex numbers where Zk = αke1 + βke2 ,

for k = 1, ..., n , and λ1, ..., λn be nonnegative real numbers such that
n∑

k=1

λk = 1 . Then the polynomial

Aλ
n(Z) =

n∑
k=1

λkGk(Z) has all its zeros in or on H(A), where A := {αke1 + βle2 : 1 ≤ k ≤ n, 1 ≤ l ≤ n} , and

Gk(Z) =
n∏

m=1
m ̸=k

(Z − Zm), 1 ≤ k ≤ n.

Proof Letting Z = z1 + jz2 = αe1 + βe2 be a bicomplex number, we have

λkGk(Z) = λk

n∏
m=1
m ̸=k

(Z − Zm)

= (λke1 + λke2)
n∏

m=1
m ̸=k

(
(αe1 + βe2)− (αme1 + βme2)

)
(e1 + e2 = 1)

=
(
λk

n∏
m=1
m ̸=k

(α− αm)
)
e1 +

(
λk

n∏
m=1
m ̸=k

(β − βm)
)
e2

= λkgk(α)e1 + λkhk(β)e2,
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where gk(α) =
n∏

m=1
m ̸=k

(α− αm) and hk(β) =
n∏

m=1
m ̸=k

(β − βm).

Hence,

Aλ
n(Z) =

n∑
k=1

λkGk(Z)

=
( n∑
k=1

λkgk(α)
)
e1 +

( n∑
k=1

λkhk(β)
)
e2

= ϕλn(α)e1 + ψλ
n(β)e2, (2.8)

where ϕλn(α) =
n∑

k=1

λkgk(α) and ψλ
n(β) =

n∑
k=1

λkhk(β).

If W = w1 + jw2 = ae1 + be2 is a zero of Aλ
n(Z), then by (2.8) we have

ϕλn(a) = 0, ψλ
n(b) = 0,

and by Theorem 1.4,

a ∈ H({α1, ..., αn}), b ∈ H({β1, ..., βn}),

and hence W ∈ H({α1, ..., αn})×e H({β1, ..., βn}), but by using (i) of Lemma 2.2, we have

H({α1, ..., αn})×e H({β1, ..., βn}) = H({α1, ..., αn})×e {β1, ..., βn}),

and this completes the proof of Theorem 2.11. 2

Next, as an extension of Theorem 1.3 for bicomplex polynomials, we prove the following result.

Theorem 2.12 If all the zeros of bicomplex polynomial P (Z) =
n∑

k=0

AkZ
k =: ϕ(α)e1 + ψ(β)e2 of degree

n lie in the disk D(C; r1, r2) where C = c1e1 + c2e2 ∈ BC and Ak is invertible for some 2 ≤ k ≤ n ,

then for any bicomplex number λ = λ1e1 + λ2e2 ∈ D(0; 1, 1) and R ≥ 1 , all the zeros of the polynomial

P (RZ − C(R− 1))− λP (Z) also lie in D(C; r1, r2) .

Proof Since Ak is invertible for some 2 ≤ k ≤ n , it follows that ϕ and ψ are polynomials of degree at

least 2. Let D1 = {α ∈ C : |α − c1| ≤ r1} and D2 = {β ∈ C : |β − c2| ≤ r2} . Since P (Z) has all its

zeros in D(C; r1, r2) = D1 ×e D2 , hence ϕ and ψ have all their zeros in D1 and D2 , respectively. For any

λ = λ1e1 + λ2e2 ∈ D(0; 1, 1) and R ≥ 1, by applying Theorem 1.3, all the zeros of ϕ(Rα− c1(R− 1))− λ1ϕ(α)

and ψ(Rβ − c2(R− 1))− λ2ψ(β) lie in D1 and D2 , respectively; hence,

P (RZ + C(R− 1))− λP (Z) =

(ϕ(Rα− c1(R− 1))− λ1ϕ(α))e1 + (ψ(Rβ − c2(R− 1))− λ2ψ(β))e2

has all its zeros in D(C; r1, r2). This completes the proof of Theorem 2.12. 2

By Theorem 2.12, for λ = e1 + e2 , we can obtain the following result.
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Proposition 2.13 If all the zeros of bicomplex polynomial P (Z) =
n∑

k=0

AkZ
k =: ϕ(α)e1 + ψ(β)e2 of degree n

lie in the disk D(C; r1, r2) where C = c1e1 + c2e2 ∈ BC and Ak is invertible for some 2 ≤ k ≤ n , then all the

zeros of P ′(Z) also lie in D(C; r1, r2) .

Proof For each α ̸= c1, β ̸= c2 , and R ̸= 1, we have

P (RZ − C(R− 1))− P (Z)

(R− 1)(Z − C)
=
ϕ(Rα− c1(R− 1))− ϕ(α)

(R− 1)(α− c1)
e1

+
ψ(Rβ − c2(R− 1))− ψ(β)

(R− 1)(β − c2)
e2, (2.9)

and also

lim
R→1

ϕ(Rα− c1(R− 1))− ϕ(α)

(R− 1)(α− c1)
= ϕ′(α),

lim
R→1

ψ(Rβ − c2(R− 1))− ψ(β)

(R− 1)(β − c2)
= ψ′(β),

and hence by Lemma 2.6 and (2.9) we have

lim
R→1

P (RZ − C(R− 1))− P (Z)

(R− 1)(Z − C)
= ϕ′(α)e1 + ψ′(β)e2

= P ′(Z).

Also, by Theorem 2.12, for λ = e1+ e2 all the zeros of P (RZ−C(R− 1))−P (Z) lie in D(C; r1, r2); therefore,

P ′(Z) has all its zeros in D(C; r1, r2), and this completes the proof of Proposition 2.13.

2

Taking C = 0 in Theorem 2.12, we have the following result.

Corollary 2.14 If all the zeros of bicomplex polynomial P (Z) =
n∑

k=0

AkZ
k =: ϕ(α)e1 + ψ(β)e2 of degree

n lie in the disk D(0; r1, r2) and Ak is invertible for some 2 ≤ k ≤ n , then for every bicomplex number

λ = λ1e1+λ2e2 ∈ D(0; 1, 1) and R ≥ 1 , all the zeros of the polynomial P (RZ)−λP (Z) also lie in D(0; r1, r2) .
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