

http://journals.tubitak.gov.tr/math/

Research Article

Generalization of the Gauss–Lucas theorem for bicomplex polynomials

Mahmood BIDKHAM*, Sara AHMADI

Faculty of Mathematics, Statistics, and Computer Science, Semnan University, Semnan, Iran

Received: 04.12.2015	٠	Accepted/Published Online: 08.02.2017	•	Final Version: 23.11.2017
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: The aim of this paper is to extend the domain of the Gauss–Lucas theorem from the set of complex numbers to the set of bicomplex numbers. We also discuss a bicomplex version of another compact generalization of the Gauss–Lucas theorem.

Key words: Bicomplex polynomial, Gauss-Lucas theorem

1. Introduction

Corrado Segre published a paper [13] in 1892, in which he studied an infinite set of algebra whose elements he called bicomplex numbers. The work of Segre remained unnoticed for almost a century, but recently mathematicians have started taking interest in the subject and a new theory of special functions has started coming up[6, 9]. In this paper, we introduce the mathematical tools necessary to investigate the Gauss-Lucas theorem for bicomplex polynomials. We also discuss a bicomplex version of another compact generalization of the Gauss-Lucas theorem proved by Aziz and Rather [1] for complex polynomials.

Let \mathbb{BC} denote the set of bicomplex numbers, i.e.

$$\mathbb{BC} = \{x_1 + ix_2 + j(x_3 + ix_4) : x_1, x_2, x_3, x_4 \in \mathbb{R}\},\$$

with $i^2 = -1$, $j^2 = -1$ and ij = ji, and then we can write bicomplex number $Z = x_1 + ix_2 + j(x_3 + ix_4)$ as $z_1 + jz_2$ where $z_1, z_2 \in \mathbb{C}$. The addition and the multiplication of two bicomplex numbers are defined in the usual way. If we denote $e_1 = \frac{1+ij}{2}$, $e_2 = \frac{1-ij}{2}$, then the bicomplex number $Z = z_1 + jz_2$, $z_1, z_2 \in \mathbb{C}$, is uniquely represented as $(z_1 - iz_2)e_1 + (z_1 + iz_2)e_2$. It can be easily verified that for every two bicomplex numbers $Z_1 = \alpha_1e_1 + \beta_1e_2, Z_2 = \alpha_2e_1 + \beta_2e_2$, we can write the following:

$$Z_1 + Z_2 = (\alpha_1 + \alpha_2)e_1 + (\beta_1 + \beta_2)e_2$$
$$Z_1 Z_2 = (\alpha_1 \alpha_2)e_1 + (\beta_1 \beta_2)e_2.$$

If $Z_1, Z_2 \in \mathbb{BC}$ and $Z_1Z_2 = 1$, then each of the elements Z_1 and Z_2 is said to be the inverse of the other. An element that has an inverse is said to be invertible. One can easily verify that $Z = \alpha e_1 + \beta e_2 \in \mathbb{BC}$ is invertible iff $\alpha \neq 0$, $\beta \neq 0$; in this case, we have

$$Z^{-1} = \frac{1}{\alpha}e_1 + \frac{1}{\beta}e_2.$$

^{*}Correspondence: mdbidkham@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 30C10, 30C15

Also, we can define the usual norm of $Z = z_1 + jz_2$ as

$$|Z| = \sqrt{|z_1|^2 + |z_2|^2}.$$

It is easy to prove that for any bicomplex number $Z = \alpha e_1 + \beta e_2$,

$$|Z| = \sqrt{\frac{|\alpha|^2 + |\beta|^2}{2}},$$

where $\alpha = z_1 - iz_2, \ \beta = z_1 + iz_2.$

Definition 1.1 Letting $X_1, X_2 \subseteq \mathbb{C}$, we say that $X \subseteq \mathbb{BC}$ is a Cartesian set determined by X_1 and X_2 if

$$X = X_1 \times_e X_2 := \{ z_1 + j z_2 \in \mathbb{BC} : z_1 + j z_2 = \alpha e_1 + \beta e_2, (\alpha, \beta) \in X_1 \times X_2 \}$$

A special Cartesian set in \mathbb{BC} , which is called a disk, is defined as follows:

Definition 1.2 Let $a = a_1 + jb_1 = \alpha_1 e_1 + \beta_1 e_2$ where $a_1, b_1, \alpha_1, \beta_1 \in \mathbb{C}$, be a fixed point in \mathbb{BC} . We define the open disk $D(a; r_1, r_2)$ and closed disk $\overline{D}(a; r_1, r_2)$ with center a and radii r_1 and r_2 as follows:

$$D(a; r_1, r_2) = \{z_1 + jz_2 \in \mathbb{BC} : z_1 + jz_2 = \alpha e_1 + \beta e_2, |\alpha - \alpha_1| < r_1, |\beta - \beta_1| < r_2\},\$$

$$\overline{D}(a; r_1, r_2) = \{z_1 + jz_2 \in \mathbb{BC} : z_1 + jz_2 = \alpha e_1 + \beta e_2, |\alpha - \alpha_1| \le r_1, |\beta - \beta_1| \le r_2\}.$$

In linear space L, we call the intersection of all convex sets containing a given set A in L the convex hull of A, denoted by H(A). If $c_k, 1 \le k \le n$ are nonnegative real numbers such that $\sum_{k=1}^{n} c_k = 1$, then $\alpha = \sum_{k=1}^{n} c_k \alpha_k$ is called a convex combination of $\alpha_1, ..., \alpha_n \in L$. One can easily verify that H(A) consists precisely of all convex combination of elements of A [5, 12].

The well-known Gauss-Lucas theorem in complex analysis states that every critical point of a complex polynomial p(z) lies in the convex hull of its zeros[8]. As a compact generalization of the Gauss-Lucas theorem, Aziz and Rather [1] proved the following result.

Theorem 1.3 If all the zeros of complex polynomial p(z) of degree $n \ge 2$ lie in the disk $D := \{z : |z - c| \le r\}$, then for every real or complex number β with $|\beta| \le 1$ and $R \ge 1$, all the zeros of the polynomial $p(Rz - c(R-1)) - \beta p(z)$ also lie in D.

If $z_1, ..., z_n$ are n, not necessarily distinct, complex numbers, then the incomplete polynomials of degree n-1, associated with $z_1, ..., z_n$, are the polynomials $g_k(z) = \prod_{\substack{m=1 \ m \neq k}}^n (z - z_m)$. In this direction we have the following

result due to Díaz-Barrero and Egozcue [4].

Theorem 1.4 Let $z_1, ..., z_n$ be n, not necessarily distinct, complex numbers and $\lambda_1, ..., \lambda_n$ be nonnegative real numbers such that $\sum_{k=1}^n \lambda_k = 1$. Then the polynomial $A_n^{\lambda}(z) = \sum_{k=1}^n \lambda_k g_k(z)$ has all its zeros in or on the convex

hull
$$H(\{z_1, ..., z_n\})$$
 of the zeros of $A_n(z) = \prod_{k=1}^n (z - z_k)$, where
$$g_k(z) = \prod_{\substack{m=1\\m \neq k}}^n (z - z_m), \qquad 1 \le k \le n.$$

2. Main results

To prove our main results, we need the following lemmas.

Lemma 2.1 If X_1 and X_2 are convex sets in \mathbb{C} , then $X = X_1 \times_e X_2$ is convex in \mathbb{BC} [10].

Lemma 2.2 Letting

$$A_1 = \{\alpha_1, \dots, \alpha_n : \alpha_k \in \mathbb{C}, 1 \le k \le n\},\$$
$$A_2 = \{\beta_1, \dots, \beta_m : \beta_l \in \mathbb{C}, 1 \le l \le m\},\$$

then

(i) $H(A_1 \times_e A_2) = H(A_1) \times_e H(A_2)$.

(*ii*)
$$H(A_1 \times_e \mathbb{C}) = H(A_1) \times_e \mathbb{C}$$
.

(*iii*)
$$H(\mathbb{C} \times_e A_2) = \mathbb{C} \times_e H(A_2)$$
.

Proof (i) By Lemma 2.1, $H(A_1) \times_e H(A_2)$ is convex, and also $A_1 \subseteq H(A_1)$ and $A_2 \subseteq H(A_2)$; therefore,

$$H(A_1 \times_e A_2) \subseteq H(A_1) \times_e H(A_2).$$

$$(2.1)$$

For the converse, we first show the following:

$$\{\alpha_1, ..., \alpha_n\} \times_e H(\{\beta_1, ..., \beta_m\}) \subseteq H(A_1 \times_e A_2).$$

$$(2.2)$$

Letting $Z^* \in \{\alpha_1, ..., \alpha_n\} \times_e H(\{\beta_1, ..., \beta_m\})$, then there exist nonnegative real numbers $c_l, 1 \leq l \leq m$ with $\sum_{l=1}^m c_l = 1$ such that

$$Z^* = \alpha_k e_1 + \left(\sum_{l=1}^m c_l \beta_l\right) e_2,$$

for some $1 \le k \le n$. Therefore,

$$Z^* = \sum_{l=1}^m c_l(\alpha_k e_1 + \beta_l e_2) \in H(A_1 \times_e A_2),$$

and hence

$$\{\alpha_1,...,\alpha_n\}\times_e H(\{\beta_1,...,\beta_m\})\subseteq H(A_1\times_e A_2).$$

1620

Now, letting $Z \in H(A_1) \times_e H(A_2)$, one can find nonnegative real numbers $c_1, ..., c_n, d_1, ..., d_m$, with $\sum_{k=1}^n c_k = 1$ and $\sum_{l=1}^m d_l = 1$, such that

$$Z = (\sum_{k=1}^{n} c_k \alpha_k) e_1 + (\sum_{l=1}^{m} d_l \beta_l) e_2.$$

By (2.2),

$$\alpha_k e_1 + (\sum_{l=1}^m d_l \beta_l) e_2 \in H(A_1 \times_e A_2)$$

for all $1 \le k \le n$, and hence

$$\sum_{k=1}^{n} c_k (\alpha_k e_1 + (\sum_{l=1}^{m} d_l \beta_l) e_2) = (\sum_{k=1}^{n} c_k \alpha_k) e_1 + (\sum_{l=1}^{m} d_l \beta_l) e_2$$
$$= Z \in H(A_1 \times_e A_2).$$

Therefore,

$$H(A_1) \times_e H(A_2) \subseteq H(A_1 \times_e A_2), \tag{2.3}$$

and the result follows from (2.1) and (2.3).

(ii) It is obvious by Lemma 2.1 that $H(A_1) \times_e \mathbb{C}$ is convex and $A_1 \times_e \mathbb{C} \subseteq H(A_1) \times_e \mathbb{C}$; hence,

$$H(A_1 \times_e \mathbb{C}) \subseteq H(A_1) \times_e \mathbb{C}.$$
(2.4)

Letting $Z^* \in H(A_1) \times_e \mathbb{C}$, then it can be easily shown that there exist nonnegative real numbers $c_1, ..., c_n$, with $\sum_{k=1}^n c_k = 1$, and a complex number β such that

$$Z^* = \left(\sum_{k=1}^n c_k \alpha_k\right) e_1 + \beta e_2,$$

or

$$Z^* = \sum_{k=1}^n c_k(\alpha_k e_1 + \beta e_2) \in H(A_1 \times_e \mathbb{C}),$$

so we have

$$H(A_1) \times_e \mathbb{C} \subseteq H(A_1 \times_e \mathbb{C}), \tag{2.5}$$

and the result follows from (2.4) and (2.5). Using a similar argument, we can easily verify (iii).

Lemma 2.3 Let $Z_1, ..., Z_n$ be n bicomplex numbers and $Z_k = \alpha_k e_1 + \beta_k e_2$, $1 \le k \le n$; then $H(\{\alpha_1, ..., \alpha_n\}) \times_e H(\{\beta_1, ..., \beta_n\})$ is the smallest convex Cartesian set that contains $Z_1, ..., Z_n$.

Proof Let $X = H(\{\alpha_1, ..., \alpha_n\}) \times_e H(\{\beta_1, ..., \beta_n\})$; then $Z_1, ..., Z_n \in X$, and by Lemma 2.1, X is convex. If $T = T_1 \times_e T_2$ is a convex Cartesian set that includes $Z_1, ..., Z_n$, then T_1 and T_2 are convex sets and

 $\alpha_1, \dots, \alpha_n \in T_1 \qquad , \qquad \beta_1, \dots, \beta_n \in T_2,$

and hence

$$H(\{\alpha_1, ..., \alpha_n\}) \subseteq T_1 \qquad , \qquad H(\{\beta_1, ..., \beta_n\}) \subseteq T_2$$

and it follows that $X \subseteq T$.

Let X be a set in \mathbb{BC} and define functions $h_1: X \to \mathbb{C}$ and $h_2: X \to \mathbb{C}$ as follows:

$$h_1(z_1 + jz_2) = z_1 - iz_2, \qquad z_1 + jz_2 \in X,$$

$$h_2(z_1 + jz_2) = z_1 + iz_2, \qquad z_1 + jz_2 \in X.$$
(2.6)

Lemma 2.4 Let X be a set in \mathbb{BC} , and let h_1 and h_2 map X into X_1 and X_2 , respectively. If X is an open set in \mathbb{BC} , then X_1 and X_2 are open sets in \mathbb{C} [10].

Lemma 2.5 Let X be the open Cartesian set in \mathbb{BC} , which is determined by X_1 and X_2 . Also let α_1, β_1 be points respectively in the closure of X_1, X_2 . If $f_{e_1} : X_1 \to \mathbb{C}$, $f_{e_2} : X_2 \to \mathbb{C}$ are two complex functions such that

$$\lim_{\alpha \to \alpha_1} f_{e_1}(\alpha) = a_1 \quad and \quad \lim_{\beta \to \beta_1} f_{e_2}(\beta) = b_1,$$

then $F: X \to \mathbb{BC}$ is defined by

$$F(Z) = F(\alpha e_1 + \beta e_2) := f_{e_1}(\alpha)e_1 + f_{e_2}(\beta)e_2, \quad for \ \alpha e_1 + \beta e_2 \in X,$$

which has the limit $A := a_1e_1 + b_1e_2$ at $Z_1 := \alpha_1e_1 + \beta_1e_2$.

Proof It is easy to verify that Z_1 is a point in the closure of X (see [10]). For $\varepsilon > 0$, there exist $\delta_1, \delta_2 > 0$ such that for $\alpha \in X_1$ and $\beta \in X_2$, the conditions $0 < |\alpha - \alpha_1| < \delta_1$ and $0 < |\beta - \beta_1| < \delta_2$ imply that $|f_{e_1}(\alpha) - a_1| < \varepsilon$ and $|f_{e_2}(\beta) - b_1| < \varepsilon$, respectively. Let

$$\delta := Min\{\delta_1, \delta_2\},\$$

and $Z = \alpha e_1 + \beta e_2 \in X$ with $0 < |Z - Z_1| < \frac{\delta}{\sqrt{2}}$; then

$$|F(Z) - A| = \sqrt{\frac{|f_{e_1}(\alpha) - a_1|^2 + |f_{e_2}(\beta) - b_1|^2}{2}} < \varepsilon,$$

and it follows that $\lim_{Z \to Z_1} F(Z)$ exists and $\lim_{Z \to Z_1} F(Z) = A$.

By using a similar argument as used in the proof of Lemma 2.5, we can prove the following lemma:

Lemma 2.6 Let X be the open set in \mathbb{R} , R_1 be a point in the closure of X, and $f_{e_1}: X \to \mathbb{C}$, $f_{e_2}: X \to \mathbb{C}$ such that

$$\lim_{R \to R_1} f_{e_1}(R) = a_1 \quad and \quad \lim_{R \to R_1} f_{e_2}(R) = b_1$$

If $F: X \to \mathbb{BC}$ is defined by

$$F(R) = F(Re_1 + Re_2) := f_{e_1}(R)e_1 + f_{e_2}(R)e_2, \quad for \ R \in X,$$

then $\lim_{R \to R_1} F(Z)$ exists and

$$\lim_{R \to R_1} F(Z) = a_1 e_1 + b_1 e_2.$$

Let $P(Z) = \sum_{k=0}^{n} A_k Z^k$ be a bicomplex polynomial of degree n, with $Z = z_1 + jz_2 = \alpha e_1 + \beta e_2$ and bicomplex coefficients $A_k = \gamma_k e_1 + \delta_k e_2$, for k = 0, 1, ..., n. Then $Z^k = \alpha^k e_1 + \beta^k e_2$ and we can rewrite P(Z) as

$$P(Z) = \sum_{k=0}^{n} (\gamma_k \alpha^k) e_1 + \sum_{k=0}^{n} (\delta_k \beta^k) e_2 =: \phi(\alpha) e_1 + \psi(\beta) e_2,$$

where $\phi(\alpha)$ and $\psi(\beta)$ are complex polynomials of degree at most n. For bicomplex polynomials we have the following result [7]:

Lemma 2.7 (Analogue of the fundamental theorem of algebra for bicomplex polynomials) Consider a bicomplex polynomial $P(Z) = \sum_{k=0}^{n} A_k Z^k$. If all the coefficients A_k with the exception of the free term $A_0 = \gamma_0 e_1 + \delta_0 e_2$ are complex multiples of e_1 (respectively of e_2), but A_0 has $\delta_0 \neq 0$ (respectively $\gamma_0 \neq 0$), then P(Z) has no roots. In all other cases, P(Z) has at least one root.

Lemma 2.8 Let X_1 and X_2 be open sets in \mathbb{C} . If $f_{e_1} : X_1 \longrightarrow \mathbb{C}$ and $f_{e_2} : X_2 \longrightarrow \mathbb{C}$ are holomorphic functions in \mathbb{C} on domains X_1 and X_2 , respectively, then the function $f : X_1 \times_e X_2 \longrightarrow \mathbb{BC}$ defined as

 $f(z_1+jz_2)=f_{e_1}(z_1-iz_2)e_1+f_{e_2}(z_1+iz_2)e_2, \quad \forall z_1+jz_2 \in X_1\times_e X_2,$

is \mathbb{BC} -holomorphic on the open set $X_1 \times_e X_2$ and

$$f'(z_1 + jz_2) = f'_{e_1}(z_1 - iz_2)e_1 + f'_{e_2}(z_1 + iz_2)e_2, \quad \forall z_1 + jz_2 \in X_1 \times_e X_2$$

This lemma was proved by Charak et al. [2] (see also [3] and [11]).

Remark 2.9 Let $P(Z) = \sum_{k=0}^{n} A_k Z^k = \phi(\alpha) e_1 + \psi(\beta) e_2$ be a bicomplex polynomial. In the above lemma, if we take $X_1 = X_2 = \mathbb{BC}$, then P(Z) is \mathbb{BC} -holomorphic on \mathbb{BC} and

$$P'(Z) = P'(z_1 + jz_2) = \phi'(z_1 - iz_2)e_1 + \psi'(z_1 + iz_2)e_2 =: \phi'(\alpha)e_1 + \psi'(\beta)e_2.$$
(2.7)

Now we first prove the analogue of the Gauss–Lucas theorem and Theorem 1.4 for bicomplex polynomials, respectively.

Theorem 2.10 (Analogue of Gauss-Lucas theorem) Let P(Z) be a nonconstant bicomplex polynomial with at least one zero. Then every critical point of P(z) lies in the convex hull of its zeros.

Proof Let $P(Z) = \sum_{k=0}^{n} A_k Z^k =: \phi(\alpha)e_1 + \psi(\beta)e_2$. If at least one of the ϕ or ψ is a complex polynomial of degree one, then by using (2.7) and Lemma 2.7, P'(Z) has no zeros and so we have nothing to prove. Assume that neither ϕ nor ψ is a complex polynomial of degree one and A is the set of distinct roots of P(Z). By Lemma 2.7, P(Z) has at least one zero and hence we should consider the following two cases:

Case 1. Let $\phi(\alpha)$ and $\psi(\beta)$ be complex polynomials of degree at least two. Let $A_1 = \{\alpha_1, ..., \alpha_k\}$ and $A_2 = \{\beta_1, ..., \beta_l\}$, with $k, l \leq n$, be the sets of distinct roots of ϕ and ψ , respectively. If $A = A_1 \times_e A_2$, then by Lemma 2.2,

$$H(A) = H(A_1) \times_e H(A_2).$$

If $Z^* = \alpha^* e_1 + \beta^* e_2 \in \mathbb{BC}$ such that $P'(Z^*) = 0$, then by (2.7),

$$\phi'(\alpha^*) = 0 \quad \text{and} \quad \psi'(\beta^*) = 0,$$

and hence, by applying the Gauss–Lucas theorem for ϕ and ψ , we have

$$\alpha^* \in H(A_1)$$
 and $\beta^* \in H(A_2);$

therefore, $Z^* \in H(A)$.

Case 2. Let $\phi \equiv 0$ (respectively $\psi \equiv 0$), and $A_1 = \mathbb{C}$, $A_2 = \{\beta_1, ..., \beta_l\}$, with $l \leq n$, be the sets of distinct roots of ϕ and ψ , respectively. Then $P'(Z) = \psi'(\beta)e_2$. If $Z^* = \alpha^*e_1 + \beta^*e_2 \in \mathbb{BC}$ such that $P'(Z^*) = 0$, then $\psi'(\beta^*) = 0$ and by the Gauss-Lucas theorem for ψ , we have $\beta^* \in H(A_2)$; hence, $Z^* \in \mathbb{C} \times_e H(A_2)$.

Theorem 2.11 Let $Z_1, ..., Z_n$ be n, not necessarily distinct, bicomplex numbers where $Z_k = \alpha_k e_1 + \beta_k e_2$, for k = 1, ..., n, and $\lambda_1, ..., \lambda_n$ be nonnegative real numbers such that $\sum_{k=1}^n \lambda_k = 1$. Then the polynomial $A_n^{\lambda}(Z) = \sum_{k=1}^n \lambda_k G_k(Z)$ has all its zeros in or on H(A), where $A := \{\alpha_k e_1 + \beta_l e_2 : 1 \le k \le n, 1 \le l \le n\}$, and

$$G_k(Z) = \prod_{\substack{m=1\\m\neq k}}^n (Z - Z_m), \qquad 1 \le k \le n.$$

Proof Letting $Z = z_1 + jz_2 = \alpha e_1 + \beta e_2$ be a bicomplex number, we have

$$\begin{split} \lambda_k G_k(Z) &= \lambda_k \prod_{\substack{m=1\\m \neq k}}^n (Z - Z_m) \\ &= (\lambda_k e_1 + \lambda_k e_2) \prod_{\substack{m=1\\m \neq k}}^n \left((\alpha e_1 + \beta e_2) - (\alpha_m e_1 + \beta_m e_2) \right) \qquad (e_1 + e_2 = 1) \\ &= \left(\lambda_k \prod_{\substack{m=1\\m \neq k}}^n (\alpha - \alpha_m) \right) e_1 + \left(\lambda_k \prod_{\substack{m=1\\m \neq k}}^n (\beta - \beta_m) \right) e_2 \\ &= \lambda_k g_k(\alpha) e_1 + \lambda_k h_k(\beta) e_2, \end{split}$$

where
$$g_k(\alpha) = \prod_{\substack{m=1 \ m \neq k}}^n (\alpha - \alpha_m)$$
 and $h_k(\beta) = \prod_{\substack{m=1 \ m \neq k}}^n (\beta - \beta_m)$.

Hence,

$$\begin{aligned} A_n^{\lambda}(Z) &= \sum_{k=1}^n \lambda_k G_k(Z) \\ &= \left(\sum_{k=1}^n \lambda_k g_k(\alpha)\right) e_1 + \left(\sum_{k=1}^n \lambda_k h_k(\beta)\right) e_2 \\ &= \phi_n^{\lambda}(\alpha) e_1 + \psi_n^{\lambda}(\beta) e_2, \end{aligned}$$
(2.8)

where $\phi_n^{\lambda}(\alpha) = \sum_{k=1}^n \lambda_k g_k(\alpha)$ and $\psi_n^{\lambda}(\beta) = \sum_{k=1}^n \lambda_k h_k(\beta)$.

If $W = w_1 + jw_2 = ae_1 + be_2$ is a zero of $A_n^{\lambda}(Z)$, then by (2.8) we have

$$\phi_n^{\lambda}(a) = 0, \qquad \psi_n^{\lambda}(b) = 0,$$

and by Theorem 1.4,

$$a \in H(\{\alpha_1, ..., \alpha_n\}), \quad b \in H(\{\beta_1, ..., \beta_n\}),$$

and hence $W \in H(\{\alpha_1, ..., \alpha_n\}) \times_e H(\{\beta_1, ..., \beta_n\})$, but by using (i) of Lemma 2.2, we have

$$H(\{\alpha_1, ..., \alpha_n\}) \times_e H(\{\beta_1, ..., \beta_n\}) = H(\{\alpha_1, ..., \alpha_n\}) \times_e \{\beta_1, ..., \beta_n\}),$$

and this completes the proof of Theorem 2.11.

Next, as an extension of Theorem 1.3 for bicomplex polynomials, we prove the following result.

Theorem 2.12 If all the zeros of bicomplex polynomial $P(Z) = \sum_{k=0}^{n} A_k Z^k =: \phi(\alpha)e_1 + \psi(\beta)e_2$ of degree

n lie in the disk $\overline{D}(C;r_1,r_2)$ where $C = c_1e_1 + c_2e_2 \in \mathbb{BC}$ and A_k is invertible for some $2 \leq k \leq n$, then for any bicomplex number $\lambda = \lambda_1e_1 + \lambda_2e_2 \in D(0;1,1)$ and $R \geq 1$, all the zeros of the polynomial $P(RZ - C(R-1)) - \lambda P(Z)$ also lie in $\overline{D}(C;r_1,r_2)$.

Proof Since A_k is invertible for some $2 \le k \le n$, it follows that ϕ and ψ are polynomials of degree at least 2. Let $D_1 = \{\alpha \in \mathbb{C} : |\alpha - c_1| \le r_1\}$ and $D_2 = \{\beta \in \mathbb{C} : |\beta - c_2| \le r_2\}$. Since P(Z) has all its zeros in $\overline{D}(C; r_1, r_2) = D_1 \times_e D_2$, hence ϕ and ψ have all their zeros in D_1 and D_2 , respectively. For any $\lambda = \lambda_1 e_1 + \lambda_2 e_2 \in D(0; 1, 1)$ and $R \ge 1$, by applying Theorem 1.3, all the zeros of $\phi(R\alpha - c_1(R-1)) - \lambda_1\phi(\alpha)$ and $\psi(R\beta - c_2(R-1)) - \lambda_2\psi(\beta)$ lie in D_1 and D_2 , respectively; hence,

$$P(RZ + C(R-1)) - \lambda P(Z) =$$

($\phi(R\alpha - c_1(R-1)) - \lambda_1 \phi(\alpha))e_1 + (\psi(R\beta - c_2(R-1)) - \lambda_2 \psi(\beta))e_2$

has all its zeros in $\overline{D}(C; r_1, r_2)$. This completes the proof of Theorem 2.12. By Theorem 2.12, for $\lambda = e_1 + e_2$, we can obtain the following result.

Proposition 2.13 If all the zeros of bicomplex polynomial $P(Z) = \sum_{k=0}^{n} A_k Z^k =: \phi(\alpha)e_1 + \psi(\beta)e_2$ of degree n lie in the disk $\overline{D}(C; r_1, r_2)$ where $C = c_1e_1 + c_2e_2 \in \mathbb{BC}$ and A_k is invertible for some $2 \le k \le n$, then all the zeros of P'(Z) also lie in $\overline{D}(C; r_1, r_2)$.

Proof For each $\alpha \neq c_1, \beta \neq c_2$, and $R \neq 1$, we have

$$\frac{P(RZ - C(R-1)) - P(Z)}{(R-1)(Z - C)} = \frac{\phi(R\alpha - c_1(R-1)) - \phi(\alpha)}{(R-1)(\alpha - c_1)}e_1 + \frac{\psi(R\beta - c_2(R-1)) - \psi(\beta)}{(R-1)(\beta - c_2)}e_2,$$
(2.9)

and also

$$\lim_{R \to 1} \frac{\phi(R\alpha - c_1(R-1)) - \phi(\alpha)}{(R-1)(\alpha - c_1)} = \phi'(\alpha),$$
$$\lim_{R \to 1} \frac{\psi(R\beta - c_2(R-1)) - \psi(\beta)}{(R-1)(\beta - c_2)} = \psi'(\beta),$$

and hence by Lemma 2.6 and (2.9) we have

$$\lim_{R \to 1} \frac{P(RZ - C(R - 1)) - P(Z)}{(R - 1)(Z - C)} = \phi'(\alpha)e_1 + \psi'(\beta)e_2$$
$$= P'(Z).$$

Also, by Theorem 2.12, for $\lambda = e_1 + e_2$ all the zeros of P(RZ - C(R-1)) - P(Z) lie in $\overline{D}(C; r_1, r_2)$; therefore, P'(Z) has all its zeros in $\overline{D}(C; r_1, r_2)$, and this completes the proof of Proposition 2.13.

Taking C = 0 in Theorem 2.12, we have the following result.

Corollary 2.14 If all the zeros of bicomplex polynomial $P(Z) = \sum_{k=0}^{n} A_k Z^k =: \phi(\alpha)e_1 + \psi(\beta)e_2$ of degree n lie in the disk $\overline{D}(0; r_1, r_2)$ and A_k is invertible for some $2 \le k \le n$, then for every bicomplex number $\lambda = \lambda_1 e_1 + \lambda_2 e_2 \in D(0; 1, 1)$ and $R \ge 1$, all the zeros of the polynomial $P(RZ) - \lambda P(Z)$ also lie in $\overline{D}(0; r_1, r_2)$.

References

- [2] Charak KS, Rochon D. On factorization of bicomplex meromorphic functions. In: Sabadini I, Shapiro M, Sommen F, editors. Hypercomplex Analysis. Trends in Mathematics. Basel, Switzerland: Birkhäuser Verlag, 2008, pp. 55-68.
- [3] Charak KS, Rochon D, Sharma N. Normal families of bicomplex holomorphic functions. Fractals 2009; 17: 257-268.
- [4] Díaz-Barrero JL, Egozcue JJ. A generalization of the Gauss-Lucas theorem. Czech Math J 2008; 58: 481-486.
- [5] Frenk JBG, Kassay G. Handbook of Generalized Convexity and Generalized Monotonicity. New York, NY, USA: Springer-Verlag, 2005.

Aziz A, Rather NA. On an inequality of S. Bernstein and the Gauss-Lucas theorem. In: Rassias TM, editor. Analytic and Geometric Inequalities and Applications. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1999, pp. 29-35.

- [6] Luna-Elizarraras ME, Shapiro M, Struppa DC. On Clifford analysis for holomorphic mappings. Adv Geom 2014; 14: 413-426.
- [7] Luna-Elizarraras ME, Shapiro M, Struppa DC, Vajiac A. Bicomplex numbers and their elementary functions. CUBO 2012; 14: 61-80.
- [8] Marden M. Geometry of Polynomials. Providence, RI, USA: American Mathematical Society, 1966.
- [9] Pogorui AA, Rodriguez-Dagnino RM. On the set of zeros of bicomplex polynomials. Complex Var Elliptic 2006; 51: 725-730.
- [10] Price GB. An Introduction to Multicomplex Spaces and Functions. Monographs and Textbooks in Pure and Applied Mathematics. New York, NY, USA: Marcel Dekker, 1991.
- [11] Riley JD. Contributions to the theory of functions of a bicomplex variable. Tohoku Math J 1953; 2: 132-165.
- [12] Roberts AW, Varberg DE. Convex Functions. New York, NY, USA: Academic Press, 1973.
- [13] Segre C. Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math Ann 1892; 40: 413-467 (in Italian).