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Abstract: The aim of this paper is to extend the domain of the Gauss—Lucas theorem from the set of complex numbers to
the set of bicomplex numbers. We also discuss a bicomplex version of another compact generalization of the Gauss—Lucas

theorem.
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1. Introduction

Corrado Segre published a paper [13] in 1892, in which he studied an infinite set of algebra whose elements
he called bicomplex numbers. The work of Segre remained unnoticed for almost a century, but recently
mathematicians have started taking interest in the subject and a new theory of special functions has started
coming up[6, 9]. In this paper, we introduce the mathematical tools necessary to investigate the Gauss—Lucas
theorem for bicomplex polynomials. We also discuss a bicomplex version of another compact generalization of
the Gauss—Lucas theorem proved by Aziz and Rather [1] for complex polynomials.

Let BC denote the set of bicomplex numbers, i.e.
BC = {1 +ix2 + j(x3 + ixq) : 21,22, 23,24 € R},

with 2 = —1, j2 = —1 and ij = ji, and then we can write bicomplex number Z = x| + ixs + j(z3 + i14)
as z1 + jzo where 21,29 € C. The addition and the multiplication of two bicomplex numbers are defined in

the usual way. If we denote e; = 1'5“, ey = 1_2”, then the bicomplex number Z = 21 + jzo, 21,29 € C,

is uniquely represented as (z1 — iz2)e; + (21 + i22)ea. It can be easily verified that for every two bicomplex

numbers Z; = aje; + [ies, Zo = aser + Paes, we can write the following:
Zy+ Zy = (o1 + a)er + (B + B2)ea,

Z1Zy = (cqaz)er + (B1B2)eq.

If Z1,Z, € BC and Z1Z5 = 1, then each of the elements Z; and Z5 is said to be the inverse of the other. An
element that has an inverse is said to be invertible. One can easily verify that Z = ae; + Bes € BC is invertible
iff a #£0, f#0; in this case, we have

1

_ 1
Z 1 = 561—1—562.
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Also, we can define the usual norm of Z = z; + jzo as

1Z] = Va1 [P + [z2]?.

It is easy to prove that for any bicomplex number Z = ae; + Ses,

o + 5P
2] =\

where o = z1 —iz9, B = 21 + i2o.

Definition 1.1 Letting X1, Xo C C, we say that X C BC is a Cartesian set determined by X1 and Xo if
X =X1 Xe Xo:={214+j22 € BC: 21 + jzo = aey + Pea, (o, B) € X1 x Xa}.

A special Cartesian set in BC, which is called a disk, is defined as follows:

Definition 1.2 Let a = a1 + jby = aje; + frea where a1, by, a1, 81 € C, be a fized point in BC. We define the

open disk D(a;r1,7m2) and closed disk D(a;ry,72) with center a and radii r1 and ro as follows:

D(a;ry,1r2) = {21+ jz2 € BC: 21 + jzo = aey + Bea, | — | <11, |8 — B1| < ra},

D(a;ry,r9) = {21+ jz2 € BC: 21 + jzo = aey + fBeg, |a — ay| < ry, |8 — B1]| < ra}.

In linear space L, we call the intersection of all convex sets containing a given set A in L the convex hull of A,

n n
denoted by H(A). If ¢;,1 < k < n are nonnegative real numbers such that > ¢; =1, then a = > cpay is
k=1 k=1
called a convex combination of aq,...,a, € L. One can easily verify that H(A) consists precisely of all convex
combination of elements of A [5, 12].
The well-known Gauss—Lucas theorem in complex analysis states that every critical point of a complex polyno-
mial p(z) lies in the convex hull of its zeros[8]. As a compact generalization of the Gauss-Lucas theorem, Aziz

and Rather [1] proved the following result.

Theorem 1.3 If all the zeros of complex polynomial p(z) of degree n > 2 lie in the disk D :={z : |z — | <
r}, then for every real or complex number f with |B| < 1 and R > 1, all the zeros of the polynomial
p(Rz—c¢(R—1)) — Bp(z) also lie in D.

If 21, ..., 2, are n, not necessarily distinct, complex numbers, then the incomplete polynomials of degree n —1,

n
associated with z1,...,2,, are the polynomials gi(z) = ][] (z — zm). In this direction we have the following
m=1
m#k

result due to Diaz-Barrero and Egozcue [4].

Theorem 1.4 Let zy,...,z, be n, not necessarily distinct, complex numbers and Ay, ..., A\, be nonnegative real

numbers such that Y. A\, = 1. Then the polynomial A)(z) = Y. A\gr(2) has all its zeros in or on the conver
k=1 k=1
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hull H({z1,...,2n}) of the zeros of An(z) = ] (2 — 2x), where

2. Main results

To prove our main results, we need the following lemmas.
Lemma 2.1 If X; and Xa are convez sets in C, then X = X1 X, X3 is convez in BC [10].

Lemma 2.2 Letting
Ay ={a,..,an o € C,1 <k <n},

Ay ={B1, -, Bm 1 L€ C,1 <1 <m},

then

(i) H(Ay xXe Ag) = H(Ay) x. H(Ag).

(i) H(A; x.C) = H(A;) x.C.

(iii) H(C x, Ag) = C x. H(As2).
Proof (i) By Lemma 2.1, H(A;) x. H(A2) is convex, and also A; C H(A;) and Az C H(Az); therefore,

H(A; x. A2) € H(A1) Xe H(A2). (2.1)

For the converse, we first show the following:

{051, ceny Oén} Xe H({ﬂl, ,ﬂm}) Q H(A1 Xe Ag) (22)

Letting Z* € {a1,...,an} Xe H({B1,...,Bm}), then there exist nonnegative real numbers ¢;,1 < I < m with

m

> ¢, =1 such that
i=1

m
7" = ager + (Y afyes,

=1

for some 1 < k < n. Therefore,
Z* = ch(akel + ﬂleg) € H(Al Xe AQ),
=1

and hence
{01, s} Xe H({Br, s Bn}) € H(Ay X, As).
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Now, letting Z € H(A;) x. H(A3), one can find nonnegative real numbers ci, ..., ¢,, d1,

and > d; =1, such that
=1

7 = (Z Ckak)€1 + (Z dlﬂl)eg.
k=1 =1

By (2.2),

m

age; + (Z diffy)ez € H(A; x. Ap),

1=1
for all 1 <k <n, and hence

Y enlaner + (- diBea) = (O exar)er + (Y difi)es
k=1 =1

k=1 =1

=7 € H(Al XeAQ).

Therefore,

H(Al) Xe H(AQ) Q H(A1 XSAQ),

and the result follows from (2.1) and (2.3).

n
ooy, With S ¢ = 1
k=1

(2.3)

(ii) It is obvious by Lemma 2.1 that H(A;) x. C is convex and A; x,C C H(A;) X, C; hence,

H(A1 Xe (C) - H(Al) Xe C.

(2.4)

Letting Z* € H(A;) x.C, then it can be easily shown that there exist nonnegative real numbers ¢y, ..., ¢,, with

n
> ¢ =1, and a complex number /5 such that
k=1

7" = (> cvar)er + Bea,
k=1

or

Z* = ch(akel + 562) S H(A1 Xe (C),
k=1

so we have

H(Al) XEC Q H(Al Xe (C),

(2.5)

and the result follows from (2.4) and (2.5). Using a similar argument, we can easily verify (iii). O

Lemma 2.3 Let Z1,..., Z, be n bicomplex numbers and Zj, = are1+PBres, 1 <k < n; then H({a1, ...,an}) X

H({51,...,0n}) is the smallest convex Cartesian set that contains Zy, ..., Z, .
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Proof Let X = H({a,....,an}) Xe H{P1, .., Bn}); then Zy,...,Z, € X, and by Lemma 2.1, X is convex. If

T =11 X. Ty is a convex Cartesian set that includes 71, ..., Z,, then T} and T, are convex sets and
Oy .ey, Olpy GTI ) ﬁl?"'?ﬁn ETQ»

and hence
H({O{l,...,an}) ng ) H({Blaaﬂn}) gTQv

and it follows that X C T.
Let X be a set in BC and define functions h; : X — C and hsy : X — C as follows:
h1(2:1 +jZ2) = 21 — 129, 21+ jz € X,

(2.6)
hQ(Zl +]Zg) =21 + 129, 21+ j22 € X.

Lemma 2.4 Let X be a set in BC, and let by and hy map X into X1 and Xs, respectively. If X is an open
set in BC, then X1 and Xz are open sets in C [10].

Lemma 2.5 Let X be the open Cartesian set in BC, which is determined by X1 and Xo. Also let «y, 1 be
points respectively in the closure of X1,Xo. If fo, : X1 — C, fe, : Xo — C are two complex functions such
that

lim fe, (o) =a; and lil’IBl fer(B) = b1,

then F : X — BC is defined by

F(Z) = F(Oée]_ +5€2) = f€1(a)el + f€2(5)627 fO’f' aeq +ﬂ62 S X7

which has the limit A := aie1 + bies at Z1 := aieq + [res.

Proof It is easy to verify that Z; is a point in the closure of X (see [10]). For € > 0, there exist d1,d5 > 0
such that for @ € X; and B8 € Xy, the conditions 0 < |a — o3| < §; and 0 < |3 — B1] < 2 imply that
[feo (@) —a1| < e and |fe,(B8) — b1| < e, respectively. Let

0= Mm{él, 52},

and Z = ae + fes € X with 0< |Z — 73| < %; then

F(Z)— A = Wel(a) — ]’ : falB) b _

and it follows that lim F(Z) exists and lim F(Z) = A. O
Z—7Z1 Z—7Z

By using a similar argument as used in the proof of Lemma 2.5, we can prove the following lemma:

Lemma 2.6 Let X be the open set in R, Ry be a point in the closure of X, and fe, : X - C, fe, : X - C
such that
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If F: X — BC is defined by
F(R) = F(Re1 + Rea) := fe,(R)e1 + fe,(R)ea,  for Re X,

then lim F(Z) exists and

R—>R1

lim F(Z) =a1ey1 + bleg.
R*}Rl

Let P(Z) = Y. AxZ* be a bicomplex polynomial of degree n, with Z = z; + jzs = ae; + Bes and bicomplex
k=0
coefficients Ay, = yrey + Opea, for k=0,1,...,n. Then Z*¥ = a¥e; + B¥ey and we can rewrite P(Z) as
P(Z) =) (waf)er + Y (58 )ea =: p(a)er + 1(B)ea,

k=0 k=0

where ¢(a) and ¢(8) are complex polynomials of degree at most n. For bicomplex polynomials we have the

following result [7]:

Lemma 2.7 (Analogue of the fundamental theorem of algebra for bicomplex polynomials) Consider a bicomplex

n
polynomial P(Z) = Y. ApZF. If all the coefficients Ay, with the exception of the free term Ag = yoe1 + dpea
k=0

are complex multiples of ey (respectively of ez ), but Ay has 09 # 0 (respectively o # 0), then P(Z) has no

roots. In all other cases, P(Z) has at least one root.

Lemma 2.8 Let X1 and X2 be open sets in C. If fo, : X1 — C and f, : Xo —> C are holomorphic
functions in C on domains X1 and Xs, respectively, then the function f: X, X, Xo — BC defined as

f(z1+J22) = fe, (21 —iz2)er + fe, (21 +iza)ea, Va1 + j22 € Xy Xe Xo,
is BC -holomorphic on the open set X1 X, Xo and
(214 jzo) = fl (21 —iza)er + fL, (21 +iza)es, Va1 +jz2 € X1 X Xo.

This lemma was proved by Charak et al. [2] (see also [3] and [11]).

Remark 2.9 Let P(Z) = Y. ApZF = ¢p(a)es +9(B)es be a bicomplex polynomial. In the above lemma, if we
k=0

take X1 = Xo = BC, then P(Z) is BC-holomorphic on BC and
P'(Z) = P'(z1 + jz2) = ¢/ (21 —iza)er + (21 +iz2)ez =: @' (a)er + ¢'(B)es. (2.7)

Now we first prove the analogue of the Gauss—Lucas theorem and Theorem 1.4 for bicomplex polynomials,

respectively.

Theorem 2.10 (Analogue of Gauss—Lucas theorem) Let P(Z) be a nonconstant bicomplex polynomial with at

least one zero. Then every critical point of P(z) lies in the convexr hull of its zeros.
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Proof Let P(Z) = Y. AyZ* =: ¢(a)e; + (B)ez. If at least one of the ¢ or 1 is a complex polynomial of

degree one, then by using (2.7) and Lemma 2.7, P'(Z) has no zeros and so we have nothing to prove. Assume
that neither ¢ nor 1 is a complex polynomial of degree one and A is the set of distinct roots of P(Z). By

Lemma 2.7, P(Z) has at least one zero and hence we should consider the following two cases:

Case 1. Let ¢(«) and 9(8) be complex polynomials of degree at least two. Let Ay = {a1,...,ar} and
As = {p1, ..., 0}, with k,I < n, be the sets of distinct roots of ¢ and 1, respectively. If A = A; x. As, then
by Lemma 2.2,
H(A) = H(Ay) %, H(A).

If Z* = a*e; + f*es € BC such that P/(Z*) =0, then by (2.7),
¢'a’)=0 and (8 =0,
and hence, by applying the Gauss—Lucas theorem for ¢ and v, we have
a* € H(A;) and (" € H(Az);

therefore, Z* € H(A).
Case 2. Let ¢ = 0 (respectively ¢ = 0), and 4y = C, Ay = {f1,..., 5}, with I < n, be the sets of distinct
roots of ¢ and v, respectively. Then P'(Z) = ¢'(B)es. If Z* = a*ey + f*es € BC such that P'(Z*) =0, then

' (8*) = 0 and by the Gauss—Lucas theorem for ¢, we have §* € H(Asz); hence, Z* € C x. H(As).
O

Theorem 2.11 Let Zy,...,Z, be n, not necessarily distinct, bicomplex numbers where Z; = arei + Brea,

n
for k = 1,...,n, and Ai,..., A\, be nonnegative real numbers such that >, A\, = 1. Then the polynomial
k=1

ANZ) = 3> MGr(Z) has all its zeros in or on H(A), where A := {age; + Blea: 1 <k <n,1<1<n}, and
k_

Gr(2)= 1] (2~ Zn), 1<k<n.
mzk

Proof Letting Z = 21 + jzo = aey + Bes be a bicomplex number, we have

MGR(Z) =N [] (2 - Zi)
mh

= (\ker + Awea) [ ((cer + Bez) — (amer + Bmes)) (e1+e2=1)
M
= (M H (a@—am))er + (M H(ﬂ Brm)) ez
m;ﬁllc %_ék

= Megr(@)er + Aphi(B)ez,
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where gi(a) = (a —am) and h(B) =

1
k

(B = Bm)-

1
k

St
i

Hence,

AN2) = Y MGu(2)
k=1

= (3" Mege(@))er + (O Mehi(8))es
k=1 k=1

= ¢ (a)er + ) (B)es, (2.8)

where ¢}(a) = 3 Mgi(a) and v2(9) = 3 Auhe(8).

If W =w; + jwy = aey + beg is a zero of A)(Z), then by (2.8) we have

Ph(a) =0,  Y)(b) =0,

and by Theorem 1.4,
a€ H{{ay,...,an}), be H{B1,..., Bn}),

and hence W € H({aq,...,an}) xe H({B1, ..., Bn}), but by using (i) of Lemma 2.2, we have

H{a1,...;an}) Xe H{B1, s Bn}) = H{a1, ..., an}) Xe {B1s -, Bn}),

and this completes the proof of Theorem 2.11. O
Next, as an extension of Theorem 1.3 for bicomplex polynomials, we prove the following result.
n

Theorem 2.12 If all the zeros of bicomplex polynomial P(Z) = ApZF =: ¢(a)er + ¥(B)ea of degree

k=0
n lie in the disk D(C;ri,m2) where C' = cie; + caea € BC and Ay is invertible for some 2 < k < n,
then for any bicompler number A\ = Aije; + Agea € D(0;1,1) and R > 1, all the zeros of the polynomial
P(RZ — C(R—1)) — AP(Z) also lie in D(C;r1,732).
Proof Since Ay is invertible for some 2 < k < n, it follows that ¢ and v are polynomials of degree at
least 2. Let D1 = {a € C: o —¢1| <} and Dy = {f € C: |f — co| < r3}. Since P(Z) has all its
Zeros in E(C;rl,rg) = D1 X, Dy , hence ¢ and v have all their zeros in D; and Ds, respectively. For any
A= M\e1+ Xdes € D(0;1,1) and R > 1, by applying Theorem 1.3, all the zeros of ¢(Ra—c¢1(R—1)) — A1¢(a)
and (RS — ca(R—1)) — Aatp(B) lie in Dy and D5, respectively; hence,

P(RZ+C(R—1))—AP(Z) =
(@(Ra — 1 (R = 1)) = g(a))er + (Y(RE — c2(R = 1)) = Xatp(B))ea

has all its zeros in D(C;ry, 7). This completes the proof of Theorem 2.12. O

By Theorem 2.12, for A = e; + ez, we can obtain the following result.
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Proposition 2.13 If all the zeros of bicomplex polynomial P(Z) = ApZF =: ¢(a)e; +Y(B)ea of degree n
k=0

lie in the disk D(C;r1,72) where C = creq + caea € BC and Ay, is invertible for some 2 < k <n, then all the
zeros of P'(Z) also lie in D(C;ry,72).
Proof For each o # ¢1,08 # ca, and R # 1, we have

P(RZ-C(R-1))=P(Z) _ ¢(Ra—ci(R-1)) = ¢(e)

(R—1)(Z - C) - R-Dla—c)
Y(RB —c2(R—1)) —(B)
T R-DG-w) 29
and also
bR a(R=1) = ge) _
1%1311 (R—1)(a—c1) = (),
Y(RB—ca(R-1))—9(B) _
S o 7 e e G
and hence by Lemma 2.6 and (2.9) we have
. P(RZ-C(R-1))-P(Z) ,
Jim DTS e + v (e
=P(Z).

Also, by Theorem 2.12, for A = e; + ey all the zeros of P(RZ —C(R—1)) — P(Z) lie in D(C;r1,73); therefore,
P'(Z) has all its zeros in D(C;ry,72), and this completes the proof of Proposition 2.13.

Taking C' =0 in Theorem 2.12, we have the following result.

Corollary 2.14 If all the zeros of bicomplex polynomial P(Z) = Z ApZF = ¢(a)er + Y(B)ex of degree
k=0

n lie in the disk D(0;7r1,72) and Ay is invertible for some 2 < k < n, then for every bicomplex number

A= Aie1+Asea € D(0;1,1) and R > 1, all the zeros of the polynomial P(RZ)—AP(Z) also lie in D(0;71,73).
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