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Abstract: In this paper, we investigate the existence and uniqueness of a piecewise asymptotically almost periodic mild

solution to nonautonomous neutral Volterra integro-differential equations with impulsive effects in Banach space. The

working tools are based on the Krasnoselskii’s fixed point theorem and semigroup theory. In order to illustrate our main

results, we study the piecewise asymptotically almost periodic solution of the impulsive partial differential equations

with Dirichlet conditions.
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1. Introduction

In this paper, we investigate the existence and uniqueness of a piecewise asymptotically almost periodic mild

solution of neutral Volterra integro-differential equations with impulsive effects:


d

dt
D(t, u(t)) = A(t)D(t, u(t)) +

∫ t

−∞
k(t− s)g(s, u(s))ds+ h(t, u(t)), t ∈ R, t ̸= ti, i ∈ Z,

∆u(ti) = u(t+i )− u(t−i ) = γiu(ti) + δi,

(1.1)

where A(t) : D ⊂ X → X are a family of closed linear operators on Banach space X , D(t, u(t)) =

u(t)+f(t, u(t)), f, g, h : R×X → X are piecewise asymptotically almost periodic functions in t ∈ R uniformly

in the second variable, γi , δi are asymptotically almost periodic sequences, and u(t+i ), u(t
−
i ) represent the

right-hand side and the left-hand side limits of u(·) at ti , respectively.

There are many physical phenomena that are described by means of integro-differential equations with

impulsive effects, for instance, biological systems, electrical engineering, and chemical reactions. For more

details about this topic, one can see [6, 7, 9, 16, 23, 24, 26], where the authors have given an important overview

about the theory of impulsive differential and integro-differential equations. On the other hand, the asymptotic

properties of solutions of impulsive differential equations have been studied from different points, such as almost

periodicity [8, 17, 18, 20, 21, 29], almost automorphy [1, 30], asymptotic stability [19, 28], asymptotic equivalence

[5], and oscillation[15]. However, the existence and uniqueness of a piecewise asymptotically almost periodic
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mild solution for neutral Volterra integro-differential equations with impulsive effects in the form (1.1) is an

untreated topic in the literature and this fact is the motivation of the present work.

The paper is organized as follows. In Section 2, we recall some fundamental results about the notion of

piecewise asymptotically almost periodic function including composition theorem. Section 3 is devoted to the

existence and uniqueness of a mild solution to nonautonomous neutral Volterra integro-differential equations

with impulsive effects in Banach space. In Section 4, an application of impulsive partial differential equations

with Dirichlet conditions is given.

2. Preliminaries and basic results

Let (X, ∥ · ∥), (Y, ∥ · ∥) be Banach spaces, Ω be a subset of X , and N , Z , R , and C stand for the set of

natural numbers, integers, real numbers, and complex numbers, respectively. For A being a linear operator on

X , D(A), ρ(A), R(λ,A), σ(A) stand for the domain, the resolvent set, the resolvent, and spectrum of A . Let

T be the set consisting of all real sequences {ti}i∈Z such that α = inf
i∈Z

(ti+1 − ti) > 0. It is immediate that this

condition implies that lim
i→∞

ti = ∞ and lim
i→−∞

ti = −∞ .

In order to facilitate the discussion below, we further introduce the following notations:

• C(R, X) (resp. C(R× Ω, X)): the set of continuous functions from R to X (resp. from R× Ω to X ).

• BC(R, X) (resp. BC(R×Ω, X)): the Banach space of bounded continuous functions from R to X (resp.

from R× Ω to X ) with the supremum norm.

• PC(R, X): the space formed by all piecewise continuous functions f : R → X such that f(·) is continuous

at t for any t /∈ {ti}i∈Z , f(t
+
i ), f(t

−
i ) exist, and f(t−i ) = f(ti) for all i ∈ Z .

• PC(R×Ω, X): the space formed by all piecewise continuous functions f : R×Ω → X such that for any

x ∈ Ω, f(·, x) ∈ PC(R, X), and for any t ∈ R, f(t, ·) is continuous at x ∈ Ω.

• L(X,Y ): the Banach space of bounded linear operators from X to Y endowed with the operator topology.

In particular, we write L(X) when X = Y .

• l∞(Z, X) = {x : Z → X : ∥x∥ = sup
n∈Z

∥x(n)∥ < ∞}.

2.1. Fixed point theorem and compactness criterion

First, we recall the definition of strong continuous evolution family and Krasnoselskii’s fixed point theorem,

which will be used later.

Definition 2.1 [13] A family of bounded linear operators (U(t, s))t≥s on a Banach space X is called a strong

continuous evolution family if

(i) U(t, r)U(r, s) = U(t, s) and U(s, s) = I for all t ≥ r ≥ s and t, r, s ∈ R .

(ii) The map (t, s) → U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R .

Theorem 2.1 ([27] Krasnoselskii’s fixed point theorem) Let M be a closed convex nonempty subset of a Banach

space X . Suppose that A and B map M into X such that
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(i) Au+Bv ∈ M (∀u, v ∈ M) ,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then there exists v ∈ M such that Av +Bv = v.

Next, we recall a useful compactness criterion on PC(R, X).

Let h : R → R+ be a continuous function such that h(t) ≥ 1 for all t ∈ R and h(t) → ∞ as |t| → ∞ .

Define

PC0
h(R, X) :=

{
f ∈ PC(R, X) : lim

|t|→∞

∥f(t)∥
h(t)

= 0

}

endowed with the norm ∥f∥h = sup
t∈R

∥f(t)∥
h(t)

, it is a Banach space.

Lemma 2.1 [19] A set B ⊆ PC0
h(R, X) is relatively compact if and only if it verifies the following conditions:

(1) lim
|t|→∞

∥f(t)∥
h(t)

= 0 uniformly for f ∈ B .

(2) B(t) = {f(t) : f ∈ B} is relatively compact in X for every t ∈ R .

(3) The set B is equicontinuous on each interval (ti, ti+1) (i ∈ Z) .

2.2. Piecewise asymptotic almost periodicity

Definition 2.2 [14] A function f ∈ C(R, X) is said to be almost periodic if for each ε > 0 there exists an

l(ε) > 0 , such that every interval J of length l(ε) contains a number τ with the property that ∥f(t+τ)−f(t)∥ < ε

for all t ∈ R . Denote by AP (R, X) the set of such functions.

Definition 2.3 [26] A sequence {xn} is called almost periodic if for any ε > 0 there exists a relatively dense

set of its ε-periods, i.e. there exists a natural number l = l(ε) , such that for k ∈ Z , there is at least one number

p in [k, k + l] , for which inequality ∥xn+p − xn∥ < ε holds for all n ∈ N . Denote by AP (Z, X) the set of such
sequences.

Define

AAP0(Z, X) =
{
xn ∈ l∞(Z, X) : lim

n→∞
∥xn∥ = 0

}
.

Definition 2.4 [25] A sequence {xn}n∈Z ∈ l∞(Z, X) is called asymptotically almost periodic if xn = x1
n + x2

n ,

where x1
n ∈ AP (Z, X) , x2

n ∈ AAP0(Z, X) . Denote by AAP (Z, X) the set of such sequences.

For {ti}i∈Z ∈ T , {tji} is defined by

{
tji = ti+j − ti

}
, i ∈ Z, j ∈ Z.
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It is easy to verify that the numbers tji satisfy

tji+k − tji = tki+j − tki , tji − tki = tj−k
i+k for i, j, k ∈ Z.

Definition 2.5 [4] A function f ∈ PC(R, X) is said to be piecewise almost periodic if the following conditions

are fulfilled:

(1)
{
tji = ti+j − ti

}
, i, j ∈ Z are equipotentially almost periodic, that is, for any ε > 0 , there exists a relatively

dense set in R of ε-almost periods common for all of the sequences {tji} .

(2) For any ε > 0 , there exists a positive number δ = δ(ε) such that if the points t′ and t′′ belong to the

same interval of continuity of f and |t′ − t′′| < δ , then ∥f(t′)− f(t′′)∥ < ε.

(3) For any ε > 0 , there exists a relatively dense set Ωε in R such that if τ ∈ Ωε , then

∥f(t+ τ)− f(t)∥ < ε

for all t ∈ R that satisfy the condition |t− ti| > ε, i ∈ Z .

We denote by APT (R, X) the space of all piecewise almost periodic functions. Obviously, APT (R, X) endowed

with the supremum norm is a Banach space. Throughout the rest of this paper, we always assume that {tji}
are equipotentially almost periodic. Let UPC(R, X) be the space of all functions f ∈ PC(R, X) such that f

satisfies the condition (2) in Definition 2.5.

Lemma 2.2 [26] If the sequences {tji} are equipotentially almost periodic, then for each j > 0 there exists a

positive integer N such that on each interval of length j there are no more than N elements of the sequence

{ti} , i.e.

i(t, s) ≤ N(t− s) +N,

where i(t, s) is the number of the points {ti} in the interval [s, t] .

Definition 2.6 [26] f ∈ PC(R× Ω, X) is said to be piecewise almost periodic in t uniformly in x ∈ Ω if for

each compact set K ⊆ Ω , {f(·, x) : x ∈ K} is uniformly bounded, and given ε > 0 , there exists a relatively

dense set Ωε such that ∥f(t + τ, x) − f(t, x)∥ ≤ ε for all x ∈ K, τ ∈ Ωε and t ∈ R , |t − ti| > ε. Denote by

APT (R× Ω, X) the set of all such functions.

Define

PC0
T (R, X) =

{
f ∈ PC(R, X) : lim

t→∞
∥f(t)∥ = 0

}
,

PC0
T (R× Ω, X) =

{
f ∈ PC(R× Ω, X) : lim

t→∞
∥f(t, x)∥dt = 0 uniformly with respect to

x ∈ K, where K is an arbitrary compact subset of Ω} .

Definition 2.7 A function f ∈ PC(R, X) is said to be piecewise asymptotically almost periodic if it can be

decomposed as f = g + φ , where g ∈ APT (R, X) and φ ∈ PC0
T (R, X) . Denote by AAPT (R, X) the set of all

such functions.
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Similarly as the proof of [11, Lemma 2.5], one has

Lemma 2.3 Let {fn}n∈N ⊂ PC0
T (R, X) be a sequence of functions. If fn converges uniformly to f , then

f ∈ PC0
T (R, X).

Definition 2.8 Let AAPT (R× Ω, X) consist of all functions f ∈ PC(R× Ω, X) such that f = g + φ , where

g ∈ APT (R× Ω, X) and φ ∈ AAP 0
T (R× Ω, X) .

Similarly as the proof of [19, Theorem 3.1], the composition theorems hold for piecewise asymptotically

almost periodic function.

Theorem 2.2 Suppose f ∈ AAPT (R× Ω, X) . Assume that the following conditions hold:

(i) {f(t, u) : t ∈ R, u ∈ K} is bounded for every bounded subset K ⊆ Ω.

(ii) f(t, ·) is uniformly continuous in each bounded subset of Ω uniformly in t ∈ R .

If φ ∈ AAPT (R, X) such that R(φ) ⊂ Ω , then f(·, φ(·)) ∈ AAPT (R, X) .

Corollary 2.1 Let f ∈ AAPT (R × Ω, X) , φ ∈ AAPT (R, X) , and R(φ) ⊂ Ω . Assume that there exists a

constant Lf > 0 such that

∥f(t, u)− f(t, v)∥ ≤ Lf∥u− v∥, t ∈ R, u, v ∈ Ω,

then f(·, φ(·)) ∈ AAPT (R, X) .

3. Neutral Volterra integro-differential equations with impulsive effects

In this section, we investigate the existence and uniqueness of a piecewise asymptotically almost periodic mild

solution of (1.1).

First, we make the following assumptions:

(H1) There exist constants λ0 ≥ 0, θ ∈ (
π

2
, π), L, M̃ ≥ 0, and β, γ ∈ (0, 1) with β + γ > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ∥R(λ,A(t)− λ0)∥ ≤ M̃

1 + |λ|

and

∥(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]∥ ≤ L|t− s|β |λ|−γ

for t, s ∈ R,Σθ = {λ ∈ C \ {0} : |argλ| ≤ θ} .

(H2) R(λ0, A(·)) ∈ AP (R, L(X)).

(H3) The evolution family (U(t, s))t≥s generated by A(t) is exponentially stable, i.e. there exist constants

M > 0, ω > 0 such that ∥U(t, s)∥ ≤ Me−ω(t−s) , t ≥ s , t, s ∈ R .

1660



XIA/Turk J Math

(H4) f ∈ AAPT (R× Ω, X) and there exists a constant Lf > 0 such that

∥f(t, u)− ∥f(t, v)∥ ≤ Lf∥u− v∥, t ∈ R, u, v ∈ Ω.

(H5) g ∈ AAPT (R×Ω, X) and g(t, ·) is uniformly continuous in each bounded subset of Ω uniformly in t ∈ R .

(H6) h ∈ AAPT (R×Ω, X) and h(t, ·) is uniformly continuous in each bounded subset of Ω uniformly in t ∈ R .

(H7) γi ∈ AAP (Z, X), δi ∈ AAP (Z, X) and sup
i∈Z

∥γi∥ ≤ ϖ , sup
i∈Z

∥δi∥ ≤ κ , i ∈ Z .

(H8) k ∈ C(R+,R) and |k(t)| ≤ Cke
−ηt for some positive constants Ck, η .

(H9) For any L > 0, C1L = sup
t∈R,∥u∥≤L

∥g(t, u)∥ < ∞ , C2L = sup
t∈R,∥u∥≤L

∥h(t, u)∥ < ∞ . Moreover, there exists a

constant L0 > 0 such that

LfL0 + sup
t∈R

∥f(t, 0)∥+ M(Ckη
−1C1L0 + C2L0)

ω
+

M(ϖL0 + κ)

1− e−ωα
≤ L0.

(H10) For fixed t, s ∈ R, t ≥ s , the operator U(t, s) : X → X is compact.

Remark 3.1 (H1) is usually called “Acquistapace–Terreni” conditions, which was first introduced in [3] and

widely used to study nonautonomous differential equations in [2, 3, 12, 13]. If (H1) holds, there exists a unique

evolution family (U(t, s))t≥s on X , which governs the homogeneous version of (1.1) [2].

Before starting our main results, we recall the definition of the mild solution to (1.1).

Definition 3.1 [10] A function u : R → X is called a mild solution of (1.1) if for any t ∈ R , t > σ , σ ̸= ti ,

i ∈ Z ,

u(t) = U(t, σ)(u(σ) + f(σ, u(σ)))− f(t, u(t)) +

∫ t

σ

U(t, s)((Ku)(s) + h(s, u(s)))ds

+
∑

σ<ti<t

U(t, ti)(γiu(ti) + δi), (3.1)

where

(Ku)(t) =

∫ t

−∞
k(t− s)g(s, u(s))ds.

Note that if (H3) holds, then (3.1) can be replaced by

u(t) = −f(t, u(t)) +

∫ t

−∞
U(t, s)((Ku)(s) + h(s, u(s)))ds+

∑
ti<t

U(t, ti)(γiu(ti) + δi).

Lemma 3.1 [22] Assume that (H1)–(H3) hold; then for each ε > 0 and h > 0 , there is a relatively dense set

Ωε,h such that

∥U(t+ τ, s+ τ)− U(t, s)∥ ≤ εe−
ω
2 (t−s), t− s > h, t, s ∈ R, τ ∈ Ωε,h.

This property can be abbreviated by writing U ∈ AP (L(X)) .
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Lemma 3.2 [4] Assume that f ∈ APT (R, X) , U ∈ AP (L(X)) , the sequence {xi}i∈Z ∈ AP (Z, X) , and {tji} ,
j ∈ Z are equipotentially almost periodic. Then for each ε > 0 , there exist relatively dense sets Ωε of R and

Qε of Z such that

(i) ∥f(t+ τ)− f(t)∥ < ε for all t ∈ R , |t− ti| > ε , τ ∈ Ωε , and i ∈ Z .

(ii) ∥U(t+ τ, s+ τ)−U(t, s)∥ ≤ εe−
ω
2 (t−s) for all t, s ∈ R , |t− s| > 0 , |s− ti| > ε , |t− ti| > ε , τ ∈ Ωε , and

i ∈ Z .

(iii) ∥xi+q − xi∥ < ε for all q ∈ Qε and i ∈ Z .

(iv) |tqi − τ | < ε for all q ∈ Qε , τ ∈ Ωε , and i ∈ Z .

Lemma 3.3 Assume that (H1)–(H3) , (H5) , (H8) , (H9) hold, if u ∈ AAPT (R, X) , then

(Ku)(t) =

∫ t

−∞
k(t− s)g(s, u(s))ds ∈ AAPT (R, X).

Proof For u ∈ AAPT (R, X), it is not difficult to see that ϕ(·) = g(·, u(·)) ∈ AAPT (R, X) by Theorem 2.2.

Let ϕ = ϕ1 + ϕ2 , where ϕ1 ∈ APT (R, X), ϕ2 ∈ PC0
T (R, X); then

(Ku)(t) =

∫ t

−∞
k(t− s)ϕ(s)ds =

∫ t

−∞
k(t− s)ϕ1(s)ds+

∫ t

−∞
k(t− s)ϕ2(s)ds

:= Ψ1(t) + Ψ2(t).

(i) Ψ1 ∈ APT (R, X).

It is not difficult to see that Ψ1 ∈ UPC(R, X). Since ϕ1 ∈ APT (R, X), for any ε > 0, there exists a relatively

dense set Ωε such that

∥ϕ1(t+ τ)− ϕ1(t)∥ < ε for τ ∈ Ωε, t ∈ R, |t− ti| > ε, i ∈ Z.

Thus, by (H8), for t ∈ R, |t− ti| > ε, i ∈ Z , one has

∥Ψ1(t+ τ)−Ψ1(t)∥ =

∥∥∥∥∫ t+τ

−∞
k(t+ τ − s)ϕ1(s)ds−

∫ t

−∞
k(t− s)ϕ1(s)ds

∥∥∥∥
=

∥∥∥∥∫ t

−∞
k(t− s)(ϕ1(s+ τ)− ϕ1(s))ds

∥∥∥∥
≤
∫ t

−∞
Cke

−η(t−s)∥ϕ1(s+ τ)− ϕ1(s)∥ds

<
Ck

η
ε,

which implies that Ψ1 ∈ APT (R, X).

(ii) Ψ2 ∈ PC0
T (R, X).
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Since ϕ2 ∈ PC0
T (R, X), for each ε > 0, there exists T0 > 0 such that ∥ϕ2(s)∥ ≤ ε for all s > T0 ; then

for all t > 2T0 , one has

∥Ψ2(t)∥ ≤
∫ t

−∞
∥k(t− s)ϕ2(s)∥ds

≤
∫ t

−∞
Cke

−η(t−s)∥ϕ2(s)∥ds

=

∫ t/2

−∞
Cke

−η(t−s)∥ϕ2(s)∥ds+
∫ t

t/2

Cke
−η(t−s)∥ϕ2(s)∥ds

≤ Ck∥ϕ2∥
∫ ∞

t/2

e−ηsds+ εCk

∫ ∞

0

e−ηsds,

and, therefore, lim
t→∞

∥Ψ2(t)∥ = 0, that is Ψ2 ∈ PC0
T (R, X). This completes the proof. 2

Theorem 3.1 Assume that (H1)–(H10) hold; then (1.1) has a mild solution u ∈ AAPT (R, X) .

Proof Let Γ : AAPT (R, X) ∩ UPC(R, X) → PC(R, X) be the operator defined by

(Γu)(t) = −f(t, u(t)) +

∫ t

−∞
U(t, s)((Ku)(s) + h(s, u(s)))ds+

∑
ti<t

U(t, ti)(γiu(ti) + δi) (3.2)

:= (Γ1u)(t) + (Γ2u)(t),

where

(Γ1u)(t) = −f(t, u(t)), (Γ2u)(t) =

∫ t

−∞
U(t, s)((Ku)(s) + h(s, u(s)))ds+

∑
ti<t

U(t, ti)(γiu(ti) + δi).

Let M = {u ∈ AAPT (R, X) ∩ UPC(R, X) : ∥u∥ ≤ L0} . We next show that Γ has a fixed point in M and

divide the proof into several steps.

(i) For u, v ∈ M , we have Γ1u,Γ2v ∈ UPC(R, X).

For u, v ∈ M , it is not difficult to see that Γ1u ∈ UPC(R, X). Next, we will show that Γ2v ∈ UPC(R, X). Let

t′, t′′ ∈ (ti, ti+1), i ∈ Z , t′′ < t′ , v ∈ AAPT (R, X) ∩ UPC(R, X), and one has

(Γ2v)(t
′)− (Γ2v)(t

′′)

=

∫ t′

−∞
U(t′, s)((Kv)(s) + h(s, v(s)))ds+

∑
ti<t′

U(t′, ti)(γiv(ti) + δi)

−
∫ t′′

−∞
U(t′′, s)((Kv)(s) + h(s, v(s)))ds−

∑
ti<t′′

U(t′′, ti)(γiv(ti) + δi)

=

∫ t′′

−∞
[U(t′, s)− U(t′′, s)]((Kv)(s) + h(s, v(s)))ds+

∫ t′

t′′
U(t′, s)((Kv)(s) + h(s, v(s)))ds

+
∑
ti<t′′

[U(t′, ti)− U(t′′, ti)](γiv(ti) + δi). (3.3)
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Moreover, ∫ t′′

−∞
[U(t′, s)− U(t′′, s)]((Kv)(s) + h(s, v(s)))ds

=

∫ ∞

0

[U(t′, t′′ − s)− U(t′′, t′′ − s)]((Kv)(t′′ − s) + h(t′′ − s, v(t′′ − s)))ds

=

∫ ∞

0

[U(t′, t′′)U(t′′, t′′ − s)− U(t′′, t′′ − s)]((Kv)(t′′ − s) + h(t′′ − s, v(t′′ − s)))ds

=

∫ ∞

0

[U(t′, t′′)− I]U(t′′, t′′ − s)((Kv)(t′′ − s) + h(t′′ − s, v(t′′ − s)))ds.

Note that for any ε > 0, there exists 0 ≤ δ <
ε

3M(Ckη−1 + ∥Ψ∥∞)
such that if t′, t′′ belong to the same

continuity and 0 < t′ − t′′ < δ , then

∥U(t′, t′′)− I∥ ≤ min

{
ωε

3M(Ckη−1 + ∥Ψ∥∞)
,

(1− e−ωα)ε

3MN(ϖ∥v∥∞ + κ)

}
,

where ∥Ψ∥∞ = sup
t∈R

∥h(t, v(t))∥ , N is the constant in the Lemma 2.2. Hence∥∥∥∥∥
∫ t′′

−∞
[U(t′, s)− U(t′′, s)]((Kv)(s) + h(s, v(s)))ds

∥∥∥∥∥
≤
∫ ∞

0

∥U(t′, t′′)− I∥∥U(t′′, t′′ − s)∥∥(Kv)(t′′ − s) + h(t′′ − s, v(t′′ − s))∥ds

≤
∫ ∞

0

ωε

3M(Ckη−1 + ∥Ψ∥∞)
Me−ωs(Ckη

−1 + ∥Ψ∥∞)ds

<
ε

3
, (3.4)

and ∥∥∥∥∥
∫ t′

t′′
U(t′, s)((Kv)(s) + h(s, v(s)))ds

∥∥∥∥∥ ≤
∫ t′

t′′
∥U(t′, s)∥∥((Kv)(s) + h(s, v(s)))∥ds

< δM(Ckη
−1 + ∥Ψ∥∞) <

ε

3
. (3.5)

Similarly,∥∥∥∥∥∑
ti<t′′

[U(t′, ti)− U(t′′, ti)](γiv(ti) + δi)

∥∥∥∥∥ ≤

∥∥∥∥∥∑
ti<t′′

[U(t′, t′′)− I]U(t′′, ti)(γiv(ti) + δi)

∥∥∥∥∥
≤
∑
ti<t′′

∥U(t′, t′′)− I∥∥U(t′′, ti)∥∥γiv(ti) + δi∥

≤
∑
ti<t′′

(1− e−ωα)ε

3MN(ϖ∥v∥∞ + κ)
Me−ω(t′′−ti)(ϖ∥v∥∞ + κ)

<
ε

3
. (3.6)
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Hence, by (3.3)−(3.6), if t′, t′′ belong to the same continuity and 0 < t′ − t′′ < δ , then

∥(Γ2v)(t
′)− (Γ2v)(t

′′)∥ < ε,

which implies that Γ2v ∈ UPC(R, X).

(ii) For u, v ∈ M , we have Γ1u,Γ2v ∈ AAPT (R, X).

For u, v ∈ M , by Theorem 2.2, one has Γ1u ∈ AAPT (R, X). Next, we will show that Γ2v ∈ AAPT (R, X).

Similarly as the proof of Lemma 3.3, one has

∫ t

−∞
U(t, s)((Kv)(s) + h(s, v(s)))ds ∈ AAPT (R, X).

It remains to show that

∑
ti<t

U(t, ti)(γiv(ti) + δi) ∈ AAPT (R, X).

It is not difficult to see that γiv(ti) + δi ∈ AAP (Z, X); then let γiv(ti) + δi = βi + σi , where βi ∈ AP (Z, X)

and σi ∈ AAP0(Z, X), and so

∑
ti<t

U(t, ti)(γiv(ti) + δi) =
∑
ti<t

U(t, ti)βi +
∑
ti<t

U(t, ti)σi := Π1(t) + Π2(t).

For any ε > 0, by Lemma 3.2, there exist relative dense sets of real numbers Ωε and integers Qε , such that for

ti < t ≤ ti+1 , τ ∈ Ωε , q ∈ Qε , |t− ti| > ε , |t− ti+1| > ε , j ∈ Z , one has

t+ τ > ti + ε+ τ > ti+q,

and

ti+q+1 > ti+1 + τ − ε > t+ τ,

that is ti+q < t+ τ < ti+q+1 ; then, by Lemma 2.2, one has
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∥Π1(t+ τ)−Π1(t)∥ =

∥∥∥∥∥ ∑
ti<t+τ

U(t+ τ, ti)βi −
∑
ti<t

U(t, ti)βi

∥∥∥∥∥
≤

∥∥∥∥∥∑
ti<t

U(t+ τ, ti+q)βi+q −
∑
ti<t

U(t+ τ, ti+q)βi

∥∥∥∥∥
+

∥∥∥∥∥∑
ti<t

U(t+ τ, ti+q)βi −
∑
ti<t

U(t, ti)βi

∥∥∥∥∥
≤
∑
ti<t

∥U(t+ τ, ti+q)∥∥βi+q − βi∥

+
∑
ti<t

∥U(t+ τ, ti+q)− U(t, ti)∥∥βi∥

≤
∑
ti<t

Me−ω(t−ti)ε+
∑
ti<t

εMβie
−ω

2 (t−ti)

≤
+∞∑
j=0

∑
j<t−ti≤j+1

Me−ω(t−ti)ε+
+∞∑
j=0

∑
j<t−ti≤j+1

εMβie
−ω

2 (t−ti)

≤ NMε

1− e−ωα
+

NMβiε

1− e−
ω
2 α

,

where Mβi = sup
i∈Z

∥βi∥. Thus Π1 ∈ APT (R, X).

Next, we show that Π2 ∈ PC0
T (R, X). For a given i ∈ Z , define the function ρ(t) by

ρ(t) = U(t, ti)σi, ti < t ≤ ti+1,

then

lim
t→∞

∥ρ(t)∥ = lim
t→∞

∥U(t, ti)σi∥ ≤ lim
t→∞

Me−ω(t−ti)∥σi∥ = 0,

and then ρ ∈ PC0
T (R, X). Define ρk : R → X by

ρk(t) = U(t, ti−k)σi−k, ti < t ≤ ti+1, k ∈ N,

Hence ρk ∈ PC0
T (R, X). Moreover,

∥ρk(t)∥ = ∥U(t, ti−k)σi−k∥ ≤ M sup
i∈Z

∥σi∥e−ω(t−ti−k) ≤ M sup
i∈Z

∥σi∥e−ω(t−ti)e−ωαk.

Therefore, the series
∞∑
k=0

ρk is uniformly convergent on R . By Lemma 2.3, one has

Π2(t) =
∑
ti<t

U(t, ti)σi =

∞∑
k=0

ρk ∈ PC0
T (R, X).

Thus Γ2v ∈ AAPT (R, X).
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(iii) For all u, v ∈ M , we claim that Γ1u+ Γ2v ∈ M .

For u, v ∈ M , one has

∥Γ1u∥ ≤ ∥f(t, u(t))− f(t, 0)∥+ ∥f(t, 0)∥

≤ Lf∥u∥+ sup
t∈R

∥f(t, 0)∥

≤ LfL0 + sup
t∈R

∥f(t, 0)∥,

and

∥(Γ2v)(t)∥ ≤
∫ t

−∞
∥U(t, s)∥∥(Kv)(s) + h(s, v(s))∥ds+

∑
ti<t

∥U(t, ti)∥∥γiv(ti) + δi∥

≤
∫ t

−∞
Me−ω(t−s)∥(Kv)(s) + h(s, v(s))∥ds+

∑
ti<t

Me−ω(t−ti)∥γiv(ti) + δi∥

≤ (Ckη
−1C1L0 + C2L0)

∫ t

−∞
Me−ω(t−s)ds+ (ϖL0 + κ)

∑
ti<t

Me−ω(t−ti)

≤ M(Ckη
−1C1L0 + C2L0)

ω
+

M(ϖL0 + κ)

1− e−ωα
,

and then ∥Γ1u+ Γ2v∥ ≤ L0 by (H9). Hence, by (i) and (ii), we claim that Γ1u+ Γ2v ∈ M .

(iv) Γ1 is a contraction mapping.

For u, v ∈ M , one has

∥Γ1u− Γ1v∥ = ∥f(t, u)− f(t, v)∥ ≤ Lf∥u− v∥,

and it follows that Γ1 is a contraction mapping by (H9).

(v) Γ2 is continuous.

Let {un} ⊂ M , un → u as n → ∞; then there exists a bounded subset Ω̃ ⊆ Ω such that R(u) ⊆ Ω̃ ,

R(un) ⊆ Ω̃ , n ∈ N . By (H5)–(H7), for any ε > 0, there exists 0 < δ < ε such that u, v ∈ Ω̃ and ∥u− v∥ < δ

implies that

∥g(t, u)− g(t, v)∥ < ε for all t ∈ R,

∥h(t, u)− h(t, v)∥ < ε for all t ∈ R.

For the above δ > 0, there exists n0 such that ∥un(t)− u(t)∥ < δ for all n > n0 , t ∈ R ; then, for n > n0 , one

has

∥g(t, un(t))− g(t, u(t))∥ < ε, for all t ∈ R,

∥h(t, un(t))− h(t, u(t))∥ < ε, for all t ∈ R.
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Hence

∥(Γ2un)(t)− (Γ2u)(t)∥ ≤
∫ t

−∞
∥U(t, s)∥∥((Kun)(s) + h(s, un(s)))− ((Ku)(s) + h(s, u(s)))∥ds

+
∑
ti<t

∥U(t, ti)∥∥γiun(ti)− γiu(ti)∥

≤
∫ t

−∞
Me−ω(t−s)∥((Kun)(s) + h(s, un(s)))− ((Ku)(s) + h(s, u(s)))∥ds

+
∑
ti<t

Me−ω(t−ti)∥γiun(ti)− γiu(ti)∥

≤
∫ t

−∞
Me−ω(t−s)(Ckη

−1 + 1)εds+
∑
ti<t

Me−ω(t−ti)ϖε

≤
(
M(Ckη

−1 + 1)

ω
+

MNϖ

1− e−ωα

)
ε,

which implies that Γ2 is continuous.

(vi) B(t) = {(Γ2u)(t) : u ∈ M} is a relatively compact subset of X in each t ∈ R .

For each t ∈ R , 0 < ε < 1, u ∈ M , define

(Γε
2u)(t) :=

∫ t−ε

−∞
U(t, s)((Ku)(s) + h(s, u(s)))ds+

∑
ti<t−ε

U(t, ti)(γiv(ti) + δi)

= U(t, t− ε)

[∫ t−ε

−∞
U(t− ε, s)((Ku)(s) + h(s, u(s)))ds+

∑
ti<t−ε

U(t− ε, ti)(γiv(ti) + δi)

]
= U(t, t− ε)(Γ2u)(t− ε).

Since {(Γ2u)(t− ε) : u ∈ M} is bounded in X and U(t, t− ε) is compact by (H10), {(Γε
2u)(t) : u ∈ M} is a

relatively compact subset of X . Moreover,

∥(Γ2u)(t)− (Γε
2u)(t)∥ =

∥∥∥∥∥
∫ t

t−ε

U(t, s)((Ku)(s) + h(s, u(s)))ds+
∑

t−ε<ti<t

U(t, ti)(γiv(ti) + δi)

∥∥∥∥∥
≤
∫ t

t−ε

∥U(t, s)∥∥(Ku)(s) + h(s, u(s))∥ds+
∑

t−ε<ti<t

∥U(t, ti)∥∥γiv(ti) + δi∥

≤
∫ t

t−ε

Me−ω(t−s)∥(Ku)(s) + h(s, u(s))∥ds+
∑

t−ε<ti<t

Me−ω(t−ti)∥γiv(ti) + δi∥

≤ εM(Ckη
−1C1L0 + C2L0)

ω
+

εM(ϖL0 + κ)

α
.

Thus {(Γ2u)(t) : u ∈ M} is a relatively compact subset of X in each t ∈ R .

By (i), {Γ2u : u ∈ M} is equipotentially continuous at each interval (ti, ti+1) (i ∈ Z). Since

{Γ2u : u ∈ M} ⊂ PC0
h(R, X), then {Γ2u : u ∈ M} is a relatively compact set by Lemma 2.1, and then
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Γ2 is a compact operator. Since M is a closed convex set, by Krasnoselskii’s fixed point theorem (Theorem

2.1), Γ has a fixed point u in M , which is the piecewise asymptotically almost periodic mild solution of (1.1). 2

The following existence result is based on the Banach contraction mapping principle.

Theorem 3.2 Assume that (H1)–(H4) , (H7) , (H8) hold and satisfy the following conditions:

(H ′
5) g ∈ AAPT (R× Ω, X) and there exists a constant Lg > 0 such that

∥g(t, u)− ∥g(t, v)∥ ≤ Lg∥u− v∥, t ∈ R, u, v ∈ Ω.

(H ′
6) h ∈ AAPT (R× Ω, X) and there exists a constant Lh > 0 such that

∥h(t, u)− ∥h(t, v)∥ ≤ Lh∥u− v∥, t ∈ R, u, v ∈ Ω.

Then (1.1) has a unique mild solution u ∈ AAPT (R, X) if
M(Ckη

−1Lg+Lh)
ω + MNϖ

1−e−ωα + Lf < 1 .

Proof Define the operator Γ as in (3.2). Similarly as the proof of Theorem 3.1, for u ∈ AAPT (R, X) ∩
UPC(R, X), one has Γu ∈ AAPT (R, X)∩UPC(R, X). Hence Γ(AAPT (R, X)∩UPC(R, X)) ⊂ AAPT (R, X)∩
UPC(R, X). It suffices now to show that Γ has a fixed point in AAPT (R, X) ∩ UPC(R, X). For u, v ∈
AAPT (R, X) ∩ UPC(R, X), one has

∥(Γu)(t)− (Γv)(t)∥ ≤
∫ t

−∞
∥U(t, s)∥∥((Ku)(s) + h(s, u(s)))− ((Kv)(s) + h(s, v(s)))∥ds

+
∑
ti<t

∥U(t, ti)∥∥γiu(ti)− γiv(ti)∥+ ∥f(t, u(t))− f(t, v(t))∥

≤
∫ t

−∞
Me−ω(t−s)∥((Ku)(s) + h(s, u(s)))− ((Kv)(s) + h(s, v(s)))∥ds

+
∑
ti<t

Me−ω(t−ti)∥γiu(ti)− γiv(ti)∥+ ∥f(t, u(t))− f(t, v(t))∥

≤

(∫ t

−∞
Me−ω(t−s)(Ckη

−1Lg + Lh)ds+
∑
ti<t

ϖMe−ω(t−ti) + Lf

)
∥u− v∥

≤
(
M(Ckη

−1Lg + Lh)

ω
+

MNϖ

1− e−ωα
+ Lf

)
∥u− v∥.

Since
M(Ckη

−1Lg+Lh)
ω + MNϖ

1−e−ωα + Lf < 1, Γ is a contraction. By the Banach contraction mapping principle,

Γ has a unique fixed point in AAPT (R, X)∩ UPC(R, X), which is the unique piecewise asymptotically almost

periodic mild solution to (1.1). 2
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4. Example

Consider the impulsive partial differential equations with Dirichlet conditions

∂

∂t
(u(t, x) + f(t, x, u(t, x))) =

∂2

∂x2
(u(t, x) + f(t, x, u(t, x)))− 2(u(t, x) + f(t, x, u(t, x)))

+
(
sin t+ sin

√
2t
)
(u(t, x) + f(t, x, u(t, x))) +

t∫
−∞

k(t− s)g(s, x, u(s, x))ds+ h(t, x, u(t, x)),

∆u(ti, x) = βiu(ti, x), i ∈ Z, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,

(4.1)

where f, g, h ∈ AAPT (R×[0, π]×L2[0, π], L2[0, π]) , ti = i+ 1
4 | sin i+sin

√
2i|, βi ∈ AAP (Z,R), and sup

i∈Z
|βi| ≤ ϖ .

Note that {tji} , i ∈ Z , j ∈ Z are equipotentially almost periodic and α = inf
i∈Z

(ti+1− ti) > 0; one can see [19, 26]

for more details.

Take X = L2[0, π] is equipped with its natural topology and define

D(A) = {u ∈ L2[0, π] : u′′ ∈ L2[0, π], u(0) = u(π) = 0},

Au = u′′ − 2u, for all u ∈ D(A).

Let φn(t) =

√
2

π
sin(nt) for all n ∈ N . It is well known that A is the infinitesimal generator of an analytic

semigroup (T (t))t≥0 on L2[0, π] with ∥T (t)∥ ≤ e−3t for t ≥ 0 . Moreover,

T (t)φ =
∞∑

n=1

e−(n2+2)t⟨φ,φn⟩φn,

for each φ ∈ L2[0, π] .

Define a family of linear operators A(t) by

D(A(t)) = D(A),

A(t)φ(x) =
(
A+ sin t+ sin

√
2t
)
φ(x), ∀ x ∈ [0, π], φ ∈ D(A).

Then the system

u′(t) = A(t)u(t), t ≥ s,

u(s) = φ ∈ L2[0, π],

has an associated evolution family (U(t, s))t≥s on L2[0, π] , which can be explicitly expressed by

U(t, s)φ = T (t− s)e
∫ t
s
(sin τ+sin

√
2τ)dτφ.

Moreover,

∥U(t, s)∥ ≤ e−(t−s) for every t ≥ s.
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Note that sin t + sin
√
2t ∈ AP (R,R) and it is not difficult to verify that (H1)–(H3), (H7) hold with

M = 1, ω = 1. One can see [11] for more details.

Now the following theorem is an immediate consequence of Theorem 3.2.

Theorem 4.1 Under the assumptions (H4) , (H ′
5) , (H ′

6) , (H8) , (4.1) admits a unique mild solution u ∈
AAPT (R, L2[0, π]) if Ckη

−1Lg + Lh + Nϖ
1−e−α + Lf < 1 .
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