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Abstract: Let f : A → B be a ring homomorphism and J be an ideal of B . In this paper, we investigate the transfer

of Armendariz-like properties to the amalgamation of A with B along J with respect to f (denoted by A ▷◁f J)

introduced and studied by D’Anna, Finocchiaro, and Fontana in 2009. Our aim is to provide necessary and sufficient

conditions for A ▷◁f J to be an Armendariz ring, nil-Armendariz ring, and weak Armendariz ring.

Key words: Amalgamated algebra along an ideal, reduced ring, Armendariz ring, nil-Armendariz ring, weak Armen-

dariz, semicommutative ring

1. Introduction

All rings considered are associative with identity elements and all modules are unital. Given a ring R , nil(R)

denotes the set of all nilpotent elements of R and the polynomial ring over R is denoted by R[x] . For a

polynomial f(x) ∈ R[x] , the content of f(x), denoted by c(f), is the ideal of R generated by all coefficients of

f(x). In [13], Rege and Chhawchharia introduced the notion of the Armendariz ring as an associative ring R

with identity such that for all polynomials f(x) =

i=m∑
i=0

aix
i and g(x) =

i=n∑
j=0

bjx
j in R[x] , f(x)g(x) = 0 implies

that aibj = 0 for every i, j . The name was chosen because Armendariz had shown that a reduced ring (i.e.

a ring without nonzero nilpotent elements) satisfies this property [3]. Later, in 1998, Anderson and Camillo

continued this investigation by studying Armendariz rings and Gauss rings (recall that a ring R is said to be a

Gauss ring if for all polynomials f(x) and g(x) in R[x] , c(fg) = c(f)c(g)). Among others, they proved that a

commutative ring R is Gaussian if and only if each homomorphic image of R is an Armendariz ring [1]. Since

then, various generalizations of Armendariz rings such as the skew Armendariz ring, weak Armendariz ring,

central Armendariz ring, and nil-Armendariz ring appeared in the literature.

In 2006, Liu and Zhao [11] introduced the notion of a weak Armendariz ring as a ring R such that

whenever two polynomials f(x) =
i=m∑
i=0

aix
i and g(x) =

i=n∑
j=0

bjx
j in R[x] satisfy f(x)g(x) = 0, then aibj ∈

nil(R) for every i, j . Among others, they proved that a ring R is a weak Armendariz ring if and only if for

every positive integer n , the n -by-n upper triangular matrix ring Tn(R) is a weak Armendariz ring. Moreover,
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if R is a semicommutative ring (i.e. a ring such that whenever ab = 0, aRb = 0), then the polynomial ring

R[x] and the ring R[x]/(xn) are weak Armendariz rings. Here, it is worth noting that a weaker version of the

Armendariz ring notion, also called a“weak Armendariz ring” (or 1-Armendariz ring), is due to Lee and Wong

[10] in the sense that whenever two linear polynomials f(x) = a0 + a1x and g(x) = b0 + b1x satisfy fg = 0,

then aibj = 0 for every i, j = 0, 1.

In 2008, observing that in all examples found in the literature of Armendariz and weak Armendariz rings,

the set of nilpotent elements forms an ideal, Antoine proved that this is not true in general and he provided an

example of an Armendariz ring R for which nil(R) is not an ideal [2, Example 4.8]. However, if nil(R) is an

ideal of R , then R is a weak Armendariz ring, and in fact R satisfies a stronger condition. This allowed him to

introduce the notion of nil-Armendariz ring as a ring R such that whenever two polynomials f(x) =
i=m∑
i=0

aix
i

and g(x) =

i=n∑
j=0

bjx
j in R[x] satisfy f(x)g(x) ∈ nil(R)[x] , then aibj ∈ nil(R) for every i, j . He proved that

if R is a nil-Armendariz ring, then nil(R) is a subring without the unit of R . He also studied the conditions

under which the polynomial ring over a nil-Armendariz ring is a nil-Armendariz ring.

The following diagram of implication summarizes the relation between the above notions: reduced ring

=⇒ Armendariz ring =⇒ nil-Armendariz ring =⇒ weak Armendariz ring. The reverses of the first and second

implications are not, in general, true and examples can be found in [9, Proposition 2.1] and [2, Example 4.9].

However, we do not know so far any example of a weak Armendariz ring that is not a nil-Armendariz ring. This

question was left open in [2].

Let A and B be two rings with unity, let J be an ideal of B , and let f : A → B be a ring homomorphism.

In this setting, we can consider the following subring of A×B :

A ▷◁f J := {(a, f(a) + j) | a ∈ A, j ∈ J},

called the amalgamation of A and B along J with respect to f . This construction is a generalization of

the amalgamated duplication of a ring along an ideal (introduced and studied by D’Anna and Fontana in

[5, 7, 8]). The interest of amalgamation resides, partly, in its ability to cover several basic constructions in

commutative algebra, including pullbacks and trivial ring extensions (also called Nagata’s idealizations)(cf. [12,

page 2]). Moreover, other classical constructions (such as the A + XB[X] , A + XB[[X]] , and the D + M

constructions) can be studied as particular cases of the amalgamation [6, Examples 2.5 and 2.6] and other

classical constructions, such as the CPI extensions (in the sense of Boisen and Sheldon [4]) are strictly related

to it [6, Example 2.7 and Remark 2.8]. In [6], the authors studied the basic properties of this construction

(e.g., characterizations for A ▷◁f J to be a Noetherian ring, an integral domain, a reduced ring) and they

characterized those distinguished pullbacks that can be expressed as an amalgamation. Moreover, in [8], they

pursued the investigation on the structure of the rings of the form A ▷◁f J , with particular attention to the

prime spectrum, chain properties, and Krull dimension.

This paper aims at studying the transfer of the notions of “Armendariz ring”, “nil-Armendariz ring”,

and “weak Armendariz ring” to the amalgamation of algebras along ideals. It contains, in addition to the

introduction, three sections and each section deals respectively with one of the mentioned notions. The main

results (Theorem 2.2, Theorem 3.1, and Theorem 4.1) can be summarized as follows:
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Theorem 1.1 Let (A,B) be a pair of rings, f : A → B be a ring homomorphism, and J be a proper ideal of

B .

1. If A ▷◁f J is an Armendariz (resp. a nil-Armendariz, resp. a weak Armendariz) ring, then A is an

Armendariz (resp. a nil-Armendariz, resp. a weak Armendariz) ring.

2. If A and f(A) + J are Armendariz (resp. nil-Armendariz, resp. weak Armendariz) rings, then A ▷◁f J

is an Armendariz (resp. a nil-Armendariz, resp. a weak Armendariz) ring.

3. Assume that J ∩ S ̸= ∅ where S is the set of regular central elements of B . Then A ▷◁f J is an

Armendariz (resp. a nil-Armendariz, resp. a weak Armendariz) ring if and only if A and f(A) + J are

Armendariz (resp. nil-Armendariz, resp. weak Armendariz) rings.

4. Assume that J ∩ nil(B) = (0) (resp. J ⊆ nil(B)). Then A ▷◁f J is an Armendariz (resp. a nil-

Armendariz, resp. a weak Armendariz) ring if and only if A is an Armendariz (resp. a nil-Armendariz,

resp. a weak Armendariz) ring.

5. Assume that f−1(J)∩nil(A) = (0) (resp. f−1(J) ⊆ nil(A)). If f(A)+J is an Armendariz (resp. a weak

Armendariz) ring, then A ▷◁f J is an Armendariz (resp. a weak Armendariz) ring, and the equivalence

holds for nil-Armendariz property.

6. Assume that f is injective.

(i) f(A)∩J = {0} . Then A ▷◁f J is a weak Armendariz ring if and only if f(A)+J is a weak Armendariz

ring.

(ii) J ⊆ nil(B) . If f(A) + J is a weak Armendariz, then A ▷◁f J is a weak Armendariz ring.

7. Assume that J is semicommutative. If A is a weak Armendariz ring, then so is A ▷◁f J .

8. Assume that f−1(J) is semicommutative. If f(A) + J is a weak Armendariz ring, then so is A ▷◁f J .

It is worth mentioning that the proofs of some assertions of the above theorem are very similar, and for the

convenience of the reader, we separate the three notions in three sections and we omit the similar proofs to

avoid repetitions as much as possible.

Definition 1.2 (1) A ring R is called a reduced ring if it has no nonzero nilpotent elements.

(2) A ring R is called a semicommutative ring if for every a, b ∈ R , ab = 0 implies that aRb = 0 ([14, Lemma

1.2]).

(3) A ring R is called an Armendariz ring if whenever polynomials f(x) = a0 + a1x + ... + anx
n , g(x) =

b0 + b1x+ ...+ bmxm in R[x] satisfy f(x)g(x) = 0 , then aibj = 0 for each i, j [13, Definition 1.1].

(4) A ring R is called a nil-Armendariz ring if whenever the product of two polynomials f(x) =
i=n∑
i=0

aix
i and

g(x) =

j=m∑
j=0

bjx
j in R[x] satisfies f(x)g(x) ∈ nil(R)[x] , then aibj ∈ nil(R) for each i, j [2, Definition 2.3].
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(5) A ring R is called a weak Armendariz ring if whenever the product of two polynomials f(x) =
i=n∑
i=0

aix
i and

g(x) =

j=m∑
j=0

bjx
j in R[x] satisfies f(x)g(x) = 0 , then aibj ∈ nil(R) for each i, j [11, Definition 2.1].

2. Armendariz property in amalgamated algebra along an ideal

We start this section by the following proposition, which characterizes when the amalgamated algebra A ▷◁f J

is a reduced ring.

Proposition 2.1 ([6, Proposition 5.4]) Let (A,B) be a pair of rings, f : A → B be a ring homomorphism,

and J be a proper ideal of B . The following conditions are equivalent:

1. A ▷◁f J is a reduced ring.

2. A is a reduced ring and nil(B) ∩ J = (0)

In particular, if A and B are reduced, then A ▷◁f J is reduced; conversely, if J is a radical ideal of B and

A ▷◁f J is reduced, then B (and A) is reduced.

Our next theorem states necessary and sufficient conditions under which the amalgamated algebra A ▷◁f J

is an Armendariz ring. We notice that statements (1) and (2) are immediate consequences of the fact that

Armendariz-like conditions pass trivially to subrings and finite products. For the convenience of the reader, we

give simple proofs.

Theorem 2.2 Let (A,B) be a pair of rings, f : A → B be a ring homomorphism, and J be a proper ideal of

B .

1. If A ▷◁f J is an Armendariz ring, then so is A .

2. If A and f(A) + J are Armendariz rings, then so is A ▷◁f J .

3. Assume that J∩S ̸= ∅ where S the set of regular central elements of B . Then A ▷◁f J is an Armendariz

ring if and only if f(A) + J and A are Armendariz rings.

4. Assume that J ∩ nil(B) = (0) . Then A ▷◁f J is an Armendariz ring if and only if A is an Armendariz

ring.

5. Assume that f−1(J)∩ nil(A) = (0) . If f(A) + J is an Armendariz ring, then A ▷◁f J is an Armendariz

ring.

Proof (1) Assume that A ▷◁f J is Armendariz and let fA(x) =
i=n∑
i=0

aix
j and gA(x) =

j=m∑
j=0

bjx
j be two

polynomials in A[x] such that fA(x)gA(x) = 0. Then for every k ∈ {0, ..., n + m},
∑

i+j=k

aibj = 0. Set
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F (x) =
i=n∑
i=0

(ai, f(ai))x
i and G(x) =

j=m∑
j=0

(bj , f(bj))x
j . Then

F (x)G(x) =
k=n+m∑

k=0

(
∑

i+j=k

(aibj , f(aibj)))x
k

=

k=n+m∑
k=0

(
∑

i+j=k

aibj ,
∑

i+j=k

f(aibj))x
k

=
k=n+m∑

k=0

(
∑

i+j=k

aibj , f(
∑

i+j=k

aibj))x
k.

Hence, F (x)G(x) = 0 and so (aibj , f(aibj)) = 0 since A ▷◁f J is Armendariz. Thus, aibj = 0 and consequently

A is Armendariz.

(2) Assume that A and f(A) + J are Armendariz and let F (x) =

i=n∑
i=0

(ai, f(ai) + ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj)+kj)x
j be two polynomials in (A ▷◁f J)[x] such that F (x)G(x) = 0. Set fB(x) =

i=n∑
i=0

(f(ai)+ji)x
i ,

gB(x) =

j=m∑
j=0

(f(bj) + kj)x
j , fA(x) =

i=n∑
i=0

aix
j , and gA(x) =

j=m∑
j=0

bjx
j . Then F (x)G(x) = 0 implies that

fA(x)gA(x) = 0 and fB(x)gB(x) = 0, which in turn implies that (f(ai) + ji)(f(bj) + kj) = 0 and aibj = 0 for

every i, j since f(A) + J and A are Armendariz rings. Therefore, A ▷◁f J is Armendariz.

(3) Let S be the set of regular central elements of B . Assume that J ∩ S ̸= ∅ and A ▷◁f J is

Armendariz. Let fA(x) =
i=n∑
i=0

(f(ai)+ji)x
i and gA(x) =

j=m∑
j=0

(f(bj)+kj)x
j be two polynomials in (f(A)+J)[x]

such that fA(x)gA(x) = 0 and let e be a regular element of J . Set F (x) =
i=n∑
i=0

(0, e(f(ai) + ji))x
i and

G(x) =

j=m∑
j=0

(0, e(f(bj) + kj))x
j . Clearly

F (x)G(x) =

k=n+m∑
k=0

(
∑

i+j=k

(0, e2(f(ai) + ji)(f(bj) + kj))x
k

=
k=n+m∑

k=0

(0, e2
∑

i+j=k

(f(ai) + ji)(f(bj) + kj))x
k = 0.

Thus, (0, e(f(ai) + ji))(0, e(f(bj) + kj)) = 0 since A ▷◁f J is Armendariz, which implies that e2(f(ai) +

ji)(f(bj) + kj) = 0 for every i, j . Hence, (f(ai) + ji)(f(bj) + kj) = 0, and this shows that f(A) + J is

Armendariz.
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(4) Assume that J ∩ nil(B) = (0) and A is Armendariz. Let F (x) =
i=n∑
i=0

(ai, f(ai) + ji)x
i and G(x) =

t=m∑
t=0

(bt, f(bt)+kt)x
t be two polynomials in (A ▷◁f J)[x] such that F (x)G(x) = 0. Set fB(x) =

i=n∑
i=0

(f(ai)+ji)x
i ,

gB(x) =
t=m∑
t=0

(f(bt) + kt)x
t , fA(x) =

i=n∑
i=0

aix
j , and gA(x) =

t=m∑
t=0

btx
t . Then F (x)G(x) = 0 implies that

fAgA = 0 (and fBgB = 0), which in turn implies that aibt = 0 since A is an Armendariz ring. Thus,

(f(ai) + ji)(f(bt) + kt) ∈ J for every i, t . Next, we show that (f(ai) + ji)(f(bt) + kt) = 0 for every i, t . For

this, we proceed by induction on the degree n of F (x). If n = 0, it is clear. Suppose that n ≥ 1 and the

induction hypothesis.

Claim: (f(a0) + j0)(f(bt) + kt) = 0 for every 0 ≤ t ≤ m . Indeed, suppose that ∃t ∈ {0, ...,m} such that

(f(a0)+ j0)(f(bt)+kt) ̸= 0 and let l be the smallest integer in {0, ...,m} such that (f(a0)+ j0)(f(bl)+kl) ̸= 0.

Then for t ∈ {0, ..., l − 1} , (f(a0) + j0)(f(bt) + kt) = 0 and so ((f(bt) + kt)J(f(a0) + j0))
2 = 0. Thus,

(f(bt)+kt)J(f(a0)+j0) = 0 since J∩nil(B) = (0). Hence, (f(al−t)+jl−t)(f(bt)+kt)((f(a0)+j0)(f(bl)+kl))
2 =

(f(al−t)+jl−t)(f(bt)+kt)(f(a0)+j0)(f(bl)+kl)(f(a0)+j0)(f(bl)+kl) ∈ (f(al−t)+jl−t)((f(bt)+kt)J(f(a0)+

j0))(f(bl) + kl) = 0, but since the coefficient of the term xl in fBgB = 0 is zero, we obtain

0 = (f(a0)+j0)(f(bl)+kl)+(f(a1)+j1)(f(bl−1)+kl−1)+ ...+(f(al)+jl)(f(b0)+k0) = (f(a0)+j0)(f(bl)+kl)+

t=l−1∑
t=1

(f(al−t) + jl−t)(f(bt) + kt). Multiplying ((f(a0) + j0)(f(bl) + kl))
2 to the preceding equation on the right

side, we obtain: ((f(a0)+j0)(f(bl)+kl))
3+

t=l−1∑
t=1

(f(al−t)+jl−t)(f(bt)+kt)((f(a0)+j0)(f(bl)+kl))
2 = 0. Hence,

((f(a0)+j0)(f(bl)+kl))
3 = 0 and so (f(a0)+j0)(f(bl)+kl) ∈ J∩nil(B) = 0. Thus, (f(a0)+j0)(f(bl)+kl) = 0,

which is a contradiction. Consequently, (f(a0) + j0)(f(bt) + kt) = 0 for every t ∈ {0, ...,m} . Now, set

F1(x) = (f(a1) + j1) + (f(a2) + j2)x + ... + (f(an) + jn)x
n−1 . Then F (x) = (a0, f(a0) + j0) + xF1(x),

and by the claim, (a0, f(a0) + j0)G(x) = 0. Thus, F1(x)G(x) = 0, and by the induction hypothesis,

(f(ai) + ji)(f(bt) + kt) = 0 for every 1 ≤ i ≤ n and 0 ≤ t ≤ m . Therefore, (f(ai) + ji)(f(bt) + kt) = 0

for every 0 ≤ i ≤ n and 0 ≤ t ≤ m and hence (ai, f(ai) + ji)(bt, f(bt) + kt) = 0 for every 0 ≤ i ≤ n and

0 ≤ t ≤ m . It follows that A ▷◁f J is Armendariz.

(5) Assume that f−1(J)∩nil(A) = (0) and f(A)+J is an Armendariz ring. Our argument is similar to the

one in (4). Let F (x) =
i=n∑
i=0

(ai, f(ai)+ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj)+kj)x
j be two polynomials in (A ▷◁f J)[x]

such that F (x)G(x) = 0. Set fB(x) =
i=n∑
i=0

(f(ai) + ji)x
i , gB(x) =

j=m∑
j=0

(f(bj) + kj)x
j , fA(x) =

i=n∑
i=0

aix
j , and

gA(x) =

j=m∑
j=0

bjx
j . Since F (x)G(x) = 0, fAgA = 0 and fBgB = 0. Thus, (f(ai) + ji)(f(bj) + kj) = 0

for every i, j since f(A) + J is an Armendariz ring, and hence aibj ∈ f−1(J). To show that aibj = 0 for

every i, j , we proceed by induction on the degree n of F (x). If n = 0, this is trivial. Suppose that n ≥ 1
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and the induction hypothesis. First we show that a0bj = 0 for every 0 ≤ j ≤ m . Indeed, suppose that

∃j ∈ {0; ...;m} such that a0bj ̸= 0. Let k be the smallest positive integer in {0, ...,m} such that a0bk ̸= 0.

Then for j ∈ {0, ..., k − 1} , a0bj = 0 and so (bjf
−1(J)a0)

2 = 0. Then bjf
−1(J)a0 ⊆ f−1(J) ∩ nil(A) = (0)

and so bjf
−1(J)a0 = 0. Hence, (ak−jbj)(a0bk)

2 = ak−jbja0bka0bk ∈ ak−j(bjf
−1(J)a0)bk = 0. The coefficient

of the term xk in fA(x)gA(x) = 0 is 0 = a0bk + a1bk−1 + ... + akb0 = a0bk +

j=k−1∑
j=1

ak−jbj . Multiplying

(a0bk)
2 to the preceding equation on the right side, we obtain (a0bk)

3 +

j=k−1∑
j=1

(ak−jbj)(a0bk)
2 = 0. Hence,

(a0bk)
3 = 0 and so (a0bk) ∈ f−1(J) ∩ nil(A) = (0), which is a contradiction. Consequently, a0bj = 0, for

every j ∈ {0, ...,m} . Finally, as in (4), set F1(x) = (f(a1) + j1) + (f(a2) + j2)x+ ...+ (f(an) + jn)x
n−1 . Then

F (x) = (a0, f(a0) + j0) + xF1(x), and by the claim, (a0, f(a0) + j0)G(x) = 0. Thus, F1(x)G(x) = 0, and by

the induction hypothesis aibj = 0 for every 1 ≤ i ≤ n and 0 ≤ j ≤ m . Therefore, aibj = 0 for every i, j and

hence (ai, f(ai) + ji)(bj , f(bj) + kj) = 0 for every i, j . It follows that A ▷◁f J is an Armendariz ring. 2

3. Nil-Armendariz property in amalgamated algebra along an ideal

Theorem 3.1 Let (A,B) be a pair of rings, f : A → B be a ring homomorphism, and J be a proper ideal of

B ; then:

1. If A ▷◁f J is a nil-Armendariz ring, then so is A .

2. If A and f(A) + J are nil-Armendariz rings, then so is A ▷◁f J .

3. Assume that J ∩ S ̸= ∅ where S is the set of regular central elements of B . Then A ▷◁f J is a

nil-Armendariz ring if and only if f(A) + J and A are nil-Armendariz rings.

4. Assume that J ⊆ nil(B) . Then A ▷◁f J is a nil-Armendariz ring if and only if A is a nil-Armendariz

ring.

5. Assume that f−1(J) ⊆ nil(A) . Then A ▷◁f J is a nil-Armendariz ring if and only if f(A) + J is a

nil-Armendariz ring.

6. Assume that f is injective.

(i) f(A) ∩ J = 0 . Then A ▷◁f J is a nil-Armendariz ring if and only if f(A) + J is a nil-Armendariz

ring.

(ii) J ⊆ nil(B) . Then A ▷◁f J is a nil-Armendariz ring if and only if f(A)+J is a nil-Armendariz ring.

Proof The proofs of assertions (1), (2), and (3) are similar to (1), (2), and (3) in Theorem 2.2.

(4) Suppose that A is a nil-Armendariz ring. Then
A ▷◁f J

0× J
≃ A is a nil-Armendariz ring. Let F (x) =

i=n∑
i=0

(ai, f(ai)+ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj)+kj)x
j be two polynomials in (A ▷◁f J)[x] such that F (x)G(x) =
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k=n+m∑
k=0

(
∑

i+j=k

(aibj , (f(ai) + ji)(f(bj) + kj)))x
k ∈ nil((A ▷◁f J)[x]) . Set F (x) =

i=n∑
i=0

(ai, f(ai) + ji)x
i and

G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j in

A ▷◁f J

0× J
[x] . Then F (x)G(x) ∈ nil(A ▷◁f J)[x] implies that F (x)G(x) ∈

nil
A ▷◁f J

0× J
[x] . Consequently, (ai, f(ai) + ji) (bj , f(bj) + kj) ∈ nil

A ▷◁f J

0× J
since

A ▷◁f J

0× J
is nil-Armendariz.

Hence, (aibj , (f(ai) + ji)(f(bj) + kj))
pij ∈ 0× J for some integer pij . Therefore, ((f(ai) + ji)(f(bj) + kj))

pij ∈

J ⊆ nil(B). Hence, (ai, f(ai)+ji)(bj , f(bj)+kj) ∈ nil(A ▷◁f J) and this shows that A ▷◁f J is nil-Armendariz.

(5) Assume that f−1(J) ⊆ nil(A) and suppose that A ▷◁f J is nil-Armendariz. Let fA(x) =
i=n∑
i=0

(f(ai) + ji)x
i

and gA(x) =

j=m∑
j=0

(f(bj)+ kj)x
j such that fA(x)gA(x) ∈ nil(f(A)+ J)[x] . Let F (x) =

i=n∑
i=0

(ai, f(ai)+ ji)x
i and

G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j . Since fA(x)gA(x) =

k=n+m∑
k=0

(
∑

i+j=k

(f(ai) + ji)(f(bj) + kj))x
k ∈ nil(f(A) + J)[x] ,

∑
i+j=k

(f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) for every k ∈ {0, ..., n + m} . Thus,
∑

i+j=k

(f(aibj) + tij) ∈

nil(f(A) + J) with tij ∈ J . Hence, for every k ∈ {0, ..., n + m} , f(
∑

i+j=k

aibj) +
∑

i+j=k

tij is nilpotent,

so (f(
∑

i+j=k

aibj))
nij ∈ J for some positive integer nij , and therefore (

∑
i+j=k

aibj)
nij ∈ f−1(J) ⊆ nil(A),

which in turn implies that
∑

i+j=k

aibj ∈ nil(A). Consequently, F (x)G(x) ∈ nil(A ▷◁f J)[x] and hence

(
∑

i+j=k

aibj ,
∑

i+j=k

(f(ai)+ ji)(f(bj)+kj)) ∈ nil(A ▷◁f J). Since A ▷◁f J is a nil-Armendariz ring, (aibj , (f(ai)+

ji)(f(bj) + kj)) = (ai, f(ai) + ji)(bj , f(bj) + kj) is nilpotent and so (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J).

Hence, f(A) + J is nil-Armendariz, as desired.

The converse is similar to (4) by using the fact that
A ▷◁f J

f−1(J)× 0
≃ f(A) + J .

(6) Assume that f is injective.

(i) f(A) ∩ J = 0. In this case A ▷◁f J ≃ f(A) + J and the conclusion follows.

(ii) Assume that J ⊆ nil(B) and suppose that f(A) + J is nil-Armendariz. Let F (x) =

i=n∑
i=0

(ai, f(ai) + ji)x
i

and G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j be two polynomials in (A ▷◁f J)[x] such that F (x)G(x) ∈ nil(A ▷◁f J)[x] .

Set fB(x) =
i=n∑
i=0

(f(ai) + ji)x
i and gB(x) =

j=m∑
j=0

(f(bj) + kj)x
j . Then F (x)G(x) ∈ nil(A ▷◁f J)[x] implies that

fB(x)gB(x) ∈ nil(f(A)+J)[x] . Hence, (f(ai)+ji)(f(bj)+kj) ∈ nil(f(A)+J) since f(A)+J is nil-Armendariz.
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Now we show that aibj is nilpotent. Indeed, since (f(ai)+ji)(f(bj)+kj) = (f(aibj)+tij) ∈ nil(f(A)+J), tij ∈ J ,

(f(aibj) + tij)
nij = 0 for some positive integer nij . Therefore, (f(aibj)

nij = f((aibj)
nij ) ∈ J ⊆ nil(B) and so

(f((aibj)
nij ))mij = 0 for some positive integer mij . Hence, f(((aibj)

nij )mij ) = 0 and therefore (aibj)
nijmij = 0

since f is injective. Consequently, (ai, f(ai) + ji)(bj , f(bj) + kj) is nilpotent and this shows that A ▷◁f J is

nil-Armendariz.

Conversely, suppose that A ▷◁f J is nil-Armendariz and let fA(x) =
i=n∑
i=0

(f(ai) + ji)x
i and gA(x) =

j=m∑
j=0

(f(bj) + kj)x
j be two polynomials in (f(A) + J)[x] such that fA(x)gA(x) ∈ nil(f(A) + J)[x] . Set

F (x) =

i=n∑
i=0

(ai, f(ai) + ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j . Then

F (x)G(x) =
k=n+m∑

k=0

(
∑

i+j=k

(aibj , (f(ai) + ji)(f(bj) + kj))x
k

=
k=n+m∑

k=0

(
∑

i+j=k

aibj ,
∑

i+j=k

(f(ai) + ji)(f(bj) + kj))x
k,

but fA(x)gA(x) ∈ nil(f(A) + J)[x] implies that (
∑

i+j=k

(f(ai) + ji)(f(bj) + kj))
nij = 0 for some positive integer

nij . Thus, (
∑

i+j=k

(f(aibj) + tij))
nij = 0 for some positive integer nij and so (f(

∑
i+j=k

aibj) +
∑

i+j=k

tij)
nij = 0.

Hence, (f(
∑

i+j=k

aibj)
nij ∈ J ⊆ nil(B) and therefore f((

∑
i+j=k

aibj)
mij ) = 0 for some positive integer mij .

Since f is injective, (
∑

i+j=k

aibj)
mij = 0 and hence F (x)G(x) ∈ nil(A ▷◁f J)[x] , which in turn implies that

(aibj , (f(ai) + ji)(f(bj) + kj)) ∈ nil(A ▷◁f J). Therefore, (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) and this

shows that f(A) + J is nil-Armendariz. 2

4. Weak Armendariz property in amalgamated algebra along an ideal

Theorem 4.1 Let (A,B) be a pair of rings, f : A → B be a ring homomorphism, and J be a proper ideal of

B ; then:

1. If A ▷◁f J is a weak Armendariz ring, then so is A .

2. If A and f(A) + J are weak Armendariz rings, then so is A ▷◁f J .

3. Assume that J ∩ S ̸= ∅ where S is the set of regular central elements of B . Then A ▷◁f J is a weak

Armendariz ring if and only if f(A) + J and A are weak Armendariz rings.

4. Assume that J ⊆ nil(B) . Then A is weak Armendariz ring if and only if A ▷◁f J is a weak Armendariz

ring.
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5. Assume that f−1(J) ⊆ nil(A) . If f(A)+J is a weak Armendariz ring, then A ▷◁f J is a weak Armendariz

ring.

6. Assume that f is injective.

(i) f(A)∩J = 0 . Then A ▷◁f J is a weak Armendariz ring if and only if f(A)+J is a weak Armendariz

ring.

(ii) J ⊆ nil(B) . If f(A) + J is a weak Armendariz ring, then A ▷◁f J is a weak Armendariz ring.

7. Assume that J is semicommutative. If A is a weak Armendariz ring, then so is A ▷◁f J .

8. Assume that f−1(J) is semicommutative. If f(A) + J is a weak Armendariz ring, then so is A ▷◁f J .

Proof The assertions (1), (2), and (3) are similar to (1), (2), and (3) in Theorem 2.2, and the assertions (4),

(5), and (6) are similar to (4), (5), and (6) in Theorem 3.1.

(7) Assume that J is semicommutative and A is weak Armendariz. Let F (x) =
i=n∑
i=0

(ai, f(ai)+ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j be two polynomials in A ▷◁f J [x] such that F (x)G(x) = 0 and set fA(x) =

i=n∑
i=0

aix
j ,

gA(x) =

j=m∑
j=0

bjx
j , fB(x) =

i=n∑
i=0

(f(ai)+ji)x
i , and gB(x) =

j=m∑
j=0

(f(bj)+kj)x
j . Then F (x)G(x) = 0 implies that

fA(x)gA(x) =

l=n+m∑
l=0

(
∑
i+j=l

aibj)x
l = 0 and fB(x)gB(x) =

l=n+m∑
l=0

(
∑
i+j=l

(f(ai) + ji)(f(bj) + kj))x
l = 0. Hence,

∑
i+j=l

aibj = 0 for all l = 0, 1..., n + m and
∑
i+j=l

(f(ai) + ji)(f(bj) + kj) = 0 for all l = 0, 1..., n + m . Thus,

aibj ∈ nil(A) since A is weak Armendariz, and so (aibj)
nij = 0 for some positive integer nij . To show that

(f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J), we proceed by induction on i+ j .

If i+ j = 0, we have (f(a0) + j0)(f(b0) + k0) = 0 ∈ nil(f(A) + J).

Let l be a positive integer such that (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) when i + j < l . We will

show that (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) when i+ j = l . We have ((f(a0) + j0)(f(bl) + kl))
n0l=p ∈ J

since (a0bl)
p = 0. By the induction hypothesis, (f(a0) + j0)(f(bl−1) + kl−1) ∈ nil(f(A) + J). Let t be a

positive integer such that ((f(a0) + j0)(f(bl−1) + kl−1))
t = 0. Then ((f(bl−1) + kl−1)(f(a0) + j0))

t+1 = 0,

and hence (((f(a1) + j1)(f(bl−1) + kl−1))((f(a0) + j0)(f(bl) + kl))
p+1(f(a1) + j1))× ((f(bl−1) + kl−1)(f(a0) +

j0))
t+1((f(bl−1)+kl−1)((f(a0)+j0)(f(bl)+kl))

p+1) = 0. Since (((f(a1)+j1)(f(bl−1)+kl−1))((f(a0)+j0)(f(bl)+

kl))
p+1(f(a1) + j1))(f(bl−1) + kl−1)(f(a0) + j0) ∈ J , ((f(bl−1) + kl−1)(f(a0) + j0))

t((f(bl−1) + kl−1)((f(a0) +

j0)(f(bl) + kl))
p+1) ∈ J , (f(bl) + kl)((f(a0) + j0)(f(bl) + kl))

p)(f(a1) + j1) ∈ J and J is semicommutative. It

follows that (((f(a1) + j1)(f(bl−1) + kl−1))((f(a0) + j0)(f(bl) + kl))
p+1(f(a1) + j1))((f(bl−1) + kl−1)(f(a0) +

j0))×(f(bl)+kl)((f(a0)+j0)(f(bl)+kl))
p)(f(a1)+j1)×((f(bl−1)+kl−1)(f(a0)+j0))

t((f(bl−1)+kl−1)((f(a0)+

j0)(f(bl) + kl))
p+1) = 0. Hence, [((f(a1) + j1)(f(bl−1) + kl−1))((f(a0) + j0)(f(bl) + kl))

p+1]2(f(a1) + j1) ×
((f(bl−1) + kl−1)(f(a0) + j0))

t((f(bl−1) + kl−1)((f(a0) + j0)(f(bl) + kl))
p+1) = 0. Continuing this procedure,

we obtain [((f(a1) + j1)(f(bl−1) + kl−1))((f(a0) + j0)(f(bl) + kl))
p+1]t+3 = 0.
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Thus, ((f(a1) + j1)(f(bl−1) + kl−1))((f(a0) + j0)(f(bl) + kl))
p+1 ∈ nil(J).

Similarly, we can show that ((f(ai)+ji)(f(bl−i)+kl−i))((f(a0)+j0)(f(bl)+kl))
p+1 ∈ nil(J) for i = 2, ..., l .

Since J is semicommutative, nil(J) is an ideal and consequently
i=l∑
i=1

(f(ai)+ji)(f(bl−i)+kl−i))((f(a0)+

j0)(f(bl) + kl))
p+1 ∈ nil(J). Multiplying the equation

∑
i+j=l

(f(ai) + ji)(f(bj) + kj) = 0 on the right side by

((f(a0) + j0)(f(bl) + kl))
p+1 , we obtain ((f(a0) + j0)(f(bl) + kl))

p+2 = −
i=l∑
i=1

(f(ai) + ji)(f(bj) + kj)((f(a0) +

j0)(f(bl) + kl))
p+1 ∈ nil(J).

Thus, (f(a0) + j0)(f(bl) + kl) ∈ nil(f(A) + J).

Let q = n1,l−1 . Then ((f(a1) + j1)(f(bl−1) + kl−1))
q ∈ J . By analogy with the above proof, we have

i=l∑
i=2

(f(ai) + ji)(f(bl−i) + kl−i)((f(a1) + j1)(f(bl−1) + kl−1))
q+1 ∈ nil(J).

Suppose that ((f(a0) + j0)(f(bl) + kl))
s = 0. Then

((f(a1) + j1)(f(bl−1) + kl−1))
q+1((f(a0) + j0)(f(bl) + kl))

s((f(a1) + j1)(f(bl−1) + kl−1))
q+1 = 0.

Since ((f(a1) + j1)(f(bl−1) + kl−1))
q+1 ∈ J and J is semicommutative,

((f(a0) + j0)(f(bl) + kl)((f(a1) + j1)(f(bl−1) + kl−1))
q+1)s+1 = 0.

Therefore,

((f(a0) + j0)(f(bl) + kl)((f(a1) + j1)(f(bl−1) + kl−1))
q+1 ∈ nil(J).

Multiplying the equation
∑
i+j=l

(f(ai)+ji)(f(bj)+kj)) = 0 on the right side by ((f(a1)+j1)(f(bl−1)+kl−1))
q+1 ,

we obtain ((f(a1)+j1)(f(bl−1)+kl−1))
q+2 = −

i=l∑
i=2

((f(ai)+ji)(f(bl−i)+kl−i))((f(a1)+j1)(f(bl−1)+kl−1))
q+1−

((f(a0) + j0)(f(bl) + kl))((f(a1) + j1)(f(bl−1) + kl−1))
q+1 ∈ nil(J). Therefore, (f(a1) + j1)(f(bl−1) + kl−1) ∈

nil(f(A) + J).

A similar argument shows that

(f(a2) + j2)(f(bl−2) + kl−2) ∈ nil(f(A) + J) ... (f(al) + jl)(f(b0) + k0) ∈ nil(f(A) + J).

Consequently, (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) when i+ j = l , and therefore (f(ai) + ji)(f(bj) + kj) ∈

nil(f(A) + J) for every i, j . Hence, (ai, f(ai) + ji)(bj , f(bj) + kj) ∈ nil(A ▷◁f J), and this shows that A ▷◁f J

is weak Armendariz.

(8) Assume that f−1(J) is semicommutative and f(A)+J is weak Armendariz. Let F (x) =
i=n∑
i=0

(ai, f(ai)+

ji)x
i and G(x) =

j=m∑
j=0

(bj , f(bj) + kj)x
j be two polynomials in A ▷◁f J [x] such that F (x)G(x) = 0 and set
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fA(x) =
i=n∑
i=0

aix
j , gA(x) =

j=m∑
j=0

bjx
j , fB(x) =

i=n∑
i=0

(f(ai) + ji)x
i , and gB(x) =

j=m∑
j=0

(f(bj) + kj)x
j . Then

F (x)G(x) = 0 implies that fA(x)gA(x) =
l=n+m∑

l=0

(
∑
i+j=l

aibj)x
l = 0 and fB(x)gB(x) =

l=n+m∑
l=0

(
∑
i+j=l

(f(ai) +

ji)(f(bj) + kj))x
l = 0. Hence,

∑
i+j=l

aibj = 0 for all l = 0, 1..., n+m and
∑
i+j=l

(f(ai) + ji)(f(bj) + kj) = 0 for

all l = 0, 1..., n+m . Therefore, (f(ai) + ji)(f(bj) + kj) ∈ nil(f(A) + J) since f(A) + J is weak Armendariz.

Since (f(ai) + ji)(f(bj) + kj) = (f(aibj) + tij) ∈ nil(f(A) + J), where tij ∈ J , (f(aibj) + tij)
nij = 0, for some

positive integer nij , therefore (f(aibj))
nij = f((aibj)

nij ) ∈ J , and hence (aibj)
nij ∈ f−1(J). Now we show

that aibj ∈ nil(A) by induction on i+ j .

If i+ j = 0, we have a0b0 = 0 ∈ nil(A) and so we are done.

Let l be a positive integer such that aibj ∈ nil(A) when i + j < l . As in (7), we will show that

aibj ∈ nil(A) when i+ j = l .

We have (a0bl)
n0l=p ∈ f−1(J), and by the induction hypothesis, (a0bl−1) ∈ nil(A). Let t be a positive in-

teger such that (a0bl−1)
t = 0. Then (bl−1a0)

t+1 = 0 and hence ((a1bl−1)(a0bl)
p+1a1)(bl−1a0)

t+1(bl−1(a0bl)
p+1) =

0. Since

(a1bl−1)(a0bl)
p+1a1)(bl−1a0) ∈ f−1(J)

(bl−1a0)
t(bl−1(a0bl)

p+1) ∈ f−1(J)

(bl(a0bl)
pa1 ∈ f−1(J)

and f−1(J) is semicommutative, we obtain

((a1bl−1)(a0bl)
p+1a1)(bl−1a0)(bl(a0bl)

pa1)(bl−1a0)
t(bl−1(a0bl)

p+1) = 0.

Hence, [(a1bl−1)(a0bl)
p+1]2a1(bl−1a0)

t(bl−1(a0bl)
p+1) = 0.

Iterating this process, we obtain:

[(a1bl−1)(a0bl)
p+1]t+3 = 0.

Thus, (a1bl−1)(a0bl)
p+1 ∈ nilf−1(J), and similarly we have (aibl−i)(a0bl)

p+1 ∈ nilf−1(J) for i = 2, ..., l . Since

f−1(J) is semicommutative, nilf−1(J) is an ideal and consequently

i=l∑
i=1

(aibl−i)(a0bl)
p+1 ∈ nilf−1(J).

Multiplying the equation
∑
i+j=l

aibj = 0 on the right side by (a0bl)
p+1 , we get:

(a0bl)
p+2 = −

i=l∑
i=1

(aibl−i)(a0bl)
p+1 ∈ nilf−1(J).
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Thus, a0bl ∈ nil(A). Now let q = n1,l−1 . Then (a1bl−1)
q ∈ f−1(J). As in the above proof, we have

i=l∑
i=2

(aibl−i)(a1bl−1)
q+1 ∈ nilf−1(J).

Suppose that (a0bl)
s = 0. Then

(a1bl−1)
q+1(a0bl)

s(a1bl−1)
q+1 = 0.

Since (a1bl−1)
q+1 ∈ f−1(J) and f−1(J) is semicommutative,

((a0bl)(a1bl−1)
q+1)s+1 = 0.

Therefore,

(a0bl)(a1bl−1)
q+1 ∈ nil(f−1(J)).

If we multiply the equation
∑
i+j=l

aibj = 0 on the right side by (a1bl−1)
q+1 , we obtain

(a1bl−1)
q+2 = −

i=l∑
i=2

(aibl−i)(a1bl−1)
q+1 − (a0bl)(a1bl−1)

q+1 ∈ nilf−1(J).

Therefore, a1bl−1 ∈ nil(A). Similarly, we have a2bl−2 ∈ nil(A), ..., alb0 ∈ nil(A) and consequently aibj ∈
nil(A)) when i + j = l . Therefore, aibj ∈ nil(A) for every i, j and hence (ai, f(ai) + ji)(bj , f(bj) + kj) ∈

nilA ▷◁f J . This shows that A ▷◁f J is weak Armendariz and completes the proof. 2

Remark As we mentioned in the introduction, we do not know any example to date of a weak Armendariz ring

that is not a nil-Armendariz ring. This question was left open in [2]. We were not able to answer the question

of whether A ▷◁f J is a nil-Armendariz ring if and only it is a weak Armendariz ring. A negative answer will

provide a counterexample of a weak Armendariz ring that is not nil-Armendariz. However, a positive answer

shows that amalgamation of algebras along ideals, as a source of examples and counterexamples, cannot provide

such an example if it exists.
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