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Abstract: The forgotten topological index is defined as the sum of cubes of the degrees of the vertices of the molecular

graph G. In this paper, we obtain, analyze, and compare various lower bounds for the forgotten topological index

involving the number of vertices, edges, and maximum and minimum vertex degree. Then we give Nordhaus–Gaddum-

type inequalities for the forgotten topological index and coindex. Finally, we correct the number of extremal chemical

trees on 15 vertices.
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1. Introduction

Throughout this paper, we consider G to be a simple connected graph with |V (G)| = n vertices and |E(G)| = m

edges. The degree of a vertex vi(1 ≤ i ≤ n) is denoted by d(vi) such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). In

particular, ∆,∆2 , and δ are called the first, second maximum, and minimum degrees of G , respectively. Let G

denote the complement graph of G with the same vertex set V (G) in which two vertices u and v are adjacent

if and only if they are not adjacent in G . The line graph L(G) is obtained from G in which V (L(G)) = E(G),

where two vertices of L(G) are adjacent if and only if they are adjacent edges of G .

In 1972, Gutman and Trinajstić introduced the classical Zagreb indices in [13] and they are among the

oldest and most used molecular structure-descriptors. The first Zagreb index M1(G) and the second Zagreb

index M2(G) are defined as

M1(G) =
∑

u∈V (G)

d(u)
2

and M2(G) =
∑

uv∈E(G)

d(u)d(v).

There is much research regarding the mathematical and chemical properties for Zagreb indices available in the

literature and we refer the reader to [5, 8] for the recent results and for more information on the Zagreb indices.

In 1987, Naurmi [18] introduced the inverse degree and it attracted attention through conjectures of the

computer program Graffiti [10]. The inverse degree of a graph G with no isolated vertices is defined as

ID(G) =
∑

u∈V (G)

1

d(u)
.
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The harmonic index H(G) also first emerged in the conjectures of the computer program Graffiti [10],

defined by

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

In 1997, Albertson [2] introduced the imbalance of an edge e = uv ∈ E(G) as |d(u)− d(v)| and the

irregularity of G as

irr(G) =
∑

uv∈E(G)

|d(u)− d(v)|.

In 2005, Li and Zheng [15] introduced the first general Zagreb index. Subsequently, two of the present

authors together with Gutman [5] introduced the second general Zagreb index and these indices are defined as

Mα
1 = Mα

1 (G) =
∑

v∈V (G)

d(v)
α

and Mα
2 = Mα

2 (G) =
∑

uv∈E(G)

[d(u)d(v)]
α
.

It is easily seen that for any graph G , we have

Mα+1
1 (G) =

∑
v∈V (G)

d(v)
α+1

=
∑

uv∈E(G)

[d(u)
α
+ d(v)

α
]. (1.1)

In recent years, some novel variants of ordinary Zagreb indices have been introduced and studied. In

particular, the first and second Zagreb coindices are defined [4] as

M1 = M1(G) =
∑

uv/∈E(G)

[d(u) + d(v)] and M2 = M2(G) =
∑

uv/∈E(G)

d(u)d(v).

The first and second Zagreb indices are successfully used in the investigation of the structure-dependency of

the total π -electron energy (ε). It was found that (ε) depends on M1(G) and thus provides a measure of the

carbon skeleton of the underlying molecules. In the same paper, another topological index, defined as the sum

of cubes of degrees of the vertices of the graph, was also shown to influence (ε).

In 2015, Furtula and Gutman [11] reinvestigated this index; they showed that the predictive ability of

this index is similar to that of the first Zagreb index and that for the entropy and acentric factor, both of

them yield correlation coefficients greater than 0.95. They named this index the forgotten topological index or

F-index, denoted by F (G). Some bounds for the forgotten topological index are seen in [11] and the extremal

values of the F-index for trees are seen in [1]. Note that for α = 1, 2 in (1.1) they are simply the first Zagreb

index M2
1 (G) and forgotten topological index M3

1 (G), respectively.

This paper is organized as follows. In Section 3, we present some new lower bounds on the forgotten

topological index F (G) and forgotten topological coindex F (G) of graph G in terms of n,m,∆,∆2, δ , and

M1(G). We also give lower bounds on F (G) + F (G) and F (G) + F (G).

2. Preliminaries

Let Pn , K1,n−1 , Cn , and Wn denote the path, star, cycle, and wheel graphs on n vertices, respectively. The

helm Hn is obtained from the wheel graph Wn−1 by adjoining a pendant edge at each vertex of the cycle. The
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crown Crn is obtained from the helm graph Hn by deleting the maximum degree vertex of the helm. The

flower Fln is obtained from the helm Hn by joining each pendent vertex to the central vertex of the helm.

The web W (2, n) is obtained from Hn by joining the pendent vertices to form a cycle Cn−1 and then adding

a pendent edge to each vertex of its outer cycle.

The vertex-semitotal graph T1(G) is a graph with vertex set V (G) ∪ V (E), such that any two vertices

u, v ∈ V (T1(G)) are adjacent if and only if (i) uv ∈ E(G); (ii) one is a vertex of G and the other is an edge of

G incident on it. The edge-semitotal graph T2(G) is a graph with vertex set V (G) ∪ V (E), such that any two

vertices u, v ∈ V (T2(G)) are adjacent if and only if (i) u and v are adjacent edges in G ; (ii) one is a vertex

of G and the other is an edge of G incident on it.

A graph G is called bidegreed if its vertex degree is either ∆ or δ with ∆ > δ ≥ 1. Let Γ be the class

of graphs such that d(vi) = δ , 2 ≤ i ≤ n . Note that Γ is a special case of the bidegreed graphs. Let Ω be the

class of graphs such that d(v1) ≥ d(v2) > d(vi) with d(vi) = δ, i = 3, 4, . . . , n . Let Θ be the class of graphs

such that d(v1) > d(vi) with d(v2) = · · · = d(vn−1) = ∆2, d(vn) = δ, i = 2, 3, . . . , n , respectively. If ∆2 = δ ,

then Γ and Θ are in the same class. The edge imbalance of an edge is the absolute value of the difference of

its two end vertex degrees. A biregular graph is a special type of bidegreed bipartite graph, which has constant

edge imbalance.

In 1998, de Caen [9] obtained the lower bound for the first Zagreb index in the context of the sum of

squares of degrees of a graph.

Lemma 2.1 [9] Let G be a graph with n vertices and m edges. Then

M1(G) ≥ 4m2

n
(2.1)

with equality if and only if G is regular.

In 2006, Ciobǎ [7] obtained the lower bound for the first general Zagreb index.

Lemma 2.2 [7] If G is a connected graph and α is a positive number, then

Mα+1
1 (G) ≥

(
2m

n

)
Mα

1 (G) (2.2)

with equality if and only if G is regular.

Later, in 2012, Ilić and Zhou [14] obtained the lower bound for F (G), which is a special case formula

for (2.2) at α = 2. In 2009, Zhou and Trinajstić [21] obtained the following lower bound in the context of the

general sum-connectivity index.

Lemma 2.3 [21] Let G be a graph with n vertices and m edges. Then

F (G) ≥ 16m3

n2
− 2M2(G) (2.3)

with equality if and only if G is regular.
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Lemma 2.4 [21] Let G be a graph with m ≥ 1 edges. If 0 < α < 1 , then χα(G) ≤ M1(G)αm1−α , and if

α < 0 or α > 1 , then χα(G) ≥ M1(G)αm1−α, and either equality holds if and only if d(u)+ d(v) is a constant

for any edge uv .

Very recently, Furtula et al. [11, 12] presented the following lower bounds for the F -index.

Lemma 2.5 [11] Let G be a graph with n vertices and m edges. Then

F (G) ≥ (M1(G))
2

2m
(2.4)

with equality if and only if G is regular.

Lemma 2.6 [11] Let G be a graph with n vertices and m edges. Then

F (G) ≥ (M1(G))
2

m
− 2M2(G) (2.5)

with equality if and only if G is regular.

Lemma 2.7 [12] Let G be a graph with n vertices and m edges. Then

F (G) ≥ 2m

n
M1(G) (2.6)

with equality if and only if G is regular.

Remark 2.8 Note that, for α = 2 in Lemma 2.2 and Lemma 2.4, it has (2.6) and (2.5) as its special cases,

respectively. Also from Lemma 2.4, it is clear that the equality of (2.5) holds if and only if d(u) + d(v) is a

constant for any edge uv. A typo in inequality (2.4) in [12] leads to the conclusion that (2.6) is an improvement

for (2.4). Using inequality (2.1), we conclude that the lower bound (2.4) is always better than (2.6); that is,

F (G) ≥ (M1(G))
2

2m
≥ M1(G)

2m
.
4m2

n
=

(
2m

n

)
M1(G).

Furthermore, the lower bound (2.5) is always better than (2.3):

F (G) ≥ (M1(G))
2

m
− 2M2(G) ≥ 1

m
.

(
4m2

n

)2

− 2M2(G) =
16m3

n2
− 2M2(G).

3. Main results

At first, we prove the following theorems that establish the new lower bounds for F (G) in terms of n,m,∆,∆2, δ, ID(G),

and M1(G).

Theorem 3.1 Let G be a simple graph of order n(≥ 3) with no isolated vertices. Then

F (G) ≥ ∆3 +∆3
2 +Φ∗

1 (3.1)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω, where

Φ∗
1 =

[
M1(G)−∆2 −∆2

2

]2
+ (2m−∆−∆2)

(
ID(G)− 1

∆ − 1
∆2

)
− (n− 2)

2

(2m−∆−∆2)
.
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Proof Consider w1, w2, . . . , wr to be the nonnegative weights; then we have the weighted version of the

Cauchy–Schwartz inequality:

r∑
i=1

wia
2
i

r∑
i=1

wib
2
i ≥

(
r∑

i=1

wiaibi

)2

. (3.2)

Since wi is nonnegative, we assume that wi = xi − yi such that xi ≥ yi ≥ 0. Thus,

r∑
i=1

xia
2
i

r∑
i=1

xib
2
i −

(
r∑

i=1

xiaibi

)2

≥
r∑

i=1

yia
2
i

r∑
i=1

yib
2
i −

(
r∑

i=1

yiaibi

)2

≥ 0. (3.3)

By our assumption, G has no isolated vertices and so we have 1
d(vi)

≤ 1, for all vi ∈ V (G). Thus, by fixing

r = n− 2, xi = d(vi+2), yi =
1

d(vi+2)
, ai = d(vi+2), and bi = 1, for all i = 1, 2, . . . , r in the above, we get

n∑
i=3

d(vi)
3

n∑
i=3

d (vi)−

(
n∑

i=3

d(vi)
2

)2

≥
n∑

i=3

d (vi)

n∑
i=3

1

d (vi)
−

(
n∑

i=3

1

)2

.

Using

n∑
i=3

d(vi)
3
= F (G)−∆3 −∆3

2,

n∑
i=3

d(vi)
2
= M1(G)−∆2 −∆2

2, (3.4)

n∑
i=3

d (vi) = 2m−∆−∆2 and

n∑
i=3

1

d(vi)
= ID(G)− 1

∆
− 1

∆2
(3.5)

completes the proof. 2

If we set r = n− 2, xi = d(vi+1), yi =
1

d(vi+1)
, ai = d(vi+1), and bi = 1 in (3.3) for all i = 1, 2, . . . , r ,

we have the following result.

Corollary 3.2 With the assumptions in Theorem 3.5, one has the inequality

F (G) ≥ ∆3 + δ3 +Φ∗
2 (3.6)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ , where

Φ∗
2 =

[
M1(G)−∆2 − δ2

]2
+ (2m−∆− δ)

(
ID(G)− 1

∆ − 1
δ

)
− (n− 2)

2

(2m−∆− δ)
.

Remark 3.3 In [11], it is shown that (2.4) and (2.5) are incomparable. It is interesting to see that both the

lower bounds (2.5) and (2.4) coincide together for the web W (t, 7) and W (t, 7) − vn , other than the equality
case.

By setting xi = d(vi) , yi = 0 , ai = d(vi) , and bi = 1 in (3.3) immediately has (2.4) as its special case.

Also, by comparing the choice of selection of yi in both the cases, it is easy to see that the lower bounds (3.1)

and (3.6) are always better than (2.4). Refer to Figure 1 for the lower bound comparison of all 18 isomers of

octane.
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Figure 1. Lower bound comparison for F (G) for 18 isomers of octane.

Remark 3.4 The lower bounds (3.1) and (3.6) are incomparable. Namely, there exists a molecular graph

of 1,2-diethylcyclopentane for which (3.1) is better than (3.6) and there exists a molecular graph of 1,1-

diethylcyclopentane for which (3.6) is better than (3.1).

Next, we refine our own lower bounds (3.1) and (3.6) and give the new successors for these lower bounds.

Theorem 3.5 Let G be a simple graph of order n(≥ 3) . Then

F (G) ≥ ∆3 +∆3
2 +Φ∗

3 (3.7)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω, where

Φ∗
3 =

[
M1(G)−∆2 −∆2

2

]2
+ (n− 2)

[
M1(G)−∆2 −∆2

2

]
(2m−∆−∆2)

− (2m−∆−∆2) .

Proof Using the inequality (3.3) and by fixing r = n− 2, xi = d(vi+2), yi = 1, ai = d(vi+2), and bi = 1, for

all i = 1, 2, . . . , r , we get

n∑
i=3

d(vi)
3

n∑
i=3

d (vi)−

(
n∑

i=3

d(vi)
2

)2

≥ (n− 2)
n∑

i=3

d(vi)
2 −

(
n∑

i=3

d (vi)

)2

,

where we used (3.4) and (3.5) to complete the proof. 2
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Next, by setting r = n− 2, ai = d(vi+1), xi = d(vi+1), bi = 1, and yi = 1 in (3.3) for all i = 1, 2, . . . , r ,

we have the following corollary.

Corollary 3.6 With the assumptions in Theorem 3.1, one has the inequality

F (G) ≥ ∆3 + δ3 +Φ∗
4 (3.8)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ , where

Φ∗
4 =

(
M1(G)−∆2 − δ2

)2
+ (n− 2)

(
M1(G)−∆2 − δ2

)
(2m−∆− δ)

− (2m−∆− δ) .

Remark 3.7 For each graph G , our aim is to show that (3.7) and (3.8) are always better than the lower bounds

in (3.1) and (3.6) respectively. For this, we have to claim that

Φ∗
3 ≥ Φ∗

1, Φ∗
4 ≥ Φ∗

2.

Recalling inequality (3.3) and by fixing r = n − 2 , xi = 1, yi = 1
d(vi+2)

, ai = d(vi+2) , and bi = 1 with

i = 1, 2, . . . , r , we have(
M1(G)−∆2 −∆2

2

)
(n− 2)− (2m−∆−∆2)

2

≥ (2m−∆−∆2)

(
ID(G)− 1

∆
− 1

∆2

)
− (n− 2)

2
.

Adding
(
M1(G)−∆2 −∆2

2

)2
and dividing by (2m−∆−∆2) on both sides of the above inequality completes

our claim of Φ∗
3 ≥ Φ∗

1. In an analogous manner we complete our second claim.

Intuitively one may conjecture that Φ∗
4 ≥

?
Φ∗

1 and Φ∗
3 ≥

?
Φ∗

2. However, it is not true, as for the molecular

graph 1,2-diethylcyclobutane (3.1) is better than (3.8) and for 1,1-diethylcyclobutane (3.6) is better than (3.7).

We are still not satisfied with our previous lower bounds. Next, we are ready to improve our own bounds

for the forgotten topological index.

Theorem 3.8 Let G be a simple graph of order n(≥ 3) with no isolated vertices. Then

F (G) ≥ ∆3 +∆3
2 +Υ∗

1 (3.9)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω, where

Υ∗
1 =

[(
M1(G)−∆2 −∆2

2

)
+

√
(2m−∆−∆2)

(
ID(G)− 1

∆ − 1
∆2

)
− (n− 2)

]2
(2m−∆−∆2)

.

Proof Consider w1, w2, . . . , wr to be the nonnegative weights; then, from (3.2), we have(
r∑

i=1

wia
2
i

) 1
2
(

r∑
i=1

wib
2
i

) 1
2

≥
r∑

i=1

wiaibi. (3.10)
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Since wi is nonnegative, we assume that wi = xi − yi such that xi ≥ yi ≥ 0. Thus,(
r∑

i=1

xia
2
i

) 1
2
(

r∑
i=1

xib
2
i

) 1
2

−
r∑

i=1

xiaibi ≥

(
r∑

i=1

yia
2
i

) 1
2
(

r∑
i=1

yib
2
i

) 1
2

−
r∑

i=1

yiaibi ≥ 0. (3.11)

By setting r = n−2, ai = d(vi+2) and bi = 1, for all i = 1, 2, . . . , r and by fixing xi = d(vi+2) and yi =
1

d(vi+2)

in the above, we complete the proof. 2

Corollary 3.9 With the assumptions in Theorem 3.8, one has the inequality

F (G) ≥ ∆3 + δ3 +Υ∗
2 (3.12)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ , where

Υ∗
2 =

[(
M1(G)−∆2 − δ2

)
+
√
(2m−∆− δ)

(
ID(G)− 1

∆ − 1
δ

)
− (n− 2)

]2
(2m−∆− δ)

.

First we have to prove that (3.9) is always better than (3.1). For this we have to prove Υ∗
1 ≥ Φ∗

1.

Considering inequality (3.2) and providing wi = d(vi+2), ai =
1

d(vi+2)
, and bi = 1, we get√

(2m−∆−∆2) (ID(G)− 1/∆− 1/∆2) ≥ (n− 2). It is easy to see that (M1(G)−∆2 −∆2
2)− (n− 2) ≥ 0.

Thus, by multiplying it on both sides of the above inequality, we get

2
(
M1(G)−∆2 −∆2

2

)√
(2m−∆−∆2)

(
ID(G)− 1

∆
− 1

∆2

)
+ 2(n− 2)2

≥ 2(n− 2)

√
(2m−∆−∆2)

(
ID(G)− 1

∆
− 1

∆2

)
+ 2(n− 2)

(
M1(G)−∆2 −∆2

2

)
.

Adding
(
M1(G)−∆2 −∆2

2

)2
+ (2m−∆−∆2) (ID(G)− 1/∆− 1/∆2) and dividing by (2m−∆−∆2) on

both sides of the above inequality leads to the conclusion Υ∗
1 ≥ Φ∗

1 . Analogously, we can prove that Υ∗
2 ≥ Φ∗

2,

but, on the other hand, Υ∗
1 and Υ∗

2 are incomparable.

Remark 3.10 The lower bounds (3.9) and (3.12) are matchless. For the graphs Fln and L(Fln), (3.12) is

finer than (3.9) and for T2(Fln) and T1[L(Fln)] , (3.9) is finer than (3.12) (Table 1):

Table 1. Lower bounds.

Fl15 T2(Fl15) L(Fl15) T1[L(Fl15)]
n 31 91 60 600
m 60 660 540 1620
F (G) 28080 1120080 900720 7210080
(3.9) 28013.501 955958.802 816347.027 4616746.829
(3.12) 28015.492 955287.95 817804.321 4571543.636
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Theorem 3.11 Let G be a simple graph of order n(≥ 3) . Then

F (G) ≥ ∆3 +∆3
2 +Υ∗

3 (3.13)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω, where

Υ∗
3 =

[(
M1(G)−∆2 −∆2

2

)
+
√
(n− 2) (M1(G)−∆2 −∆2

2)− (2m−∆−∆2)
]2

(2m−∆−∆2)
.

Proof The proof follows by the same terminology of Theorem 3.8 by fixing r = n− 2, xi = d(vi+2), yi = 1,

ai = d(vi+2), and bi = 1, for all i = 1, 2, · · · , r . 2

Corollary 3.12 Let G be a simple graph of order n(≥ 3) . Then

F (G) ≥ ∆3 + δ3 +Υ∗
4 (3.14)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ , where

Υ∗
4 =

[(
M1(G)−∆2 − δ2

)
+
√

(n− 2) (M1(G)−∆2 − δ2)− (2m−∆− δ)
]2

(2m−∆− δ)
.

Next, we have to prove that the lower bound (3.13) is always better than (3.7), i.e. we have to show that

Υ∗
3 ≥ Φ∗

3. Starting with inequality (3.2) and replacing r = n− 2, ai = d(vi+2), bi = 1, and wi = 1, we get√
(n− 2) (M1(G)−∆2 −∆2

2)− (2m−∆−∆2) ≥ 0. (3.15)

It is easy to see that (
M1(G)−∆2 −∆2

2

)
≥ (2m−∆−∆2) . (3.16)

By multiplying (3.15) and (3.16), then by adding the terms (n− 2)
(
M1(G)−∆2 −∆2

2

)
and(

M1(G)−∆2 −∆2
2

)2
, and then by dividing both sides by (2m−∆−∆2), we get Υ∗

3 ≥ Φ∗
3 . In the same way,

we have that Υ∗
4 ≥ Φ∗

4 .

In analogy to Remark 3.7, one can prove that Υ∗
3 ≥ Υ∗

1 and Υ∗
4 ≥ Υ∗

2 and we leave the proof for the

interested reader.

Remark 3.13 From the above arguments, we conclude that Υ∗
3 ≥ Υ∗

1 ≥ Φ∗
1 and Υ∗

4 ≥ Υ∗
2 ≥ Φ∗

2. However,

in the same way, one can conjecture that Υ∗
1 ≥

?
Φ∗

3. It is not true in general; see the following example for the

comparison of the lower bounds (3.9) and (3.7) (Table 2):

Let G and H be any graph. Then σG(H) denotes the number of distinct subgraphs of the graph G that

are isomorphic to H . In 2014, one of the present authors with Gutman [5] established the counting relation for

F (G) in terms of counting the total number of stars in a given graph.
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Table 2. Comparison of the lower bounds (3.9) and (3.7).

H6 L(H6) L(H6)
n 13 18 18
m 18 51 102
F (G) 606.0 4530.0 28824.0
(3.9) 582.805 4257.69 28129.816
(3.7) 574.846 4253.023 28129.909

Proposition 3.14 [5] Let G be a simple graph. Then

F (G) = 6σG (K1,3) + 6σG (K1,2) + 2m, (3.17)

F (G) = 6σG (K1,3) + 3M1(G)− 4m. (3.18)

In addition, we now give an identity for the forgotten topological index in terms of the general sum

connectivity index and some class subgraph counting in G .

Proposition 3.15 Let G be a simple graph. Then

F (G) = χ2(G)− 2σG (P4)− 4σG (P3)− 6σG (C3)− 2m.

Proof Using the definition of the general sum connectivity index and the identity for the second Zagreb index

[5], we have that M2(G) = σG (P4) + 2σG (P3) + 3σ (C3) +m , which completes the proof. 2

From [16], we have M1(G) ≥ ∆2 + ∆2
2 + Ψ∗

1, M1(G) ≥ ∆2 + δ2 + Ψ∗
2 , and using (3.18), we give some

new and strong lower bounds for the forgotten topological index.

Theorem 3.16 Let G be a simple graph of order n(≥ 3) with no isolated vertices. Then

F (G) ≥ 3∆2 + 3∆2
2 + 3Ψ∗

1 + 6σG (K1,3)− 4m (3.19)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω, where

Ψ∗
1 =

(
(2(m+ 1)− n−∆−∆2) +

√
(2m−∆−∆2)

(
ID(G)− 1

∆ − 1
∆2

))2

n− 2
.

Corollary 3.17 Let G be a simple graph of order n(≥ 3) with no isolated vertices. Then

F (G) ≥ 3∆2 + 3δ2 + 3Ψ∗
2 + 6σG (K1,3)− 4m (3.20)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ , where

Ψ∗
2 =

(
(2(m+ 1)− n−∆− δ) +

√
(2m−∆− δ)

(
ID(G)− 1

∆ − 1
δ

))2
n− 2

.

Remark 3.18 In [16], the present authors proved that Ψ∗
1 and Ψ∗

2 are incomparable. In addition, the lower

bounds (3.19), (3.13), (3.20), and (3.14) are also incomparable respectively (Table 3):
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Table 3. Comparison of the lower bounds (3.19), (3.13), (3.20), and (3.14).

n m F (G) (3.19) (3.20) (3.13) (3.14)
W (2, 15) 46 75 5310 5228.3 5235.443 5295.659 5297.542
T1(W (2, 15)) 121 225 43080 41192.289 41155.235 40548.176 40541.287
T2(W (2, 15)) 121 435 133110 126445.071 126136.04 107890.171 106750.598

Next, we improve inequality (2.5) for the forgotten index F (G) using the harmonic index H(G).

Theorem 3.19 Let G be a simple connected graph of order n(≥ 3) . Then

F (G) ≥ M1(G)

m
(2H(G) +M1(G))− 2M2(G)− 4m, (3.21)

where equality holds if and only if d(u) + d(v) is constant for any edge uv .

Proof By our assumption n ≥ 3, for any edge uv ∈ E(G), d(u) + d(v) > 2 and using inequality (3.3), by

fixing r = m , xi = d(u) + d(v), yi = 2, ai =
√

d(u) + d(v), and bi =
1√

d(u)+d(v)
, we get

∑
uv∈E(G)

(d(u) + d(v))
2
∑

uv∈E(G)

1−

 ∑
uv∈E(G)

(d(u) + d(v))

2

≥
∑

uv∈E(G)

2 (d(u) + d(v))
∑

uv∈E(G)

2

d(u) + d(v)
−

2
∑

uv∈E(G)

1

2

(F (G) + 2M2(G))m− (M1(G))
2 ≥ 2M1(G)H(G)− 4m2,

which completes the proof. 2

Remark 3.20 Using the Cauchy–Schwartz inequality, it is easy to see that M1(G)H(G) − 2m2 ≥ 0 , which

concludes that the lower bound in (3.21) is always better than (2.5).

Very recently, Che and Chen [6] presented the following lower bounds in terms of irregularity of the graph

G .

Lemma 3.21 [6] Let G be a connected graph with m edges

F (G) ≥ irr2(G)

m
+ 2M2(G), (3.22)

where equality holds if and only if |d(u)− d(v)| is constant for all edges uv of G.

Lemma 3.22 [6] Let G be a connected graph with m edges

F (G) ≥ irr2(G) +M1(G)
2

2m
, (3.23)

where equality holds if and only if G is regular or biregular.
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Remark 3.23 It is interesting to see that our lower bounds are incomparable with the bounds given in Lemma

3.21 and Lemma 3.22 (Table 4):

Table 4. Our lower bounds, Lemma 3.21, and Lemma 3.22.

F (G) (3.19) (3.20) (3.13) (3.14) (3.21) (3.22) (3.23)
Cr6 168 155.948 157.282 163.984 165.082 158 156 156
L(Cr6) 432 413.096 413.029 415.135 416.240 417.333 416 416
T1(Cr6) 1440 1317.589 1297.954 1275.261 1262.972 1264 1312 1280
T2(Cr6) 1848 1757.666 1755.619 1760.189 1752.480 1675.205 1800 1731.429

One of the present authors with Song gave the relation for the first general Zagreb index and its coindex

[17].

Theorem 3.24 Let G be a simple graph on n vertices and m edges. For α ≥ 1 ,

M
α+1

1 (G) = (n− 1)Mα
1 (G)−Mα+1

1 (G).

Based on Theorems 3.11, 3.12, and 3.24, the following bounds for the forgotten topological coindex hold

immediately.

Corollary 3.25 Let G be a simple graph with n vertices, m edges, maximum degree ∆ , second maximum

degree ∆2 , and minimum degree δ . Then

F (G) ≤ (n− 1)M1(G)−
[
∆3 +∆3

2 +Υ∗
3

]
with equality if and only if G is regular or G ∈ Γ or G ∈ Ω , and

F (G) ≤ (n− 1)M1(G)−
[
∆3 + δ3 +Υ∗

4

]
with equality if and only if G is regular or G ∈ Γ or G ∈ Θ .

Corollary 3.26 Let G be a simple graph with n nonisolated vertices, m edges, maximum degree ∆ , second

maximum degree ∆2 , and minimum degree δ . Then

F (G) ≥ (n− 1)
[
∆2 +∆2

2 +Ψ∗
1

]
− F (G)

with equality if and only if G is regular or G ∈ Γ or G ∈ Ω , and

F (G) ≥ (n− 1)
[
∆2 + δ2 +Ψ∗

2

]
− F (G)

with equality if and only if G is regular or G ∈ Γ or G ∈ Θ .

In [20], the following Nordhaus–Gaddum-type inequality for F (G) + F (G) was established in terms of

vertices:

F (G) + F (G) ≥ n(n− 1)
3

4
. (3.24)

Now we give new lower bounds on F (G) + F (G) in terms of n,m,∆, δ , and ID(G).
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Theorem 3.27 Let G be a simple graph with n nonisolated vertices, m edges, maximum degree ∆ , second

maximum degree ∆2 , and minimum degree δ . Then

F (G) + F
(
G
)
≥ n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)

[
∆2 +∆2

2 +Ψ∗
1

]
with equality if and only if G is regular or G ∈ Γ or G ∈ Ω , and

F (G) + F
(
G
)
≥ n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)

[
∆2 + δ2 +Ψ∗

2

]
with equality if and only if G is regular or G ∈ Γ or G ∈ Θ .

Proof It is easy to see that

F
(
G
)
=

n∑
i=1

(n− 1− dG (vi))
3

= n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M1(G)− F (G).

Using the inequalities M1(G) ≥ ∆2 + ∆2
2 + Ψ∗

1,M1(G) ≥ ∆2 + δ2 + Ψ∗
2 from [16] in the above completes our

claim. 2

On the other hand, Nordhaus–Gaddum-type inequalities for the first Zagreb coindex were established in

terms of vertices in [19]. In analogy, we now establish the lower bounds for F (G) + F
(
G
)
.

Corollary 3.28 Let G be a simple graph with n nonisolated vertices, m edges, maximum degree ∆ , second

maximum degree ∆2 , and minimum degree δ . Then

F (G) + F
(
G
)
≥ n(n− 1)3 − 4m(n− 1)2 −

[
F (G) + F

(
G
)]

+ 2(n− 1)
(
∆2 +∆2

2 +Ψ∗
1

)
with equality if and only if G is regular or G ∈ Γ or G ∈ Ω , and

F (G) + F
(
G
)
≥ n(n− 1)3 − 4m(n− 1)2 −

[
F (G) + F

(
G
)]

+ 2(n− 1)
(
∆2 + δ2 +Ψ∗

2

)
with equality if and only if G is regular or G ∈ Γ or G ∈ Θ .

Proof For α = 2 in Theorem 3.24, we have F (G) = (n− 1)M1(G)− F (G). Rewriting Theorem 3.24 for the

complement graph of G , one can see the following result about co-complement, F (G) = (n− 1)M1(G)−F (G).

Using the above results with Theorem 2.25 of [16] completes our claim. 2

4. Computational results

For computational purposes, we use the software GraphTea (see [3]) considering various phases of testing.

GraphTea is graph visualization software designed specifically to visualize and explore graph algorithms and

the topological indices interactively. In [1], all the extremal chemical trees were obtained up to 20 vertices, in

which the degree sequence as well as all corresponding trees were obtained by an exhaustive computer search

using the mathematical software Sage for n = 20 that took several hours. GraphTea is a better tool, specially
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Figure 2. Extremal chemical trees for F (G) with 15 vertices.

designed to extract both the adjacency matrix and the corresponding graph with their specified topological

indices in a shorter time interval. In the search for the extremal chemical trees for F (G), an extremal chemical

tree for n = 15 was missed in [1], as demonstrated in Figure 2.

Table 5 provides the computational results for the connected graphs on n = 3 to 9 vertices and trees on

n = 10 to 20 vertices. In the ‘Parameter’ section of Tables 5 and 6, the first three columns represent the degree

of the vertex n , total number of connected graphs (trees) on n vertices, and average value of the forgotten

topological index F (G). The next six sections of three columns represent the average value of the lower bounds,

the standard deviation √∑G (F (G)−X(G))
2

count

 ,

and the number of graphs holding equality.

Table 5. Lower bound comparison of F (G) for simple connected graphs up to 9 vertices.

Parameters Theorem 3.11 Corollary 3.12 Theorem 3.16 Corollary 3.17

n count Avg Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq.

3 2 17.0000 17.0000 0.0000 2 17.0000 0.0000 2 17.0000 0.0000 2 17.0000 0.0000 2

4 6 50.3333 50.3138 0.0477 5 50.2000 0.2829 4 50.2690 0.1576 5 50.1225 0.3919 4

5 21 111.8095 111.4828 0.5705 9 111.1203 1.3183 9 111.2337 0.8802 9 110.9713 1.4648 9

6 112 201.6964 200.4406 2.0357 23 199.5614 3.3974 20 199.9065 2.4959 23 199.4028 3.3033 20

7 853 336.5768 333.3367 4.5842 47 331.8240 6.6733 52 332.6419 5.0045 47 332.0414 5.8592 52

8 11117 534.1186 527.3952 8.6967 176 524.9605 11.7328 181 526.9992 8.5569 176 526.2773 9.4637 181

9 261080 824.8016 812.4169 15.0100 657 808.9519 19.1310 890 813.2626 13.3115 657 812.6136 14.1332 890

Theorem 3.19 Lemma 3.21 Lemma 3.22 Lemma 2.5 Lemma 2.6

Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq.

17.0000 0.0000 2 17.0000 0.0000 2 17.0000 0.0000 2 16.5000 0.7071 1 17.0000 0.0000 2

50.0104 0.4687 3 49.7556 0.9205 3 49.8389 0.7455 3 48.1278 3.0493 2 49.9222 0.5894 3

109.9131 2.2811 4 109.4141 3.0841 4 109.4978 2.8112 4 105.5051 7.9455 2 109.5816 2.6621 4

196.3876 6.1267 7 196.4126 6.5589 7 196.0591 6.5432 7 189.3261 15.1541 5 195.7057 6.8659 7

324.9067 13.1437 7 327.0193 11.4814 8 325.3878 12.6381 7 314.6120 25.9379 4 323.7562 14.3586 7

512.8977 23.5953 20 519.1524 17.5357 22 515.2104 21.0413 20 499.3987 39.9663 17 511.2683 25.2940 20

789.8669 38.3841 27 802.7513 25.2540 30 795.2543 32.4719 27 772.7552 58.6286 22 787.7572 40.5713 27

On comparison of the computational results in Tables 5 and 6, we conclude that our lower bounds have

the minimum deviation from F (G).
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Table 6. Lower bound comparison of F (G) for trees with 10 to 20 vertices.

Parameters Theorem 3.11 Corollary 3.12 Theorem 3.16 Corollary 3.17

n count Avg Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq.

10 106 149.3208 148.1451 1.6974 5 146.1565 4.6463 1 146.8356 3.1885 5 143.7363 7.2183 1

11 235 169.0043 167.3584 2.2837 5 164.9952 5.6371 1 165.6850 4.1220 5 112.4892 8.5094 1

12 551 187.7241 185.5305 2.8834 6 182.6395 7.1299 1 183.4392 5.1436 6 179.3669 10.2600 1

13 1301 206.3290 203.5292 3.5690 6 200.2395 8.3068 1 201.0132 6.2306 6 196.5490 11.7586 1

14 3159 224.8224 221.3761 4.2945 7 217.5854 9.7886 1 218.4147 7.3735 7 213.4805 13.4847 1

15 7741 243.3342 239.2007 5.0639 7 234.9688 11.0999 1 235.7963 8.5489 7 230.4596 15.1024 1

16 19320 261.7963 256.9399 5.8827 8 252.2200 12.5741 1 253.0835 9.7808 8 247.3139 16.8339 1

17 48629 280.3229 274.7084 6.7411 8 269.5262 13.9779 1 270.4030 11.0490 8 264.2288 18.5338 1

18 123867 298.8637 292.4569 7.6395 9 286.7946 15.4650 1 287.7006 12.3601 9 281.1144 20.2878 1

19 317955 317.4439 310.2101 8.5743 9 304.0825 16.9327 1 305.0056 13.7060 9 298.0244 22.0410 1

20 823065 336.0508 327.9564 9.5435 10 321.3607 18.4456 1 322.3043 15.0878 10 314.9320 23.8244 1

Theorem 3.19 Lemma 3.21 Lemma 3.22 Lemma 2.5 Lemma 2.6

Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq. Avg St.dev Eq.

138.6585 13.24038 1 139.1216 5.821731 1 137.7233 2.939934 1 114.3795 53.5970 0 136.3249 15.9161 1

155.6575 16.8429 1 156.2502 17.23116 2 154.5574 18.2061 1 129.1983 60.7702 0 152.8647 20.0324 1

171.7948 20.34513 1 172.4514 20.93671 1 170.5187 21.9951 1 143.6070 66.6434 0 168.5860 23.9875 1

187.8013 23.89991 1 188.5762 24.67797 1 186.3728 25.82532 1 157.8948 72.0964 0 184.1694 27.9987 1

203.7522 27.33324 1 204.6245 28.29714 1 202.1693 29.52746 1 172.1961 77.0235 0 199.7142 31.8593 1

219.7241 30.72609 1 220.7237 31.85541 2 218.0009 33.17812 1 186.4897 81.7499 0 215.2781 35.6770 1

235.6906 33.99504 1 236.8207 35.26777 2 233.8333 36.68944 1 200.7976 86.2529 0 230.8459 39.3555 1

251.7193 37.20559 1 252.9937 38.60288 1 249.7342 40.1334 1 215.1377 90.6975 0 246.4747 42.9739 1

267.7810 40.32793 1 269.207 41.82485 1 265.6736 43.47517 1 229.5057 95.0794 0 262.1403 46.4975 1

283.8829 43.39296 1 285.4704 44.96908 3 281.6582 46.74989 1 243.8976 99.4433 0 277.8459 49.9622 1

300.0174 46.39756 1 301.7732 48.03107 1 297.6795 49.95323 1 258.3142 103.7952 0 293.5857 53.3638 1

Acknowledgments

The authors would like to express sincere gratitude to the anonymous referees for careful reading of the

manuscript, for pointing out two references, and for valuable comments, which greatly improved the quality of

our paper. The authors would also like to thank Professor Zhongyuan Che and Zhibo Chen for sending us a
paper.

References

[1] Abdo H, Dimitrov D, Gutman I. On extremal trees with respect to the F -index. arXiv: 1509.03574 [cs.DM].

[2] Albertson MO. The irregularity of a graph. Ars Comb 1997; 46: 219-225.
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