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1. Introduction

Crossed modules of groups were introduced by Whitehead in [14] to study relative homotopy groups as models

for homotopy (connected) 2-types. If f : G → H is a homomorphism of groups, then there is a pullback or

reindexing functor f∗ : CM/H → CM/G, where CM/G is the category of crossed G -modules. The left adjoint

f∗ to this functor f∗ was constructed in [5]. Thus, Whitehead’s crossed modules fibered and cofibered over

groups. Analogous constructions in the crossed modules category in commutative algebras and Lie algebras were

given in [13] and [8], respectively. For further accounts of fibered and cofibered categories and an introduction

to their literature, see [10, 11] and the references therein.

Brown and Sivera [6] showed that the forgetful functor Φ1 : XMod → Gpd from the category of crossed

modules of groupoids to the category of groupoids that sends a crossed module M → P to its base groupoid

P is a fibration and a cofibration of categories. That is, crossed modules of groupoids bifibered over groupoids.

If we consider the category of braided regular crossed modules (cf. [4]) as BRCM instead of XMod and the

same functor Φ1 sending a braided regular crossed module M → P to its base groupoid P , we need to give

some extra properties over the groupoid P := (P1, P0). The required properties are:

(i) P0 is a group;

(ii) there are actions of P0 on P1 on the left and right sides satisfying whiskering axioms given in [3].

Considering these properties, we can say that this groupoid is a regular groupoid as defined in [9].

Therefore, we can extend the result of Brown and Sivera to the forgetful functor Φ1 : BRCM → Rgrpd from

the category of braided regular crossed modules to that of regular groupoids. Thus, the purpose of this paper

is to prove that braided regular crossed modules fibered and cofibered or bifibered over regular groupoids.
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2. Preliminaries

We recall some basic definitions from [4]. A groupoid C is a small category in which every morphism is an

isomorphism. We write a groupoid as C := (C1, C0), where C0 is the set of objects and C1 is the set of

morphisms. The set of morphisms p→ q for p, q ∈ C0 is written C1(p, q), and p , q are the source and target

of such a morphism. The source and target maps are written s, t : C1 → C0 . If a ∈ C1(p, q) and b ∈ C1(q, r),

their composition is written by ab ∈ C1(p, r) and shown diagrammatically as

p

ab

::
a // q

b // r.

We use ab for the composition of the morphisms a, b from the left to the right side if t(a) = s(b). Then

s(ab) = s(a) and t(ab) = t(b). We write C1(p, p) as C1(p). For any morphism a there exists a (necessarily

unique) morphism a−1 such that aa−1 = es(a) and (a)−1a = et(a) where e : C0 → C1 gives the identity

morphism at an object. For any groupoid C , if C1(p, q) is empty whenever p, q are distinct (that is, if s = t),

then C is called totally disconnected. In any groupoid C := (C1, C0), for an element p ∈ C0, the groupoid C1(p)

becomes a group. A groupoid C := (C1, C0) is often written diagrammatically as

C := C1

s //
t

// C0.

e

~~

For a survey of applications of groupoids and an introduction to their literature, see [1] and [2].

Brown, in [3], defined the notion of ‘whiskering’ for a (small) category C and gave the notions of left

and right multiplications of two morphisms in a whiskered category C . In fact, the definition of the whiskered

category is the same as the definition of the semiregular category given by Gilbert in [9].

Recall from [3] that a whiskering m on a groupoid C := (C1, C0) consists of operations

mij : Ci × Cj → Ci+j , (a, b) 7→ a⊗ b, ( i, j = 0, 1, i+ j ⩽ 1)

satisfying the following axioms:

Whisk 1.) m00 gives a monoid structure on C0 ;

Whisk 2.) m01,m10 give respectively left and right actions of the monoid C0 on the groupoid C in the

sense that:

Whisk 3.) If x ∈ C0 and a : u −→ v in C1 , then x⊗ a : x⊗ u→ x⊗ v in C so that:

(x⊗ y)⊗ a = x⊗ (y ⊗ a), x⊗ (ab) = (x⊗ a)(x⊗ b), x⊗ ey = exy.

Whisk 4.) Analogous rules hold for the right action;

Whisk 5.)

x⊗ (a⊗ y) = (x⊗ a)⊗ y,

for all x, y, u, v ∈ C0 , a, b ∈ C1 .

A groupoid C together with a whiskering m is called a whiskered groupoid [3], or a semiregular groupoid

in the sense of [9].
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Let C := (C1, C0) be a semiregular groupoid. If m00 gives a group structure on C0 , then C is called a

regular groupoid.

Let C := (C1, C0) be a regular groupoid. If a : x → y and b : u → v are two elements in C1 , then the

right and left multiplications of a and b are given by (cf. [3])

r(a, b) = (a⊗ u)(y ⊗ b) : x⊗ u→ y ⊗ v

and
l(a, b) = (x⊗ b)(a⊗ v) : x⊗ u→ y ⊗ v

as shown in the following diagram:

x⊗ u
r(a,b)

$$I
II

II
II

II

l(a,b) $$I
II

II
II

II
x⊗b

��

a⊗u // y ⊗ u

y⊗b
��

x⊗ v
a⊗v

// y ⊗ v.

The following proposition was proven in [3].

Proposition 2.1 If l(a, b) = r(a, b) for all a, b ∈ C1 , then (a, b) 7→ a⊗ b given by this common value makes C

into a strict monoidal groupoid.

The commutator of two morphisms a : x→ y and b : u→ v in C1 is defined by

[a, b] = l(a, b)−1r(a, b) = (a−1 ⊗ v)(x⊗ b−1)(a⊗ u)(y ⊗ b) : y ⊗ v → y ⊗ v

as shown in the following diagram:

x⊗ u
r(a,b)

$$I
II

II
II

II
a⊗u // y ⊗ u

y⊗b
��

x⊗ v

x⊗b−1

OO

y ⊗ v.
a−1⊗v
oo

l(a,b)−1

ddIIIIIIIII

Thus, we have

y ⊗ v

[a,b]

<<
l(a,b)−1

// x⊗ u
r(a,b) // y ⊗ v.

Note that [a, b]−1 is not equal to [b, a] because we have

[a, b]−1 = (y ⊗ b−1)(a−1 ⊗ u)(x⊗ b)(a⊗ v) : y ⊗ v → y ⊗ v;

on the other hand, we have

[b, a] = (b−1 ⊗ y)(u⊗ a−1)(b⊗ x)(v ⊗ a) : v ⊗ y → v ⊗ y,

where the left and right whiskering actions are not equal.

If l(a, b) = r(a, b) for all a, b ∈ C1 , we easily have [a, b] = id and then C is called a commutative regular

groupoid. A morphism of regular groupoids is a morphism of groupoids preserving the actions. Let Rgrpd be

the category of regular groupoids.
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2.1. (Regular) Crossed modules

Let C1 and C ′
1 be regular groupoids over the same group C0 with C ′

1 totally disconnected. An action of C1

on C ′
1 can be given by a partially defined function

C1 × C ′
1 → C ′

1

written (a, x) 7→ xa , which satisfies:

1. xa is defined if and only if t(x) = s(a), and then t(xa) = t(a);

2. (xy)a = (xa)(ya), eap = eq ;

3. xab = (xa)b and xep = x ;

4. u⊗ (xa) = (u⊗ x)u⊗a ∈ C ′
1(u⊗ q);

5. (xa)⊗ u = (x⊗ u)a⊗u ∈ C ′
1(q ⊗ u),

for all x, y ∈ C ′
1(p), a ∈ C1(p, q), b ∈ C1(q, r), and u, p, q, r ∈ C0 .

A regular crossed module (C ′
1, C1, δ) consists of a pair of regular groupoids C1 and C ′

1 over the same

group C0 with an action of C1 on C ′
1 and a C0 -equivariant morphism δ : C ′

1 → C1 satisfies:

1. δ(xa) = (a)−1δ(x)a ,

2. xδy = y−1xy ,

for all x, y ∈ C1′(p), a ∈ C1(p, q). A regular crossed module is often written diagrammatically as

C ′
1

δ // C1

s //
t

// C0.

e

~~

Definition 2.2 ([4]) A braided regular crossed module

C2
δ // C1

s //
t

// C0

e

~~

is a regular crossed module with the map {−,−} : C1×C1 → C2 called a braiding map satisfying the following

axioms:

B1 : {a, b} ∈ C2((ta)⊗ (tb)), {1e, b} = 1tb, {a, 1e} = 1ta where 1e ∈ C1(e) is the identity morphism and

e is the identity element of the group C0 ;

B2 : {a, bb′} = {a, b}ta·b′{a, b′};

B3 : {aa′, b} = {a′, b}{a, b}a′·tb;
B4 : δ{a, b} = (ta⊗ b)−1(a⊗ sb)−1(sa⊗ b)(a⊗ tb);

B5 : {a, δy} = (t(a)⊗ y)−1(s(a)⊗ y)a⊗q if y ∈ C2(q);

B6 : {δx, b} = (x⊗ s(b)−1)p⊗b(x⊗ t(b)) if x ∈ C2(p);

B7 : p · {a, b} = {p⊗ a, b}, {a, b} ⊗ p = {a, b⊗ p}, {a⊗ p, b} = {a, p⊗ b},
for all a, a′, b, b′ ∈ C1, x, y ∈ C2, and p, q ∈ C0 .
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We will denote the category of braided regular crossed modules by BRCM .

3. Fibration of categories

We recall the definition of fibration of categories (cf. [6]). For further information about fibered and cofibered

categories, see [10] and [11].

Definition 3.1 Let Φ : X → B be a functor. A morphism φ : Y → X in X over u := Φ(φ) is called Cartesian

if and only if for all v : K → J in B and θ : Z → X with Φ(θ) = uv there is a unique morphism ψ : Z → Y

with Φ(ψ) = v and θ = φψ.

This is illustrated by the following diagram:

Z
ψ

//

θ

%%
Y

φ
// X

Φ

��K
v

//

uv

%%
J

u
// I

A morphism α : Z → Y is called vertical if and only if Φ(α) is an identity morphism in B . In particular,

for I ∈ B we write X/I consisting of those morphisms α with Φ(α) = idI .

Definition 3.2 The functor Φ : X → B is a fibration or fibered over B if and only if for all u : J → I in B

and X ∈ X/I there is Cartesian morphism over u : such a Φ is called a Cartesian lifting of X along u .

3.1. Regular groupoids fibered over groups

Consider a regular groupoid C := (C1, C0) together with the whiskering operations m00,m01 , and m10 . Since

the set of objects C0 is a group with the operation m00 , we can define a forgetful functor from the category of

regular groupoids to the category of groups:

Φ : Rgrpd → Gpd,

which sends the regular C := (C1, C0) to its objects group C0 . In this section we show that this functor is a

fibration. This is a well-known construction for groupoids; see [6] and [12].

In Rgrpd/C0 , for a regular groupoid C := (C1, C0) and for a homomorphism u : C ′
0 → C0 in Gpd , we

can define the Cartesian lifting

φ : C′ = (C ′
1, C

′
0) → (C1, C0) = C

in Rgrpd as follows:

We will define the whiskering operation on it. For x, y ∈ C ′
0 , we take

C ′
1(x, y) = {(x, c, y) : s(c) = u(x), t(c) = u(y)}

with composition

(x1, c1, y1)(y1, c2, y2) = (x1, c1c2, y2)
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and the morphism φ : C ′
1 → C1 is given by φ(x, c, y) = c . From [6], we obtain a groupoid over C ′

0 . The

operations m′
ij : C

′
i × C ′

j → C ′
i+j for i, j = 0, 1, i+ j ⩽ 1 are given by

m′
01(t, (x, c, y)) = (t⊗ x, u(t)⊗ c, t⊗ y)

and

m′
10((x, c, y), t) = (x⊗ t, c⊗ u(t), y ⊗ t)

for x, y, t ∈ C ′
0 , and c ∈ C1 . We obtain the following result.

Corollary 3.3 C′ = (C ′
1, C

′
0) is a regular groupoid.

The universal property is easily verified. The regular groupoid C′ = (C ′
1, C

′
0) is usually called the pullback of

the regular groupoid C = (C1, C0) by u .

For every morphism u : C ′
0 → C0 in Gpd and a regular groupoid C = (C1, C0) ∈ Rgrpd , we may select

a Cartesian lifting of C along u ,

uC : u∗(C) → C.

We call the splitting of Φ such a choice of Cartesian lifting. If we fix the homomorphism u : C ′
0 → C0 in the

category of groups, the splitting gives a reindexing functor

u∗ : Rgrpd/C0 → Rgrpd/C′
0

defined on objects by C 7→ u∗(C) and the image of a morphism α : C → H in Rgrpd/C0 is u∗(α), the unique

vertical arrow commuting the following diagram:

u∗(C)

u∗(α)

��

uC
// C

u

��
u∗(H)

uH

// H.

Using Proposition 2.5 of [6], we can give the following result.

Corollary 3.4 Let u : C ′
0 → C0 be a homomorphism of groups and let

u∗ : Rgrpd/C0
→ Rgrpd/C′

0

be the reindexing functor. Then there is a bijection

Rgrpd/C′
0
((H1, C

′
0), u

∗(C1, C0)) ∼= Rgrpd/u((H1, C
′
0), (C1, C0))

natural in H = (H1, C
′
0) ∈ Rgrpd/C′

0
, C = (C1, C0) ∈ Rgrpd/C0 where Rgrpd/u consists of the morphism

H1

s

��
t

��

α // C1

s

��
t

��
C ′

0 u
// C0

with Φ(α, u) = u .
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4. Braided regular crossed modules fibered over regular groupoids

We have a forgetful functor Φ1 : BRCM → Rgrpd from the category of braided regular crossed modules to the

category of regular groupoids, which sends a braided regular crossed module

C2
δ // C1

s //
t

// C0

e

~~

to the regular groupoid (C1, C0).

Note that Brown and Sivera in Proposition 7.1 of [6] proved that the forgetful functor Φ1 : Xmod → Gpd

from the category of crossed modules of groupoids to the category of groupoids is a fibration and has a left

adjoint. By extending this result to regular groupoids, we obtain the following result.

Proposition 4.1 The forgetful functor Φ1 : BRCM → Rgrpd is a fibration.

Proof We give the pullback construction to prove that Φ1 is a fibration. We suppose that (f, u) is a morphism

of regular groupoids as illustrated in the following diagram:

H1

s

��
t

��

f // C1

s

��
t

��
H0 u

// C0

where u : H0 → C0 is a homomorphism of groups. Let

C2
δ // C1

s //
t

// C0

be a braided regular crossed module. We define

f∗(C2)
δ∗ // H1

s //
t

// H0

as follows. For x ∈ H0 ,

f∗(C2)(x) = {(h1, c2) : f(h1) = δ(c2), h1 ∈ H1(x), c2 ∈ C2(u(x))}.

The action of h1 ∈ H1(x, y) on (h, c2) ∈ f∗(C2)(x) can be given by

(h, c2)
h1 = ((h1)

−1hh1, c
f(h1)
2 ) ∈ f∗(C2)(y).

The morphism δ∗ from f∗(C2) to H1 is defined by δ∗(h, c2) = h . We get the following diagram:

f∗(C2)
θ //

δ∗

��

C2

δ

��
H1

s

��
t

��

f // C1

s

��
t

��
H0 u

// C0
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in which θ is given by (h, c2) 7→ c2 . When δ is a crossed module over groupoids, Brown and Sivera in [6]

proved that δ∗ is a crossed module and the pullback of δ by (f, u). That is, the morphism θ is Cartesian

in the category of crossed modules over groupoids. If δ is a braided regular crossed module, we shall show

that δ∗ is a braided regular crossed module and the morphism (θ, f, u) is Cartesian morphism in BRCM over

Φ1(θ, f, u) = (f, u) ∈ Rgrpd .

First we define the left and right actions of H0 on f∗(C2). The left action of p ∈ H0 on (h1, c2) ∈
f∗(C2)(x) is defined by

p⊗ (h1, c2) = (p⊗ h1, u(p)⊗ c2).

Since s(p⊗h1) = p⊗x and t(u(p)⊗ c2) = u(p)⊗ t(c2) = u(p)⊗x , we have (p⊗h1, u(p)⊗ c2) ∈ f∗(C2)(p⊗x).

Similarly, the right action is defined by

(h1, c2)⊗ p = (h1 ⊗ p, c2 ⊗ u(p)) ∈ f∗(C2)(x⊗ p).

Thus, we can say that f∗(C2) is a regular totally disconnected groupoid over H0 . Since

δ∗(p⊗ (h, c2)) = p⊗ h = p⊗ δ∗(h, c2),

the crossed module δ∗ is H0 -equivariant relative to the left and right actions. That is, δ∗ becomes a regular

crossed module.

For this regular crossed module, the braiding map

{−,−}′ : H1 ×H1 −→ f∗(C2)

is given for any morphisms h1 ∈ H1(x, y) and h2 ∈ H1(a, b) by

{h1, h2}′ =
(
[h1, h2]

−1, {f(h1), f(h2)}
)

where the first coordinate is equal to

[h1, h2]
−1 =

(
(h−1

1 ⊗ th2)(sh1 ⊗ h−1
2 )(h1 ⊗ sh2)(th1 ⊗ h2)

)−1

= (th1 ⊗ h−1
2 )(h−1

1 ⊗ sh2)(sh1 ⊗ h2)(h1 ⊗ th2)

as given in Section 2.

Now we prove the braiding axioms as follows.

B1 : We must show that {h1, h2}′ ∈ f∗(C2)(t(h1) ⊗ t(h2)). For h1 : x → y and h2 : a → b in

H1 , we obtain [h1, h2]
−1 : y ⊗ b → y ⊗ b ∈ H1(y ⊗ b). On the other hand, since (f, u) is a morphism of

regular groupoids, we have f(h1) : u(x) → u(y) and f(h2) : u(a) → u(b). From axiom B1 of δ , we obtain

{f(h1), f(h2)} ∈ C2(t(fh1)⊗ t(fh2)) = C2(u(y)⊗ u(b)) = C2(u(y ⊗ b)). Moreover, from axiom B4 of δ , since

δ({f(h1), f(h2)}) = [f(h1), f(h2)]
−1 = f([h1, h2]

−1),

we get {h1, h2}′ ∈ f∗(C2)(y ⊗ b) = f∗(C2)(t(h1)⊗ t(h2)).
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B2 : For morphisms h1 : x→ y, h2 : a→ b and h3 : b→ c in H1 , we obtain

{h1, h2h3}′ =
(
[h1, h2h3]

−1, {f(h1), f(h2)f(h3)}
)

= ((t(h1)⊗ (h2h3)
−1)(h−1

1 ⊗ s(h2))(sh1 ⊗ (h2h3))

(h1 ⊗ th3), {fh1, fh2}t(fh1)⊗(fh3){fh1, fh3})

= (th1 ⊗ h−1
3 )(th1 ⊗ h−1

2 )(h−1
1 ⊗ sh2)(sh1 ⊗ h2)(sh1 ⊗ h3)(h1 ⊗ th3),

{fh1, fh2}ut(h1)⊗(fh3){fh1, fh3})

= (th1 ⊗ h−1
3 )(th1 ⊗ h−1

2 )(h−1
1 ⊗ sh2)(sh1 ⊗ h2)

(h1 ⊗ sh3)(th1 ⊗ h3)(th1 ⊗ h−1
3 )(h−1

1 ⊗ sh3)(sh1 ⊗ h3)(h1 ⊗ th3),

{fh1, fh2}f(t(h1)⊗h3){fh1, fh3})

= (th1 ⊗ h−1
3 )(th1 ⊗ h−1

2 )(h−1
1 ⊗ sh2)(sh1 ⊗ h2)(h1 ⊗ sh3)

(th1 ⊗ h3), {fh1, fh2}f(t(h1)⊗h3))

(th1 ⊗ h−1
3 )(h−1

1 ⊗ sh3)(sh1 ⊗ h3)(h1 ⊗ th3), {fh1, fh3})

= (th1 ⊗ h−1
3 )[h1, h2]

−1(th1 ⊗ h3), {fh1, fh2}f(t(h1)⊗h3))

([h1, h3]
−1, {fh1, fh3}) ( since s(h3) = t(h2))

= ([h1, h2]
−1, {fh1, fh2})t(h1)⊗h3([h1, h3]

−1, {fh1, fh3})

= ({h1, h2}′)t(h1)⊗h3{h1, h3}′.

B3 : This axiom can be proved similarly to B2 .

B4 : For morphisms h1 : x→ y, h2 : a→ b in H1 , we obtain

δ∗{h1, h2}′ = δ∗([h1, h2]
−1, {f(h1), f(h2)})

= [h1, h2]
−1

= (th1 ⊗ h−1
2 )(h−1

1 ⊗ sh2)(sh1 ⊗ h2)(h1 ⊗ th2).

B5 : For h ∈ H1(x), c2 ∈ C2(u(x)) and h1 : a → b ∈ H1(a, b), let x = (h, c2) ∈ f∗(C2)(x). Then we
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obtain

{h1, δ∗(x)}′ = {h1, δ∗(h, c2)}′

= {h1, h}′

= ([h1, h]
−1, {f(h1), f(h)})

= ([h1, h]
−1, {f(h1), δ(c2)}) ( since f(h) = δ(c2))

= (th1 ⊗ h−1)(h−1
1 ⊗ sh)(sh1 ⊗ h)(h1 ⊗ th), {f(h1), δ(c2)})

B5 of δ
=

(
th1 ⊗ h−1)(h−1

1 ⊗ x)(sh1 ⊗ h)(h1 ⊗ x), (t(f(h1))⊗ c−1
2 )(sf(h1)⊗ c2)

f(h1)⊗u(x)
)

=
(
(th1 ⊗ h−1)(h−1

1 ⊗ x)(sh1 ⊗ h)(h1 ⊗ x), (uth1 ⊗ c−1
2 )(ush1 ⊗ c2)

f(h1⊗x)
)

= ((th1 ⊗ h−1), u(t(h1))⊗ c−1
2 )(h−1

1 ⊗ x)(sh1 ⊗ h)(h1 ⊗ x), (u(sh1)⊗ c2)
f(h1⊗x))

= (th1 ⊗ (h, c2)
−1)(sh1 ⊗ (h, c2))

h1⊗x

= (th1 ⊗ x−1)(sh1 ⊗ x)h1⊗x

where x = (h, c2) ∈ f∗(C2)(x) for x ∈ H0.

B6 : For x = (h, c2) ∈ f∗(C2)(x) with c2 ∈ C2(u(x)) and h2 : a→ b ∈ H1(a, b) we obtain

{δ∗(x), h2}′ = {δ∗(h, c2), h2}′

= {h, h2}′

= ([h, h2]
−1, {f(h), f(h2)})

= ([h, h2]
−1, {δ(c2), f(h2)}) ( since f(h) = δ(c2))

B6 of δ
=

(
(x⊗ h−1

2 )(h−1 ⊗ sh2)(x⊗ h2)(h⊗ th2), (c
−1
2 ⊗ s(fh2))

u(x)⊗f(h2)(c2 ⊗ t(fh2))
)

= ((x⊗ h−1
2 )(h−1 ⊗ sh2)(x⊗ h2), (c

−1
2 ⊗ u(s(h2)))

f(x⊗h2))(h⊗ t(h2), c2 ⊗ u(t(h2)))

= (h⊗ sh2), c
−1
2 ⊗ u(s(h2)))

x⊗h2((h, c2)⊗ th2)

= ((h, c2)
−1 ⊗ sh2)

x⊗h2((h, c2)⊗ th2)

= (x−1 ⊗ sh2)
x⊗h2(x⊗ th2).

B7 : For any object p ∈ H0 and morphisms h1 : x→ y, h2 : a→ b in H1 , we obtain

p⊗ {h1, h2}′ = p⊗ ([h1, h2]
−1, {f(h1), f(h2)})

= (t(p⊗ h−1
1 )⊗ h2)((p⊗ h−1

1 )⊗ sh2)(s(p⊗ h1)⊗ h2)((p⊗ h1)⊗ t(h2),

{u(p)⊗ f(h1), f(h2)})

= ([p⊗ h1, h2]
−1, {f(p⊗ h1), f(h2)})

= {p⊗ h1, h2}′.

Similarly, it is easily verified that {h1, h2}′ ⊗ p = {h1, h2 ⊗ p}′ . Therefore, we get a braided regular crossed
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module

f∗(C2)
δ∗ // H1

s //
t

// H0.

Now we will show that the morphism (θ, f, u) is a Cartesian morphism in BRCM over the morphism

Φ(θ, f, u) = (f, u). Suppose that there is a morphism (f2, v)

H ′
1

s′

��
t′

��

f2 // H1

s

��
t

��
H ′

0 v
// H0

in Rgrpd . Let

Z
δ′ // H ′

1

s′ //
t′

// H ′
0

be a braided regular crossed module and let (θ′, f ′2, v
′) be a morphism in BRCM as illustrated in the following

diagram:

Z
θ′ //

δ′

��

C2

δ

��
H ′

1

s′

��
t′

��

f ′
2 // C1

s

��
t

��
H ′

0
v′

// C0

with the properties f ′2 = ff2 , v
′ = uv and δθ′ = f ′2δ

′ . Then there exists a unique morphism (θ∗, f2, v):

Z
θ∗ //

δ′

��

f∗(C2)

δ

��
H ′

1

s′

��
t′

��

f2 // H1

s

��
t

��
H ′

0 v
// H0
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such that Φ(θ∗, f2, v) = (f2, v). We get the following commutative diagram:

Z

θ∗

##
δ′

��

θ′

$$
H ′

1

f2 ##F
FF

FF
FF

FF

s′

��
t′

��
f ′
2

((

f∗(C2)

δ∗

��

θ // C2

δ

��
H ′

0
v′

((
v

##G
GG

GG
GG

GG
H1

f //

s

��
t

��

C1

s

��
t

��
H0 u

// C0.

For any y ∈ H ′
0 and z ∈ Z(y), then δ′(z) ∈ H ′

1(y) and f2δ
′(z) ∈ H1(v(y)). Further, θ′(z) ∈ C2(v

′(y)) =

C2(uv(y)) since v′ = uv .

Thus, the necessary unique morphism θ∗ : Z → f∗(C2) can be defined by

θ∗(z) = (f2δ
′(z), θ′(z))

for z ∈ Z(y), y ∈ H ′
0 . Since θ

′(z) ∈ C2(u(v(y))) and f2δ
′(z) ∈ H1(v(y)) and since

f(f2δ
′(z)) = f ′2δ

′(z) = δ(θ′(z)),

we have (f2δ
′(z), θ′(z)) ∈ f∗(C2)(v(y)).

Therefore, for a morphism (f, u) : (H1,H0) → (C1, C0) in Rgrpd and an object

C2
δ // C1

s //
t

// C0

in BRCM/(C1,C0) , the category of braided regular crossed modules over the same regular groupoid (C1, C0),

there is Cartesian morphism (θ, f, u) over (f, u). Consequently, the forgetful functor Φ1 : BRCM → Rgrpd is

fibration. 2

For a fixed morphism (f, u) : (H1,H0) → (C1, C0) in Rgrpd , the splitting of Φ1 gives a reindexing

functor
(f, u)∗ : BRCM/(C1,C0) −→ BRCM/(H1,H0)

defined on objects by(
C := C2

δ // C1

s //
t

// C0

)
7−→

(
(f, u)∗(C) := f∗(C2)

δ∗ // H1

s //
t

// H0

)
.

Suppose that a reindexing functor

(f, u)∗ : BRCM/(C1,C0) −→ BRCM/(H1,H0)

is chosen. Then there is a bijection

BRCM/(H1,H0)(H, (f, u)
∗(C)) ∼= BRCM/(f,u)(H,C)
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ODABAŞ and ULUALAN/Turk J Math

natural in

H :=

(
H2

δ // H1

s //
t

// H0

)
∈ BRCM/(H1,H0)

and

C :=

(
C2

δ // C1

s //
t

// C0

)
∈ BRCM/(C1,C0)

and where BRCM/(f,u)(H,C) consists of those morphism (α, f, u) from H to C with Φ(α, f, u) = (f, u).

5. Cofibration of categories

We recall the following basic definitions from [6].

Definition 5.1 Let Φ : X → B be a functor. A morphism ψ : Z → Y in X over v := Φ(ψ) is called co-

Cartesian if and only if for all u : J → I in B and θ : Z → X with Φ(θ) = uv there is a unique morphism

φ : Y → X with Φ(φ) = u and θ = φψ . This is illustrated by the following diagram:

Z
ψ

//

θ

%%
Y

φ
// X

Φ

��K
v

//

uv

%%
J

u
// I

Definition 5.2 The functor Φ : X → B is a cofibration or category cofibered over B if and only if for all

v : K → J in B and Z ∈ X/K there is co-Cartesian morphism ψ : Z → Z ′ over v : such a ψ is called a

co-Cartesian lifting of Z along v .

If Φ : X → B is a cofibration, for every morphism v : K → J in B and an object Z ∈ X/K , a co-Cartesian

lifting of Z

vZ : Z → v∗(Z)

along v can be selected. Under these conditions, the functor v∗ is said to give the objects induced by v . The

first construction of an induced crossed module was given in [5]. By following [5], examples of induced crossed

modules over groups were developed in [7]. The construction of induced crossed modules over groupoids was

given by Brown and Sivera in [6].

Proposition 5.3 ([6]) Let Φ : X → B be a fibration of categories. Then ψ : Z → Y in X over v : K → J in

B is co-Cartesian if and only if for all θ′ : Z → X ′ over v there is a unique morphism ψ′ : Y → X ′ in X/J

with θ′ = ψ′ψ .

Remark: Brown and Sivera showed that the functor from the category of groupoids to the category of

sets is a fibration. The proof that this functor is also a cofibration is given in essence in [2]. In Section 3.1, we

have already shown that the forgetful functor Φ : Rgrpd → Grpd is a fibration. By using a similar construction

method, it can be proved that this functor is also a cofibration.
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5.1. Modules over regular groupoids

A module over a regular groupoid C := (C1, C0) is a pair (M,C) where M is a totally disconnected regular

groupoid over C0 with an action of C1 on M . This action is given by a family of maps

M(x)× C1(x, y) →M(y)

for all x, y ∈ C0 . The action of p ∈ C1(x, y) on m ∈M(x) is denoted by mp and satisfies the usual properties

of a groupoid action, and each action of C0 on C1 and M is compatible with the action of C1 on M . A

morphism of modules over regular groupoids is a pair

(θ, f) : (M,C) → (N,H)

where f : C → H and θ : M → N are morphisms of regular groupoids and they preserve the action. This

defines the category ModReg having modules over regular groupoids as objects.

We have a forgetful functor Φ : ModReg → Rgrpd from the category of modules over regular groupoids

to the category of regular groupoids, which sends a module over a regular groupoid (M,C) to the regular

groupoid C .

Proposition 5.4 The forgetful functor Φ : ModReg → Rgrpd is fibered and cofibered.

Proof Brown and Sivera in Proposition 6.2 of [6] proved that the functor from the category of modules over

groupoids to the category of groupoids is a fibration and a cofibration. Using the same construction method

with some additional conditions, we will prove that the functor ΦM is a fibration and a cofibration.

Let (N,H) be a module over the regular groupoid H := (H1,H0) and let

v = (v1, v0) : C → H

be a morphism from a regular groupoid C := (C1, C0) to the regular groupoid H . The module (M,C) = v∗(N,H)

was defined in [6] as follows. For x ∈ C0 , set M(x) = {x}×N(v0(x)) with addition given by that in N(v0(x)).

The operation is given by

(x, n)p = (y, nv1(p))

for p ∈ C1(x, y). We can define the actions of C0 as follows. For u ∈ C0 and (x, n) ∈M(x), the actions are

(x, n)⊗ u = (x⊗ u, n⊗ v0(u)) ∈M(x⊗ u)

u⊗ (x, n) = (u⊗ x, v0(u)⊗ n).

According to these actions, we obtain for p ∈ C1(x, y) and u ∈ C0

u⊗ ((x, n)p) = (u⊗ (x, n))u⊗p

and

((x, n)p)⊗ u = ((x, n)⊗ u)p⊗u.

Thus, M is a module over the regular groupoid (C1, C0). Now we show that the functor Φ is a cofibration.

Let M be a module over the regular groupoid C := (C1, C0) and v = (v1, v0) be a morphism from the

regular groupoid to a regular groupoid H = (H1,H0). We use the construction of N = v∗(M,C) from [6]. For
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any y ∈ H0 , the abelian group N(y) is generated by pairs (m, q) with m ∈ M , q ∈ H1(v0(t(m)), y), so that

N(y) = 0 if no such pairs exist. The action of q′ ∈ H1(y, u) on (m, q) ∈ N(y) is given by

(m, q)q
′
= (m, qq′)

and the composition is defined by (m, q)(m′, q) = (mm′, q). The relation given for N(y) in [6] is

(mp, q) = (m, v1(p)q)

for p ∈ C1 . To get a module over regular groupoids, we must define the left and right actions of H0 and we

need to add new relations to N(y). The actions are defined by

u⊗ (m, q) = (m,u⊗ q) and (m, q)⊗ u = (m, q ⊗ u)

for u ∈ H0 . The new relations imposed to N(y) are

(x⊗m, q) = (m, v0(x)⊗ q) and (m⊗ x, q) = (m, q ⊗ v0(x))

for x ∈ C0 . Then we obtain, for (m, q) ∈ N and u ∈ H0 ,

(m, q)q
′
⊗ u = (m, qq′)⊗ u

= (m, qq′ ⊗ u)

= (m, (q ⊗ u)(q′ ⊗ u))

= (m, q ⊗ u)q
′⊗u

= ((m, q)⊗ u)q
′⊗u

u⊗ (m, q)q
′
= u⊗ (m, qq′)

= (m,u⊗ (qq′))

= (m, (u⊗ q)(u⊗ q′))

= (m,u⊗ q)u⊗q
′

= (u⊗ (m, q))u⊗q
′
.

Thus, we have a module over the regular groupoid H . The co-Cartesian morphism over v = (v1, v0) is given by

ψ :M → N , ψ(m) = (m, ev0t(m)). Using the new relations added to N , for m ∈M and x ∈ C0 , we have

ψ(m · x) = (m⊗ x, ev0(t(m·x))) = (m, ev0(tm) ⊗ v0(x)) = (m, ev0(tm))⊗ v0(x) = ψ(m)⊗ v0(x)

and similarly ψ(x⊗m) = v0(x)⊗ ψ(m). That is, the morphism ψ preserves the left and right actions of C0 .

2

6. Braided regular crossed modules cofibered over regular groupoids

In Section 4, we showed that the functor Φ1 from the category of braided regular crossed modules to that of

regular groupoids is a fibration. In this section we will show that this functor is also a cofibration. In [6], Brown

and Sivera proved that the functor Φ1 : XMod → Gpd from the category of crossed modules of groupoids to

the category of groupoids is a cofibration. In the following proposition we use this result. We must add some

extra relations to obtain an induced braided regular crossed module.

Proposition 6.1 The forgetful functor Φ1 : BRCM → Rgrpd is a cofibration.
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Proof Using the construction of an induced crossed module of groupoids (cf. [6]) and Proposition 5.3, and

by adding new relations, we will give a construction of an induced braided regular crossed module.

Let

M :=

(
M

δ // P1

s //
t

// P0

)
be a braided regular crossed module with braiding map {−,−} : P1×P1 →M . Let f = (f1, f0) be a morphism

from the regular groupoid P := (P1, P0) to a regular groupoid Q := (Q1, Q0). First we recall the crossed

module construction from [6]. Let y ∈ Q0 . If there is no q ∈ Q1 from a point of f0(P0) to y , then N(y) is

a trivial group. Otherwise, define F (y) to be the free group on the set of pairs (m, q) such that m ∈ M(x)

for some x ∈ P0 and q ∈ Q1(f0(x), y). If q′ ∈ Q1(y, y
′), the action is defined by (m, q)q

′
= (m, qq′). Now, if

u ∈ Q0 , we set the biaction (whiskering operations) of Q0 on F (y) by

(m, q)⊗ u = (m, q ⊗ u)

and

u⊗ (m, q) = (m,u⊗ q).

The morphism ∂′ from F (y) to Q1(y) is defined by (m, q) 7→ q−1f1δ(m)q . This gives a free precrossed module

with function i :M → F given by m 7→ (m, 1) where m ∈M(x) and then 1 ∈ Q1(f0(x)) is the identity.

To make i :M → F an operator morphism in Rgrpd , we must factor F out by relations:

(i) (m, q)(m′, q) = (mm′, q)

(ii) (mp, q) = (m, f1(p)q)

(iii) (m⊗ a, q) = (m, q ⊗ f0(a))

(iv) (a⊗m, q) = (m, f0(a)⊗ q)

for a ∈ P0 .

Our aim is to obtain a braided regular crossed module over (Q1, Q0). To get it, we consider the free

product N ∗ ⟨Q1 × Q1⟩ where ⟨Q1 × Q1⟩ is the free group generated by the set Q1 × Q1 on generators

⟨q1, q2⟩ : t(q1)t(q2) → t(q1)t(q2).

The left and right actions of Q0 on ⟨Q1 ×Q1⟩ are given on generators by

u⊗ ⟨q1, q2⟩ = ⟨u⊗ q1, q2⟩ and ⟨q1, q2⟩ ⊗ u = ⟨q1, q2 ⊗ u⟩

with the relation ⟨q1 ⊗ u, q2⟩ = ⟨q1, u⊗ q2⟩ for u ∈ Q0, q1, q2 ∈ Q1 .

We have a morphism δ∗ : N ∗ ⟨Q1 ×Q1⟩ → Q induced on N by ∂′ and given on ⟨Q1 ×Q1⟩ by Relation

B4 in the definition of a braided regular crossed module. We factor the group N ∗ ⟨Q1 × Q1⟩ out by the

Relations B2 , B3 , B5 , and B6 . Relation B7 is given by the definition of the right and left actions of Q0 on

⟨Q1 ×Q1⟩ . Finally, to get the braided regular crossed module induced by (f1, f0), we need to add the relation

{p1, p2} = ⟨f1(p1), f1(p2)⟩
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for p1, p2 ∈ P1 and where {−,−} is the braiding map of δ . This gives a braided regular crossed module

morphism

(φ, f1, f0) :

(
M

δ // P1

s //
t

// P0

)
−→

(
N ∗ ⟨Q1 ×Q1⟩

δ∗ // Q1

s //
t

// Q0.

)

Now we show that this morphism is co-Cartesian in BRCM over the morphism Φ1(φ, f1, f0) = (f1, f0). Since

Φ1 : BRCM → Rgrpd is a fibration, to show that the morphism (φ, f1, f0) is co-Cartesian, we can use

Proposition 5.3.

Let

X
δ′ // Q1

s //
t

// Q0

be a braided regular crossed module with a morphism (θ′, f1, f0) given by

M
θ′ //

δ

��

X

δ′

��
P1

s

��
t

��

f1

// Q1

s

��
t

��
P0

f0

// Q0

with δ′θ′ = f1δ .

Then there exists a unique morphism θ∗ : N ∗ ⟨Q1 ×Q1⟩ → X such that the diagram

M
φ

&&MM
MMM

MMM
MMM

δ

��

θ′

&&
P1

f1
&&LL

LLL
LLL

LLL
L

����

f1

))

N ∗ ⟨Q1 ×Q1⟩

δ∗

��

θ∗ // X

δ′

��
P0

f0

))
f0 &&MM

MMM
MMM

MMM
M Q1

����

Q1

����
Q0 Q0

is commutative. The necessary unique morphism θ∗ : N ∗ ⟨Q1 × Q1⟩ → X can be defined as follows. For any

y ∈ Q0 , x ∈ P0,m ∈M(x), q ∈ Q1(f0(x), y), we define θ∗ on the generator (m, q) of N by θ∗(m, q) = θ′(m)q ,

where θ(m) ∈ X(f0(x)). Thus, θ∗(m, q) = θ(m)q ∈ X(y). Similarly, θ∗ is defined on generators ⟨q1, q2⟩ by

θ∗(⟨q1, q2⟩) = {q1, q2}′
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where {−,−}′ is the braiding map of δ′ from Q1 ×Q1 to X . Then we obtain

δ′θ∗(m, q) = δ′(θ′(m)q)

= (q)−1δ′θ′(m)(q)

= (q)−1f1δ(m)(q)

= δ∗(m, q)

and

δ′θ∗(⟨q1, q2⟩) = δ′{q1, q2}

= [q1, q2]

= δ∗⟨q1, q2⟩.

Finally we have for m ∈M

θ∗φ(m) = θ∗(m, 1) = θ(m)

and
δ∗φ(m) = δ∗(m, 1) = f1δ(m).

Thus, we proved that the morphism (φ, f1, f0) is a co-Cartesian morphism in BRCM over Φ1((φ, f1, f0)) =

(f1, f0). 2
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