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Abstract: In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its adjacency matrix attains

the minimum. A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal

to its number of vertices plus one. In this paper, we characterize the minimizing graph among all the connected graphs

that belong to a class of graphs whose complements are bicyclic with two cycles.
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1. Introduction

Let G be a finite, simple, and undirected graph with the vertex-set V (G) = {vi : 1 ≤ i ≤ n} and the edge-

set E(G) such that |V (G)| = n and |E(G)| = m are the order and size of the graph G , respectively. The

adjacency matrix A(G) = [ai,j ] of the graph G is a matrix of order n , where ai,j = 1 if vi is adjacent to

vj and ai,j = 0 otherwise. The zeros of det(A(G) − λI) are called the eigenvalues of A(G), where I is an

identity matrix of order n . Since A(G) is real and symmetric, all the eigenvalues say λ1(G), λ2(G),...,λn(G)

are real and called the eigenvalues of the graph G . If λ1(G) is the least, then one can arrange the eigenvalues

as λ1(G) ≤ λ2(G) ≤ ... ≤ λn(G) and the eigenvector corresponding to the least eigenvalue is called the first

eigenvector. For further study, we refer to [3, 4].

In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its adjacency matrix

attains the minimum. Let G(m,n) denote the class of connected graphs of order n and size m , where

0 < m <
(
n
2

)
. Bell et al. [2] characterized the minimizing graphs in G(m,n) as follows.

Theorem 1.1 Let G be a minimizing graph in G(m,n) . Then G is either

(i) a bipartite graph, or

(ii) a join of two nested split graphs (not both totally disconnected).

It is observed that the complements of the minimizing graphs in G(m,n) are either disconnected or

contain a clique of order greater than or equal to half of the order of the graphs. This motivated to discuss the

least eigenvalue of the graphs whose complements are connected and contain cliques of small sizes. Fan et al.
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[6] characterized the unique minimizing graph in the class of graphs of order n whose complements are trees.

Recently, Wang et al. [11] characterized the unique minimizing graph in the class of graphs whose complements

are unicyclic. In this note, we characterize the minimizing graph among all the connected graphs that belong

to a class of graphs whose complements are bicyclic with exactly two cycles.

In the literature, the least eigenvalue received less attention compared to the maximum eigenvalue. The

results related to the bounds of the least eigenvalue can be found in [5, 7]. For further study, we refer to

[1, 8–10, 12, 13]. The rest of the paper is organized as follows: in Section 2, we give some basic definitions and

terminologies that are frequently used in the main results. Section 3 deals with different results related to the

minimizing graphs in the class of connected graphs whose complements are bicyclic with exactly two cycles and

Section 4 includes the characterization of the minimizing graph in the same class.

2. Preliminaries

A star of size n is a tree that is obtained by joining one specific vertex to the remaining n vertices, where the

fix vertex is called the center and all the other vertices are called pendent vertices. It is denoted by K1,n and

its vertex-set and edge-set are defined as V (K1,n) = {vi : 1 ≤ i ≤ n+1} and E(K1,n) = {v1vi : 2 ≤ i ≤ n+1} ,
respectively. Moreover, S1

1,n is a graph obtained by joining any one pair of pendent vertices of K1,n . If we

choose a pair of pendent vertices of K1,n consisting of vn and vn+1 , then V (S1
1,n) = {vi : 1 ≤ i ≤ n+ 1} and

E(S1
1,n) = {v1vi : 2 ≤ i ≤ n+1}∪ {vnvn+1} are the vertex-set and the edge-set of the graph S1

1,n , respectively.

Similarly, S2
1,n is a graph obtained by joining any two distinct pairs of pendent vertices of K1,n such that

V (S2
1,n) = V (S1

1,n) and E(S2
1,n) = E(S1

1,n) ∪ {vn−2vn−1} , where (vn−2, vn−1) is chosen as the second pair of

pendent vertices different from (vn, vn+1).

Since bicyclic graphs containing two or three cycles are connected graphs in which the number of edges

equals the number of vertices plus one, we conclude that S2
1,n is a bicyclic graph with exactly two cycles and

n−4 pendent vertices. In particular, S2
1,4 is a bicyclic graph of order 5 with exactly two cycles. In the following

definitions, we define some more graphs that are bicyclic with exactly two cycles.

Definition 2.1 Let K1,p be a star and S2
1,4 be a bicyclic graph with exactly two cycles and five vertices. The

bicyclic graph denoted by B′
(p) is obtained by joining one pendent vertex of K1,p with a vertex of degree 4

of the graph S2
1,4 , where p ≥ 2 . The vertex-set and the edge-set of B′

(p) are defined as V (B′
(p)) = {vi1 :

1 ≤ i ≤ p − 1} ∪ {vi : 2 ≤ i ≤ 4} ∪ {vi5 : 1 ≤ i ≤ 2} ∪ {vi6 : 1 ≤ i ≤ 2} and E(B′
(p)) = {vi1v2 : 1 ≤ i ≤

p− 1} ∪ {v2v3, v3v4} ∪ {v4vi5, v4vi6 : 1 ≤ i ≤ 2} ∪ {v15v25 , v16v26} .

Definition 2.2 Let K1,p be a star and S2
1,q be a bicyclic graph with exactly two cycles and q − 4 pendent

vertices. The bicyclic graph denoted by B1(p, q) is obtained by joining a pendent vertex of K1,p with a pendent

vertex of the graph S2
1,q , where p ≥ 2 and q ≥ 5 . The vertex-set and the edge-set of B1(p, q) are defined as

V (B1(p, q)) = {vi1 : 1 ≤ i ≤ p− 1} ∪ {vi : 2 ≤ i ≤ 5} ∪ {vi6 : 1 ≤ i ≤ 2} ∪ {vi7 : 1 ≤ i ≤ 2} ∪ {vi8 : 1 ≤ i ≤ q − 5}
and E(B1(p, q)) = {vi1v2 : 1 ≤ i ≤ p − 1} ∪ {v2v3, v3v4, v4v5} ∪ {v5vi6, v5vi7 : 1 ≤ i ≤ 2} ∪ {v5vi8 : 1 ≤ i ≤
q − 5} ∪ {v16v26 , v17v27} .

Definition 2.3 Let S1
1,p be a unicyclic graph with p− 2 pendent vertices. The bicyclic graph denoted by B∗(p)
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is obtained by joining a pendent vertex of S1
1,p with a vertex of C3 , where C3 is a cycle of order 3 and p ≥ 3 .

The vertex-set and the edge-set of B∗(p) are defined as V (B∗(p)) = {vi1 : 1 ≤ i ≤ p−3}∪{vi2 : 1 ≤ i ≤ 2}∪{vi :
3 ≤ i ≤ 5} ∪ {vi6 : 1 ≤ i ≤ 2} and E(B∗(p)) = {vi1v3 : 1 ≤ i ≤ p− 3} ∪ {vi2v3 : 1 ≤ i ≤ 2} ∪ {v3v4, v4v5} ∪ {v5vi6 :

1 ≤ i ≤ 2} ∪ {v12v22 , v16v26} .

Definition 2.4 Let S1
1,p and S1

1,q be two unicyclic graphs with p− 2 and q − 2 pendent vertices, respectively.

The bicyclic graph denoted by B2(p, q) is obtained by joining a pendent vertex of S1
1,p with a pendent vertex

of the graph S1
1,q , where p, q ≥ 3 . The vertex-set and the edge-set of B2(p, q) are defined as V (B2(p, q)) =

{vi1 : 1 ≤ i ≤ p − 3} ∪ {vi2 : 1 ≤ i ≤ 2} ∪ {vi : 3 ≤ i ≤ 6} ∪ {vi7 : 1 ≤ i ≤ 2} ∪ {vi8 : 1 ≤ i ≤ q − 3} and

E(B2(p, q)) = {vi1v3 : 1 ≤ i ≤ p− 3} ∪ {vi2v3 : 1 ≤ i ≤ 2} ∪ {v3v4, v4v5, v5v6} ∪ {v6vi7 : 1 ≤ i ≤ 2} ∪ {v6vi8 : 1 ≤
i ≤ q − 3} ∪ {v12v22 , v17v27} .

Let Gn be a class of bicyclic graphs with order n and exactly two cycles. Let Gc
n be a class of

connected graphs of order n whose complements are bicyclic with exactly two cycles i.e. Gc
n = {Gc :

Gc is connected and G ∈ Gn} . Note that (S2
1,n−1)

c does not belong to Gc
n as it is disconnected, where

n > 4.

By interlacing theorem, for a graph G containing at least one edge, we have λmin(G) ≤ −1. In particular,

if G is a complete graph or disjoint union of complete graphs with at least one non-trivial copy, then λmin(G) =

−1. Moreover, G contains K1,2 as an induced subgraph that verifies that λmin(G) ≤ λmin(K1,2) = −
√
2. Thus,

for a graph G (tree), λmin(G
c) = −1 if and only if G is a star. Consequently, if G being a tree is not a star

then Gc is connected and λmin(G
c) < −1. For a unicyclic graph G , λmin(G

c) ≤ −1, where equality holds if

G ∼= C4 (as (C4)c is 2P2 , where P2 is a path of order 2). Similarly, for a bicyclic graph G with exactly two

cycles, λmin(G
c) ≤ −2, where equality holds if G ∼= S2

1,n for n > 3.

A vector X ∈ Rn is said to be defined on the graph G of order n , if there is a 1-1 map ϕ from V (G) to

the entries of X such that ϕ(u) = Xu for each u ∈ V (G). If X is an eigenvector of A(G), then it is naturally

defined on V (G), i.e. Xu is the entry of X corresponding to the vertex u . Thus, it is easy to see that

XTA(G)X = 2
∑

uv∈E(G)

XuXv, (2.1)

and λ is an eigenvalue of G corresponding to the eigenvector X if and only if X ̸= 0. For each v ∈ V (G), we

obtain the following eigen-equation of the graph G :

λXv =
∑

u∈NG(v)

Xu, (2.2)

where NG(v) is the set of neighbors of v in G . For an arbitrary unit vector X ∈ Rn ,

λmin(G) ≤ XTA(G)X, (2.3)

and equality holds if and only if X is the first eigenvector of G .

Moreover, for a graph G , A(Gc) = J− I−A(G), where J is the all-ones matrix, I is the identity matrix

of same size as of the adjacency matrix A(G), and Gc is complement of the graph G .
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Thus, for any vector X ∈ Rn

XTA(Gc)X = XT (J− I)X−XTA(G)X. (2.4)

Now we state the following result, which is used in the proof of the main theorem of this paper.

Lemma 2.5 [6, 11] Let T be a tree and U be a unicyclic graph with nonnegative or nonpositive real vectors

X = (X1, X2, X3, ..., Xn)
T and Y = (Y1, Y2, Y3, ..., Yn)

T defined on T and U , respectively. The entries of

X and Y are ordered as |X1| ≥ |X2| ≥ |X3| ≥ ... ≥ |Xn| and |Y1| ≥ |Y2| ≥ |Y3| ≥ ... ≥ |Yn| , where

|V (T )| = |V (U)| = n . Then ∑
uv∈E(T )

XuXv ≤
∑

uv∈E(K1,p)

XuXv,

where X is defined on the star K1,p such that its central vertex of degree p = n− 1 has value X1 , and equality

holds if and only if T = K1,n−1 , and ∑
uv∈E(U)

YuYv ≤
∑

uv∈S1
1,q

YuYv,

where Y is defined on the unicyclic graph S1
1,q such that the vertex of degree q = n− 1 has value Y1 and two

vertices of degree two have values Y2 and Y3 , and equality holds if and only if U = S1
1,q .

3. Minimizing graphs

In this section, we find some minimizing graphs among the connected graphs whose complements are bicyclic

with exactly two cycles under certain conditions.

Let X
′
be the first eigenvector of the graph B′

(p)c with entries corresponding to the vertices as defined

in Definition 2.1. By eigen-equation (2.2), the vertices vi1 for 1 ≤ i ≤ p − 1, v2 , v3 , v4 , vi5 for 1 ≤ i ≤ 2

and vi6 for 1 ≤ i ≤ 2 have values in X
′
, say X1 , X2 , X3 , X4 X5 , and X6 , respectively. Moreover, if

λmin(B
′
(p)c) = λ

′
, then we have



λ
′
X1 = (p− 2)X1 +X3 +X4 + 2X5 + 2X6,

λ
′
X2 = X4 + 2X5 + 2X6,

λ
′
X3 = (p− 1)X1 + 2X5 + 2X6,

λ
′
X4 = (p− 1)X1 +X2,

λ
′
X5 = (p− 1)X1 +X2 +X3 + 2X6,

λ
′
X6 = (p− 1)X1 +X2 +X3 + 2X5.

(3.1)

Take X
′
= (X1, X2, X3, X4, X5, X6)

T ; then the matrix equation of the above system of equations is (A −

λ
′
I)X

′
= 0, where A is a matrix of order 6. Thus, λ

′
is the least root of the polynomial

f
′
(λ, p) = det(A− λI)

= (20− 12p) + (8 + 8p)λ+ (−25 + 17p)λ2 + (−26− 3p)λ3

+(−7− 6p)λ4 − (2− p)λ5 + λ6.
(3.2)
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Let X1 be the first eigenvector of the graph B1(p, q)
c with entries corresponding to the vertices as defined

in Definition 2.2. By eigen-equation (2.2), the vertices vi1 for 1 ≤ i ≤ p− 1, v2 , v3 , v4 , v5 , v
i
6 for 1 ≤ i ≤ 2,

vi7 for 1 ≤ i ≤ 2 and vi8 for 1 ≤ i ≤ q − 5 have values in X1 , say X1 , X2 , X3 , X4 , X5 , X6 , X7 , and X8 ,

respectively. Moreover, if λmin(B1(p, q)
c) = λ1 , then we have

λ1X1 = (p− 2)X1 +X3 +X4 +X5 + 2X6 + 2X7 + (q − 5)X8,

λ1X2 = X4 +X5 + 2X6 + 2X7 + (q − 5)X8,

λ1X3 = (p− 1)X1 +X5 + 2X6 + 2X7 + (q − 5)X8,

λ1X4 = (p− 1)X1 +X2 + 2X6 + 2X7 + (q − 5)X8,

λ1X5 = (p− 1)X1 +X2 +X3,

λ1X6 = (p− 1)X1 +X2 +X3 +X4 + 2X7 + (q − 5)X8,

λ1X7 = (p− 1)X1 +X2 +X3 +X4 + 2X6 + (q − 5)X8,

λ1X8 = (p− 1)X1 +X2 +X3 +X4 + 2X6 + 2X7 + (q − 6)X8.

(3.3)

Take X1 = (X1, X2, X3, X4, X5, X6, X7, X8)
T ; then the matrix equation of the above system of equations is

(A− λ1I)X1 = 0, where A is a matrix of order 8. Thus, λ1 is the least root of the polynomial

f1(λ, p, q) = det(A− λI)

= (20− 4p− 4q) + (−32 + 28p+ 12q − 8pq)λ

+(−65 + 3p+ 19q + 4pq)λ2 + (−4− 36p− 8q + 18pq)λ3

+(65− 39p− 31q + 11pq)λ4 + (64− 24p− 24q + 2pq)λ5

+(30− 8p− 8q)λ6 + (8− p− q)λ7 + λ8.

(3.4)

Lemma 3.1 If n ≥ 12 , then λmin(B1(n− 7, 5)c) < λmin(B
′
(n− 6)c) .

Proof Let λ
′
= λminB

′
(n−6)c and λ1 = λminB1(n−7, 5)c be the least roots of f

′
(λ, n−6) and f1(λ, n−7, 5),

respectively. Define

f(λ, n− 6) = (λ+ 1)2f
′
(λ, n− 6).

Since λ
′
< −2, λ

′
is the least root of f(λ, n − 6). From (3.2), f

′
(−3.5, n − 6) = 9409 − 1128n and

f(−3.5, n−6) < 0 for n ≥ 12. Moreover, if λ → −∞ , then f(λ, n−6) → +∞ , which implies λ
′ ≤ −3.5. Now,

for λ ≤ −3.5 and n ≥ 12,

f(λ, n− 6)− f1(λ, n− 7, 5) = (−n+ 8)(8 + 4λ+ 2λ2 + 15λ3 + 11λ4 + 2λ5)

= −(n− 8)(λ+ 1)(λ+ 2)(λ+ 3.2920)(2λ2 − 1.584λ+ 1.2145) > 0.

Consequently, f1(λ, n − 7, 5) < f(λ, n − 6) for λ ≤ −3.5 and n ≥ 12. In particular, λ1 < λ
′
, which

implies λmin(B1(n− 7, 5)c) < λmin(B
′
(n− 6)c) for n ≥ 12. 2

Lemma 3.2 Let p and q be any positive integers such that p ≥ q ≥ 6 and p+ q + 2 = n ≥ 14 ; then

λmin(B1(⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)c) ≤ λmin(B1(p, q)

c),

equality holds if and only if p = ⌈n−2
2 ⌉ and q = ⌊n−2

2 ⌋ .
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Proof From equation (3.4), we have

f1(−3.5, p, q) =
1

256
[−10874441− 10530p+ q(53928− 24192p)]

and f1(−3.5, p, q) < 0 for p ≥ q ≥ 6, which implies λ1 < −3.5, where λ1 is the least root of f1(λ, p, q).

Moreover,

f1(λ, p− 1, q + 1) = (20− 4p− 4q) + (−24 + 20p+ 20q − 8pq)λ

+(−69 + 7p+ 15q + 4pq)λ2 + (−22− 18p− 26q + 18pq)λ3

+(54− 28p− 42q + 11pq)λ4 + (62− 22p− 26q + 2pq)λ5

+(30− 8p− 8q)λ6 + (8− p− q)λ7 + λ8,

and

f1(λ, p, q)− f1(λ, p− 1, q + 1) = −(p− q − 1)λ(−8 + 4λ+ 18λ2 + 11λ3 + 2λ4

= −2(p− q − 1)λ(λ− 1
2 )(λ+ 2)3.

We note that if p > q+1 and λ < −3.5, then f1(λ, p, q)−f1(λ, p−1, q+1) > 0. Furthermore, f(−3.5, p−1, q+

1) < 0. Consequently, λmin(B1(p − 1, q + 1)c) < λmin(B1(p, q)
c). It follows that λmin(B1(⌈n−2

2 ⌉, ⌊n−2
2 ⌋)c) ≤

λmin(B1(p, q)
c) with equality if and only if p = ⌈n−2

2 ⌉ and q = ⌊n−2
2 ⌋ , where n ≥ 14.

Let X∗ be the first eigenvector of the graph B∗(p)c with entries corresponding to the vertices as defined

in Definition 2.3. By eigen-equation (2.2), the vertices vi1 for 1 ≤ i ≤ p − 3, vi2 for 1 ≤ i ≤ 2, v3 , v4 , v5 ,

and vi6 for 1 ≤ i ≤ 2 have values in X∗ , say X1 , X2 , X3 , X4 , X5 , and X6 , respectively. Moreover, if

λmin(B∗(p)c) = λ∗ , then we have



λ∗X1 = (p− 4)X1 + 2X2 +X4 +X5 + 2X6,

λ∗X2 = (p− 3)X1 +X4 +X5 + 2X6,

λ∗X3 = X5 + 2X6,

λ∗X4 = (p− 3)X1 + 2X2 + 2X6,

λ∗X5 = (p− 3)X1 + 2X2 +X3, (3.5)

λ∗X6 = (p− 3)X1 + 2X2 +X3 +X4.

(3.5)

Take X∗ = (X1, X2, X3, X4, X5, X6)
T ; then the matrix equation of the above system of equations is (A −

λ∗I)X∗ = 0, where A is a matrix of order 6. Thus, λ∗ is the least root of the polynomial

f∗(λ, p, q) = det(A−λI) = (12−4p)+(−12+8p)λ+(−17+7p)λ2+(−7p)λ3+(5−6p)λ4+(4−p)λ5+λ6. (3.6)

Let X2 be the first eigenvector of the graph B2(p, q)
c with entries corresponding to the vertices as defined in

Definition 2.4. By eigen-equation (2.2), the vertices vi1 for 1 ≤ i ≤ p − 3, vi2 for 1 ≤ i ≤ 2, v3 , v4 , v5 , v6 ,

vi7 for 1 ≤ i ≤ 2 and vi8 for 1 ≤ i ≤ q − 3 have values in X2 , say X1 , X2 , X3 , X4 , X5 , X6 X7 , and X8 ,
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respectively. Moreover, if λmin(B2(p, q)
c) = λ2 , then we have

λ2X1 = (p− 4)X1 + 2X2 +X4 +X5 +X6 + 2X7 + (q − 3)X8,

λ2X2 = (p− 3)X1 +X4 +X5 +X6 + 2X7 + (q − 3)X8,

λ2X3 = X5 +X6 + 2X7 + (q − 3)X8,

λ2X4 = (p− 3)X1 + 2X2 +X6 + 2X7 + (q − 3)X8,

λ2X5 = (p− 3)X1 + 2X2 +X3 + 2X7 + (q − 3)X8,

λ2X6 = (p− 3)X1 + 2X2 +X3 +X4,

λ2X7 = (p− 3)X1 + 2X2 +X3 +X4 +X5 + (q − 3)X8,

λ2X8 = (p− 3)X1 + 2X2 +X3 +X4 +X5 + 2X7 + (q − 4)X8.

(3.7)

Take X2 = (X1, X2, X3, X4, X5, X6, X7, X8)
T ; then the matrix equation of the above system of equations is

(A− λ2I)X2 = 0, where A is a matrix of order 8. Thus, λ2 is the least root of the polynomial

f2(λ, p, q) = det(A− λI)

= (20− 4p− 4q) + (−40 + 20p+ 20q − 8pq)λ

+(−53 + 11p+ 11q + 4pq)λ2 + (4− 22p− 22q + 18pq)λ3

+(65− 35p− 35q + 11pq)λ4 + (64− 24p− 24q + 2pq)λ5

+(30− 8p− 8q)λ6 + (8− p− q)λ7 + λ8.

(3.8)

2

Lemma 3.3 If n ≥ 10 , then λmin(B2(n− 5, 3)c) < λmin(B∗(n− 4)c) .

Proof Consider λ∗ = λmin(B∗(n− 4)c) and λ2 = λmin(B2(n− 5, 3)c) are the least roots of f∗(λ, n− 4) and

f2(λ, n− 5, 3), respectively. Define

f(λ, n− 4) = (λ+ 1)2f∗(λ, n− 4).

Since λ∗ < −2, λ∗ is the least root of f(λ, n− 4). From (3.6), f∗(−3, n− 4) = 133− 19n and f(−3, n− 4) < 0

for n ≥ 10. Moreover, if λ → −∞ , then f(λ, n − 4) → +∞ , which implies λ∗ ≤ −3. Now, for λ ≤ −3 and

n ≥ 10,

f(λ, n− 4)− f2(λ, n− 5, 3) = −λ(λ− 1)(λ+ 2.8507)(λ− 0.3507)(λ+ 2(1− 1

n− 6
))

As (1− 1
n−6 ) ∈ [0.75, 1] for any integral value n ≥ 10, f2(λ, n− 5, 3) < f(λ, n− 4) for λ ≤ −3 and n ≥ 10.

In particular, λ2 < λ∗ , which implies λmin(B2(n− 5, 3)c) < λmin(B∗(n− 4)c) for n ≥ 10. 2

Lemma 3.4 Let p and q be any positive integers such that p ≥ q ≥ 4 and p+ q + 2 = n ≥ 10 ; then

λmin(B2(⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)c) ≤ λmin(B2(p, q)

c),

equality holds if and only if p = ⌈n−2
2 ⌉ and q = ⌊n−2

2 ⌋ .
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Proof From equation (3.8), we have

f2(−3, p, q) = 203− 19(p+ q)− 21pq

and f2(−3, p, q) < 0 for p ≥ q ≥ 4, which implies λ2 < −3, where λ2 is the least root of f2(λ, p, q). Moreover,

f2(λ, p− 1, q + 1) = (20− 4p− 4q) + (−32 + 12p+ 28q − 8pq)λ

+(−57 + 15p+ 7q + 4pq)λ2 + (−14− 4p− 40q + 18pq)λ3

+(54− 24p− 46q + 11pq)λ4 + (62− 22p− 26q + 2pq)λ5

+(30− 8p− 8q)λ6 + (8− p− q)λ7 + λ8, and

and

f2(λ, p, q)− f2(λ, p− 1, q + 1) = −(p− q − 1)λ(−8 + 4λ+ 18)λ2 + 11λ3 + 2λ4

= −2(p− q − 1)λ(λ− 1
2 )(λ+ 2)3.

We note that if p > q+1 and λ < −3, then f2(λ, p, q)−f2(λ, p−1, q+1) > 0. Furthermore, f(−3, p−1, q+1) <

0. Consequently, λmin(B2(p − 1, q + 1)c) < λmin(B2(p, q)
c). It follows that λmin(B2(⌈n−2

2 ⌉, ⌊n−2
2 ⌋)c) ≤

λmin(B2(p, q)
c) with equality if and only if p = ⌈n−2

2 ⌉ and q = ⌊n−2
2 ⌋ , where n ≥ 10. 2

Lemma 3.5 (a) If n ≥ 22 and n ≡ 0(mod 2) , then λmin(B2(⌈n−2
2 ⌉

, ⌊n−2
2 ⌋)c) < λmin(B1(⌈n−2

2 ⌉, ⌊n−2
2 ⌋)c). (b) If n ≥ 19 and n ≡ 1(mod 2) , then λmin(B1(⌈n−2

2 ⌉, ⌊n−2
2 ⌋)c) <

λmin(B2(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c).

Proof Using (3.4) and (3.8), we have

f1(λ, p, q)− f2(λ, p, q) = [−4(p− q)]λ4 + [−14(p− q)− 8]λ3 + [−8(p− q)− 12]λ2 + [8(p− q) + 8]λ.

(a) If n ≡ 0(mod 2), then p = ⌈n−2
2 ⌉ = n−2

2 = ⌊n−2
2 ⌋ = q . Thus,

f1(λ, ⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)− f2(λ, ⌈

n− 2

2
⌉, ⌊n− 2

2
⌋) = −4λ(λ+ 2)(λ− 1

2
).

This shows that, for λ < −2,

f2(λ, ⌈
n− 2

2
⌉, ⌊n− 2

2
⌋) < f1(λ, ⌈

n− 2

2
⌉, ⌊n− 2

2
⌋).

Consequently, for n ≥ 22,

λminB2(⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)c < λmin(B1(⌈

n− 2

2
⌉, ⌊n− 2

2
⌋)c).

(b) If n ≡ 1(mod 2), then p = ⌈n−2
2 ⌉ = n−1

2 and q = ⌊n−2
2 ⌋ = n−3

2 . Thus,

f2(λ, ⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)− f1(λ, ⌈

n− 2

2
⌉, ⌊n− 2

2
⌋) = 2λ(λ+ 2)(λ− 1

2
)(λ+ 4).
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This shows that, for λ < −4,

f1(λ, ⌈
n− 2

2
⌉, ⌊n− 2

2
⌋) < f2(λ, ⌈

n− 2

2
⌉, ⌊n− 2

2
⌋).t

Consequently, for n ≥ 19,

λmin(B1(⌈
n− 2

2
⌉, ⌊n− 2

2
⌋)c) < λmin(B2(⌈

n− 2

2
⌉, ⌊n− 2

2
⌋)c).

2

4. Characterization of the minimizing graph

In this section, we characterize the minimizing graphs among all the connected graphs whose complements are

bicyclic with exactly two cycles.

Lemma 4.1 Let B ∈ Gn and X = (X1, X2, X3, ..., Xn)
T be a nonnegative or nonpositive real vector defined on

B such that the entries of X are ordered as |X1| ≥ |X2| ≥ |X3| ≥ ... ≥ |Xn| . Then

∑
uv∈E(B)

XuXv ≤
∑

uv∈E(S2
1,n−1)

XuXv,

where X is defined on S2
1,n−1 such that one vertex of degree n− 1 has value X1 and four vertices of degree 2

have values X2 , X3 , X4 , and X5 , respectively. The remaining values Xi for 5 ≤ i ≤ n are assigned to the

n− 5 pendent vertices. The above equality holds if and only if B = S2
1,n−1 .

Proof Without loss of generality assume that X is nonnegative; otherwise we consider −X . Let v be a

vertex of the bicyclic graph B with value X1 assigned by the first eigenvector X . Suppose that there exists a

vertex u that is not adjacent with v . Since B is a connected graph, there exists a neighbor of u , say w , that

is on the path of B containing v and u . If we delete uw and add a new edge vu in B , then we have a new

bicyclic graph B̃ with exactly two cycles such that∑
uv∈E(B)

XuXv ≤
∑

uv∈E(B̃)

XuXv.

This process is repeated on the bicyclic graph B̃ for the nonneighbor of v . Thus, we obtain a bicyclic

graph that is in fact a star K1,n−1 with center v and two edges u
′
v

′
and u

′′
v

′′
that are not incident to the

vertex v . Thus, we have∑
uv∈E(B)

XuXv ≤
∑

uv∈E(B̃)

XuXv ≤
n∑

i=2

X1Xi + Xu′Xv′ + Xu′′Xv′′ . Since X2X3 + X4X5 ≥ Xu′Xv′ +

Xu′′Xv′′ and
n∑

i=2

X1Xi +X2X3 +X4X5 = S2
1,n−1 , we obtain

∑
uv∈E(B)

XuXv ≤
∑

uv∈E(S2
1,n−1)

XuXv.
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The equality holds if v is adjacent to all the other vertices and there are two nonincident edges to the

vertex v in B , which implies that B = S2
1,n−1 . 2

Lemma 4.2 Let Bc be a minimizing graph in Gc
n and X be a first eigenvector of Bc , where n ≥ 10 . Then X

has at least two positive and two negative entries.

Proof Suppose in contrast that only one vertex v of Bc has a positive value assigned by X . We claim that

the degree of v (the number of adjacent vertices) in Bc is nonzero, i.e. dBc(v) ̸= 0. Otherwise, if dBc(v) = 0,

then B = S2
1,n−1 which is a contradiction. Consequently, 1 ≤ dBc(v) ≤ n− 1. Let u be another vertex in Bc .

We claim u is adjacent to v ; otherwise the eigen-equation (2.2) does not hold for u in Bc as λXu > 0 and∑
w∈NG(u)

Xw < 0. Hence, u is adjacent to v . Since u is taken as an arbitrary vertex, our claim is true for each

vertex in Bc . Consequently, v is adjacent with all other vertices in Bc , i.e. dBc(v) = n − 1. This shows that

B is disconnected, which is again a contradiction. Similarly, we can obtain a contradiction if a vertex v of Bc

is the only one with a negative value assigned by X . Consequently, for n ≥ 10, the first eigenvector of the

minimizing graph Bc in Gc
n has at least two positive and two negative entries. 2

Lemma 4.3 Let Bc ∈ Gc
n be a connected graph of order n such that its complement is a bicyclic graph with

exactly two cycles.

(a) If n ≥ 19 and n ≡ 1(mod 2) , then λmin(B1(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c) ≤ λmin(Bc) , where equality holds iff B =

B1(⌈n−2
2 ⌉, ⌊n−2

2 ⌋) .

(b) If n ≥ 22 and n ≡ 0(mod 2) , then λmin(B2(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c) ≤ λmin(Bc) , where equality holds iff B =

B2(⌈n−2
2 ⌉, ⌊n−2

2 ⌋) .

Proof Let X be the first eigenvector of Bc with unit length. Define V+ = {v : Xv ≥ 0, v ∈ V (Bc)} and

V− = {v : Xv < 0, v ∈ V (Bc)} . By Lemma 4.2, both V+ and V− contain at least two elements. Suppose that

B+ and B− are subgraphs of B induced by V+ and V− , respectively. Let E ′
be the set of edges between B+

and B− in B . As B is connected, E ′
is nonempty. Thus, we have

∑
uv∈E(B)

XuXv =
∑

uv∈B+

XuXv +
∑

uv∈B−

XuXv +
∑

uv∈E′

XuXv. (4.1)

There are two possibilities for the edges of the cycles of B . Either all the edges of the cycles of B are in one of

B+ or B− , or in both.

(a) Take n ≥ 19, n ≡ 1(mod 2), and E ′
= E1 . Without loss of generality, suppose that B+ does not include

any edge of the cycles of B ; otherwise we take −X as a first eigenvector. Let B̄ be a graph obtained from

B such that the subgraphs B̄+ and B̄− of B̄ are induced by the subgraphs B+ and B− of B , respectively.

Moreover, the subgraph B̄+ is a tree and the subgraph B̄− is bicyclic with exactly two cycles. By the deletion

and addition of some edges in the tree B̄+ , we have a star K1,p with center u
′
that has a maximum modulus

value among all the values of B̄+ given by X and p + 1 = |V+| ≥ 6. Similarly, in B̄− , we have S1
1,q with v

′

that is adjacent to all other vertices in S1
1,q such that v

′
has maximum modulus value among all the values of
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B̄− and q + 1 = |V+| ≥ 6. Thus, by Lemma 2.1 and Lemma 4.1, we have

∑
uv∈B+

XuXv ≤
∑

uv∈B̄+

XuXv ≤
∑

uv∈K1,p

XuXv (4.2)

and ∑
uv∈B−

XuXv ≤
∑

uv∈B̄−

XuXv ≤
∑

uv∈S2
1,q

XuXv. (4.3)

Let u
′′
and v

′′
be the vertices of B̄+ and B̄− with minimum modulus among all the vertices of B̄+ and B̄− ,

respectively. Then ∑
uv∈E1

XuXv ≤ Xu′′Xv′′ . (4.4)

Using 4.2, 4.3, and 4.4 in 4.1, we have∑
uv∈B

XuXv ≤
∑

uv∈K1,p

XuXv +
∑

uv∈S2
1,q

XuXv +Xu′′Xv′′ . (4.5)

Since p ≥ q ≥ 6, the vertices u
′′
and v

′′
can be taken from the pendent vertices of K1,p and S2

1,q , respectively.

Thus, 4.5 becomes ∑
uv∈B

XuXv ≤
∑

uv∈B1(p,q)

XuXv. (4.6)

Now by (2.4) and (4.6), we have

λmin(Bc) = XTA(Bc)X = XT (J− I−A(B))X

= XT (J− I)X−XTA(B)X

≥ XT (J− I)X−XTA(B1(p, q))X

= XTA(B1(p, q)
c)X ≥ λmin(B1(p, q)

c),

where p ≥ q ≥ 6 and p+ q + 2 = n ≥ 19. This implies that

λmin(B1(p, q)
c) ≤ λmin(Bc). (4.7)

By Lemma 3.2, λmin(B1(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c) ≤ λmin(B1(p, q)
c), where equality holds if p = ⌈n−2

2 ⌉ , q = ⌊n−2
2 ⌋ ,

p ≥ q ≥ 6, and p + q + 2 = n ≥ 14. Consequently, for n ≥ 19, λmin(B1(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c) ≤ λmin(Bc), with

equality if and only if B = B1(⌈n−2
2 ⌉, ⌊n−2

2 ⌋).

Now, to complete the proof, we prove that the set E1 consists of exactly one edge and the set V+

does not contain any vertex with zero value given by X . Before this, we prove that X3 < X1 < X2 and

X5 < X6 = X7 < X8 < X4 .

Suppose B1(p, q) has labeled vertices as in Definition 2.2; thus v2 = u
′
, v5 = v

′
, v3 = u

′′
, and v4 = v

′′
.

The vertices v2 and v3 are unique in B+ with maximum and minimum modulus, and v4 and v5 are unique
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in B− with minimum and maximum modulus, respectively. By Lemma 4.2, as X is the first eigenvector of

the minimizing graph B1(p, q), X1, X2 , X3 are nonnegative and X4, X5, X6, X7, X8 are negative values of

X . Now, by (3.3), λ1(X2 − X1) = −(p − 2)X1 − X3 < 0 and λ1(X1 − X3) = −X1 + X3 + X4 < 0. Thus,

X2 −X1 > 0 and X1 −X3 > 0, which implies X3 < X1 < X2 . Similarly, λ1(X4 −X8) = −X4 −X3 +X8 < 0,

λ1(X8 − X7) = 2X7 − X8 < 0, λ1(X6 − X7) = 0, and λ1(X6 − X5) = X4 + 2X7 + (q − 5)X8 < 0. Thus

X5 < X6 = X7 < X8 < X4 .

By the above discussion and (4.2–4.4), we have B+ = B̄+ = K1,p and B− = B̄− = S2
1,q . Consequently,

E1 contains exactly one edge u
′′
v

′′
= v3v4 . Now, if the value of v2 is zero, i.e. X2 = 0, then X1 = X3 = 0

because 0 < X3 < X1 < X2 . By (3.3) X5 = 0, which is a contradiction. If the value of v1 is zero, i.e. X1 = 0,

then X3 = 0 as 0 < X3 < X1 . Solving the first two equations of (3.3), we have X2 = 0 and hence X5 = 0,

which is again a contradiction. If the value of v3 is zero, i.e. X3 = 0, then delete the edges v3v4 and v4v5 ,

and join v4 with v2 and one of the pendent vertices of S2
1,q . Thus, we get a graph B1(p + 1, q − 1) with the

same X such that λmin(B1(p + 1, q − 1)c) ≤ λmin(Bc), which is again a contradiction if p ≥ q by Lemma 3.2.

Consequently, V+ does not contain any vertex with zero value given by X , which completes the proof.

(b) Take n ≥ 22, n ≡ 0(mod 2), and E ′
= E2 . Suppose both B+ and B− of B contain the edges of the cycles

of B . Let B̄ be a graph obtained from B such that both B̄+ and B̄− induced by the subgraphs B+ and B− of

B are unicyclic. By the deletion and addition of some edges in B̄+ , we have S1
1,p with u∗ , which is adjacent to

all other vertices in S1
1,p . Moreover, u∗ has a maximum modulus value among all the values of B̄+ given by X

and p+ 1 = |V+| ≥ 11. Similarly, in B̄− , we have S1
1,q with v∗ , which is adjacent to all other vertices in S1

1,q .

Moreover, v∗ has maximum modulus value among all the values of B̄− assigned by X and q + 1 = |V+| ≥ 11.

Thus, by Lemma 2.1, we have ∑
uv∈B+

XuXv ≤
∑

uv∈B̄+

XuXv ≤
∑

uv∈S1
1,p

XuXv (4.8)

and ∑
uv∈B−

XuXv ≤
∑

uv∈B̄−

XuXv ≤
∑

uv∈S1
1,q

XuXv. (4.9)

Let u∗∗ and v∗∗ be the vertices of B̄+ and B̄− with minimum modulus among all the vertices of B̄+ and B̄− ,

respectively. Then ∑
uv∈E2

XuXv ≤ Xu∗∗Xv∗∗ . (4.10)

Using 4.8, 4.9, and 4.10 in 4.1, we have∑
uv∈B

XuXv ≤
∑

uv∈S1
1,p

XuXv +
∑

uv∈S1
1,q

XuXv +Xu∗∗Xv∗∗ . (4.11)

Since p ≥ q ≥ 6, the vertices u∗∗ and v∗∗ can be taken from the pendent vertices of S1
1,p and S1

1,q , respectively.

Thus, 4.11 becomes ∑
uv∈B

XuXv ≤
∑

uv∈B2(p,q)

XuXv. (4.12)
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Now by (2.4) and (4.12), we have, λmin(B2(p, q)
c) ≤ λmin(Bc), where p ≥ q ≥ 4 and p + q + 2 = n ≥ 22.

Furthermore, by Lemma 3.4, λmin(B2(⌈n−2
2 ⌉, ⌊n−2

2 ⌋)c) ≤ λmin(B2(p, q)
c), where equality holds if p = ⌈n−2

2 ⌉ ,

q = ⌊n−2
2 ⌋ , p ≥ q ≥ 4, and p+q+2 = n ≥ 10. Consequently, for n ≥ 22, λmin(B2(⌈n−2

2 ⌉, ⌊n−2
2 ⌋)c) ≤ λmin(Bc),

with equality if and only if B = B2(⌈n−2
2 ⌉, ⌊n−2

2 ⌋). Moreover, by the use of (3.7), Definition 2.4, Lemma 2.1,

and similar discussion as in (a), we have B+ = B̄+ = S1
1,p , B− = B̄− = S1

1,q , E2 consists of exactly one edge

u∗∗v∗∗ and the set V+ does not contain any vertex with zero value given by X . This completes the proof. 2
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[3] Cvetkovi ć D, Doob M, Sachs H. Spectra of Graphs, 3rd ed. Heidelberg, Germany: Johann Ambrosius Barth, 1995.
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