
Turk J Math

(2017) 41: 1448 –1457

c⃝ TÜBİTAK
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Abstract: The aim of this work is to exhibit the relationship between the Arf closure of a numerical semigroup S and its

Lipman semigroup L(S). This relationship is then used to give direct proofs of some characterizations of Arf numerical

semigroups through their Lipman sequences of semigroups. We also give an algorithmic construction of the Arf closure

of a numerical semigroup via its Lipman sequence of semigroups.
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1. Introduction

Let N0 denote the set of nonnegative integers. A subset S ⊆ N0 satisfying

(i) 0 ∈ S (ii) x, y ∈ S ⇒ x+ y ∈ S (iii) |N0 \ S| < ∞

is called a numerical semigroup. It is well known (see, for instance, [2, 3, 5]) that the condition (iii) above is

equivalent to saying that the greatest common divisor gcd(S) of elements of S is 1.

If A is a subset of N0 , we will denote by ⟨A⟩ the submonoid of N0 generated by A . The monoid ⟨A⟩ is

a numerical semigroup if and only if gcd(A) = 1.

Every numerical semigroup S admits a unique minimal system of generators {a1, a2, . . . , ae} with

a1 < a2 < · · · < ae ; that is, S = {
∑e

k=1 ciai : c1, . . . , ce ∈ N0} and no proper subset of {a1, a2, . . . , ae}
generates S . Given such a system of generators, the integers a1 and e are called multiplicity and embedding

dimension of S , and they are denoted by m(S) and e(S), respectively. The multiplicity m(S) is the smallest

positive element of S .

For a numerical semigroup S , the maximal ideal of S is M = S \ {0} . The largest integer that is not in

S is called the Frobenius number of S and it is denoted by f(S). Clearly, f(N0) = −1 and f(S) ≥ 1 if and only

if S ̸= N0 .

Let S be a numerical semigroup having Frobenius number f = f(S). If S ̸= N0 , it is customary to denote

the elements of S that are less than f by s0 = 0, s1, . . . , sn−1 with si−1 < si for 1 ≤ i ≤ n = n(S) and to write

S = {s0 = 0, s1, . . . , sn−1, sn = f+ 1,→},
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where “→” means that all subsequent natural numbers belong to S . Note here that n = n(S) = |S ∩
{0, 1, . . . , f}| . The elements s0 = 0, s1, . . . , sn−1 are called non-gaps of S less than f . Note that the first

nonzero non-gap s1 = m(S) is the multiplicity of S. Those positive integers that do not belong to S are called

gaps of S.

Inspired by the paper [1] of Arf, Lipman introduced and studied Arf rings in his paper [4] where

characterizations of those rings via their value semigroups yield Arf numerical semigroups. Besides their

importance in algebraic geometry, Arf numerical semigroups have gained lately a particular interest due to

their applications to algebraic geometric codes, in particular to one-point algebraic geometric codes when the

Weierstrass semigroup of the point is an Arf numerical semigroup.

2. Arf numerical semigroups

A numerical semigroup S satisfying the additional condition

x, y, z ∈ S;x ≥ y ≥ z ⇒ x+ y − z ∈ S(∗)

is called an Arf numerical semigroup.

This is the original definition of an Arf numerical semigroup given by Arf in [1]. We will refer to the

condition (∗) as the Arf condition. Fifteen conditions equivalent to the Arf condition are given in Theorem

1.3.4 of [2] where the definition of an Arf numerical semigroup is based on those equivalent conditions. We will

discuss some conditions equivalent to the Arf condition in the last section.

It is easy to observe that the intersection of any family of Arf numerical semigroups is again an Arf

numerical semigroup. Thus, since N0 is an Arf numerical semigroup, one can consider the smallest Arf

numerical semigroup containing a given numerical semigroup. The smallest Arf numerical semigroup containing

a numerical semigroup S is called the Arf closure of S , and it is denoted by Arf(S). Taking the Arf closure

preserves set inclusion; i.e. if S and T are numerical semigroups such that S ⊆ T , then Arf(S) ⊆ Arf(T ).

Given a numerical semigroup S , we define

A(S) = {x+ y − z : x, y, z ∈ S and x ≥ y ≥ z}.

It is clear that A(S) is a numerical semigroup containing S and it has the same multiplicity as S ; i.e.

m(A(S)) = m(S). Note that if S and T are numerical semigroups with S ⊆ T , then A(S) ⊆ A(T ).

Note also A(S) ⊆ Arf(S), and S is an Arf numerical semigroup if and only if A(S) = S . Moreover, we have

the following lemma:

Lemma 2.1 For any numerical semigroup S , Arf(S) = Arf(A(S)) .

If U and V are two subsets of N0 , we define U + V = {u + v : u ∈ U, v ∈ V } ; for any a ∈ Z , we let

a+U = {a}+U . We also define U−V = {z ∈ Z : z+V ⊆ U} . For a positive integer k we put kU = U+· · ·+U

(k summands).

Lemma 2.2 Let S be a numerical semigroup and let s be any element of S . Then (s+S)∪{0} is a numerical

semigroup and we have A((s+ S) ∪ {0}) = (s+A(S)) ∪ {0} .
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The proof follows from the fact that (s+x)+ (s+ y)− (s+ z) = s+(x+ y− z) ∈ (s+A(S))∪{0} where

s, x, y, z ∈ S with x ≥ y ≥ z.

Now let us consider the following sequence of numerical semigroups for a given numerical semigroup S :

A0 = S ⊆ A1 = A(S) ⊆ A2 = A(A1) ⊆ · · · ⊆ Ak = A(Ak−1) ⊆ · · · .

By Lemma 2.1, we have

Arf(S) = Arf(A1) = Arf(A2) = · · · = Arf(Ak) = · · · .

Since N0 \ S is finite, the sequence

A0 =⊆ A1 = A(S) ⊆ A2 = A(A1) ⊆ . . . ⊆ Ak = A(Ak−1) ⊆ . . .

is finite. Let α = α(S) be the smallest index for which Aα = Aα+1 . Then Aα+1 = A(Aα) = Aα and in this

case we know that Aα is an Arf numerical semigroup. Hence, Aα = Arf(Aα) = Arf(S). The sequence

A0 =⊆ A1 = A(S) ⊂ A2 = A(A1) ⊂ . . . ⊂ Aα = A(Aα−1) = Arf(S)

is called the Arf sequence of semigroups of S , and α = α(S) is called the Arf index of S . We know that

Arf(S) has the same multiplicity as S . Note also that S is Arf if and only if the Arf index of S is zero.

Lemma 2.3 Let S be a numerical semigroup and consider any element s ∈ S . Then the Arf index of

(s+ S) ∪ {0} is the same as the Arf index of S and we have Arf((s+ S) ∪ {0}) = (s+Arf(S)) ∪ {0} .

Proof Successive application of Lemma 2.2 gives

Ak((s+ S) ∪ {0}) = (s+Ak(S)) ∪ {0}

for any k ≥ 1. If the Arf index of S is α , then

Aα((s+ S) ∪ {0}) = (s+Aα(S)) ∪ {0} = (s+Arf(S)) ∪ {0}.

It follows that

Aα+1((s+ S) ∪ {0}) = A((s+Arf(S)) ∪ {0}) = (s+Arf(S)) ∪ {0} = Aα((s+ S) ∪ {0}),

which proves that the Arf index of (s+S)∪{0} is the same as the Arf index α of S , and that Arf((s+S)∪{0}) =
(s+Arf(S)) ∪ {0} . 2

Corollary 2.4 Let S be a numerical semigroup and consider any element s ∈ S . Then S is an Arf numerical

semigroup if and only if (s+ S) ∪ {0} is an Arf numerical semigroup.
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3. Lipman sequence of a numerical semigroup

Let S be a numerical semigroup with the maximal ideal M . For each k ≥ 1, we consider the set kM − kM =

{x ∈ N0 : x+kM ⊆ kM} . We note that kM−kM is a numerical semigroup, kM−kM ⊆ (k+1)M− (k+1)M

and S ⊆ (kM − kM) since S + kM ⊆ kM for each k ≥ 1. Thus, L(S) =
∪

k≥1 (kM − kM) is a numerical

semigroup containing S . L(S) is called the Lipman semigroup of S or the semigroup of S obtained by blowing

up M .

In what follows, we will give some results about Lipman semigroups that can be found in [2].

Lemma 3.1 For a numerical semigroup S , the following are equivalent:

(i) L(S) = S ,

(ii) S = M −M ,

(iii) S = N0 .

There may be slight differences in the proofs, but the main reason we include them here is to give a

self-contained exposition.

Now let us consider the sequence

L0 = S ⊆ L1 = L(S) ⊆ L2 = L(L1) ⊆ · · · ⊆ Lk = L(Lk−1) ⊆ · · · .

This sequence is called the Lipman sequence of semigroups of S . Since N0 \S is finite, there exists λ such that

Lλ = Lλ+1 ; actually, Lλ = N0 by Lemma 3.1. If S ̸= N0 , we shall assume that Lλ−1 ̸= N0 and call λ the

Lipman index of S .

Lemma 3.2 Let S be a numerical semigroup with the maximal ideal M and the multiplicity m . Then there

exists h ≥ 1 such that (h+ 1)M = m+ hM and L(S) = hM − hM .

Proof Let Ci = {x ∈ M : x ≡ i(mod m)} for each i = 0, 1, . . . ,m − 1. No Ci is empty since M con-

tains all positive integers from some point on. Let µi be the least element of Ci , 0 ≤ i ≤ m − 1. Thus,

Ci = {µi + km : k ≥ 0} . For each i = 0, 1, . . . ,m− 1, there exists hi ≥ 1 such that µi ∈ hiM \ (hi + 1)M . Let

h = max{hi : 0 ≤ i ≤ m− 1} . Then the smallest element of Ci in hM \ (h+ 1)M is µ̃i = µi + (h− hi)m . We

note that hM \ (h+1)M = {µ̃0, µ̃1, . . . , µ̃m−1} . Since m+hM ⊆ (h+1)M ⊆ hM and |hM \ (m+hM)| = m ,

we see that (h + 1)M = m + hM . The last assertion follows from (h + 1)M = m + hM since in that case

(h+ 1)M − (h+ 1)M = hM − hM . 2

Lemma 3.3 If S is a numerical semigroup with the maximal ideal M and the multiplicity m , then L(S) =

{z − km : z ∈ kM, k ≥ 1} =
∪

k≥1(−km+ kM) .

Proof Let h be as in Lemma 3.2 and consider an element of the form z − km with z ∈ kM and k ≥ 1. One

can easily see by induction on k that (h+ k)M = km+ hM . Thus,

(z − km) + (h+ k)M = (z − km) + (km+ hM) = z + hM ⊆ (h+ k)M
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and this shows that z − km ∈ (h + k)M − (h + k)M ⊆ L(S). This proves the inclusion {z − km : z ∈
kM, k ≥ 1} ⊆ L(S). To prove the reverse inclusion, let x ∈ L(S). Then x ∈ kM − kM for some k ≥ 1 and

z = x + km ∈ x + kM ⊆ kM . Hence, x = z − km with z ∈ kM, k ≥ 1. The last expression as the union is

clear. 2

Corollary 3.4 Let S =< a1 = m, a2, . . . , ae > be a numerical semigroup with minimal system of generators

a1 = m < a2 < . . . < ae and the maximal ideal M . Then L(S) =< m, a2 −m, . . . , ae −m > .

Proof The inclusion < m, a2 − m, . . . , ae − m >⊆ L(S) is clear by Lemma 3.3. Now let x ∈ L(S). Then

x = z − km, z ∈ kM, k ≥ 1. We write z = b1 + b2 + · · ·+ bk with bi ∈ M, 1 ≤ i ≤ k . For each i = 1, . . . , k ,

we can write bi = ci1m+
∑e

j=2 cijaj with cij ∈ N0 and at least one of the cij ̸= 0 for 1 ≤ j ≤ e . Hence,

x =
k∑

i=1

(ci1m+
e∑

j=2

cijaj)− km.

This sum can be arranged as

x = (
k∑

i=1

e∑
j=1

cij − k)m+
k∑

i=1

e∑
j=2

cij(aj −m),

where
∑k

i=1

∑e
j=1 cij − k ≥ 0, proving that x ∈< m, a2 −m, . . . , ae −m > . 2

Lemma 3.5 Let S be a numerical semigroup with the maximal ideal M and the multiplicity m . The following

are equivalent for any positive integer h :

(i) (h+ 1)M = m+ hM ,

(ii) L(S) = hM − hM ,

(iii) L(S) = −hm+ hM ,

(iv) |hM \ (h+ 1)M | = m .

Proof (i) ⇒ (ii) As in the proof of Lemma 3.3, this gives (h + k)M = km + hM for all k ≥ 1. It follows

that (h+ k)M − (h+ k)M = hM − hM and thus the increasing union L(S) = ∪i≥1(iM − iM) stabilizes at h .

(ii) ⇒ (iii) −hm + hM ⊆ L(S) by Lemma 3.3. For the reverse inclusion, let x ∈ L(S) = hM − hM .

Then x+ hm ∈ x+ hM ⊆ hM . Hence, x ∈ −hm+ hM , proving L(S) ⊆ −hm+ hM .

(iii) ⇒ (i) −(h + 1)m + (h + 1)M ⊆ L(S) by Lemma 3.3. On the other hand, L(S) = −hm + hM =

−(h+ 1)m+m+ hM ⊆ −(h+ 1)m+ (h+ 1)M . Therefore, L(S) = −(h+ 1)m+ (h+ 1)M . Hence,

(h+ 1)M = (h+ 1)m+ L(S) = m+ (hm+ L(S)) = m+ hM.

(i) ⇒ (iv) |hM \ (h+ 1)M | = |hM \ (m+ hM)| = m .
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(iv) ⇒ (i) Since m+hM ⊆ (h+1)M ⊆ hM and m = |hM \(m+hM), the equality |hM \(h+1)M | = m

implies that (h+ 1)M = m+ hM . 2

4. Arf closure via the Lipman sequence

The following lemma will lead to a connection between the Arf closure of a numerical semigroup S and the Arf

closure of its Lipman semigroup L(S). This connection will be used to compute the Arf closure of a numerical

semigroup via its Lipman sequence and also to characterize later Arf numerical semigroups in terms of their

Lipman semigroups.

Lemma 4.1 Let S be a numerical semigroup with the maximal ideal M and the multiplicity m . Then

S ⊆ (m+ L(S)) ∪ {0} ⊆ Arf(S).

Proof Let {a1, a2, . . . , ae} be a minimal system of generators of S . Then, by Corollary 3.4,

ai = m+ (ai −m) ∈ (m+ L(S)) ∪ {0}

for each i = 1, . . . , e . Hence, S ⊆ (m + L(S)) ∪ {0} . As for the other inclusion, by Lemma 3.3, any

element u ∈ L(S) can be expressed as u = zk − km for some zk ∈ kM and k ≥ 1. We prove that

m + u = zk − (k − 1)m ∈ Arf(S). We proceed by induction on k . The assertion is obvious for k = 1.

Let k > 1 and assume that the assertion holds for all positive integers less than k . Then we have

m+ u = zk − (k − 1)m = zk−1 − (k − 2)m+ z1 −m

for some zk−1 ∈ (k− 1)M and z1 ∈ M . Here zk−1 − (k− 2)m ∈ Arf(S) by induction assumption and we have

zk−1 − (k − 2)m ≥ m, z1 ≥ m . Thus,

m+ u = zk − (k − 1)m = (zk−1 − (k − 2)m) + z1 −m ∈ Arf(S).

This completes the proof. 2

Theorem 4.2 For any numerical semigroup S with the multiplicity m ,

Arf(S) = (m+Arf(L(S))) ∪ {0}.

Proof We have

S ⊆ (m+ L(S)) ∪ {0} ⊆ Arf(S)

by Lemma 4.1. Consider the Arf closure of each semigroup above. Since

Arf(m+ L(S)) ∪ {0} = (m+Arf(L(S))) ∪ {0}

by Lemma 2.3, we get Arf(S) = (m+Arf(L(S))) ∪ {0}. 2
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Corollary 4.3 For any numerical semigroup S with the multiplicity m ,

f(Arf(S)) = m+ f(Arf(L(S))).

Proof Obviously, m + f(Arf(L(S))) ̸∈ (m + Arf(L(S))) ∪ {0} = Arf(S) and m + f(Arf(L(S))) + k ∈
(m+Arf(L(S))) ∪ {0} = Arf(S) for each k ≥ 1. 2

Corollary 4.4 Let S be a numerical semigroup and let mk = m(Lk) where Lk is the k th term of the Lipman

sequence of semigroups of S for each k ≥ 0 . Then Arf(Lk) = (mk + (Arf(Lk+1))) ∪ {0} for each k ≥ 0 .

Proof Since Lk+1 = L(Lk), we have Arf(Lk) = (mk+(Arf(Lk+1)))∪{0} for each k ≥ 0 by Theorem 4.2. 2

Corollary 4.5 Let S be a numerical semigroup and let mk = m(Lk) where Lk is the k th term of the Lipman

sequence of semigroups of S for each k ≥ 0 . Let f(Arf(S)) = f(a) , n(Arf(S)) = n(a) . Then n(a) = λ(S) = λ

and we have

Arf(S) = {s(a)0 , s
(a)
1 , . . . , s

(a)
λ−1, s

(a)
λ = f(a) + 1,→},

where:

s
(a)
1 = m0 = m(S),

s
(a)
2 = m0 +m1,

· · ·

s
(a)
λ−1 = m0 +m1 + · · ·+mλ−2,

s
(a)
λ = m0 +m1 + · · ·+mλ−2 +mλ−1

and

f(a) = m0 +m1 + · · ·+mλ−2 +mλ−1 − 1.

Proof Let λ(S) = λ , the Lipman index of S , and let us note that

Arf(S) = (m+Arf(L(S))) ∪ {0} = (m0 +Arf(L1)) ∪ {0},

Arf(L1) = (m1 +Arf(L2)) ∪ {0},

Arf(L2) = (m2 +Arf(L3)) ∪ {0},

. . .

Arf(Lλ−2) = (mλ−2 +Arf(Lλ−1)) ∪ {0},

Arf(Lλ−1) = (mλ−1 +Arf(Lλ)) ∪ {0} = (mλ−1 + N0) ∪ {0}

2

by Theorem 4.2 and Corollary 4.4. Thus, the first nonzero non-gap of Arf(S) is s
(a)
1 = m = m0 ;

the second nonzero non-gap of Arf(S) is the sum of m0 and the first nonzero non-gap of Arf(L1) (which

is the multiplicity of L1 ) so that s
(a)
2 = m0 + m1 . Continuing in this way, we see that the k th nonzero
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non-gap of Arf(S) is s
(a)
k = m0 + m1 + · · · + mk−1 for each k = 2, . . . , λ . We also see that s

(a)
λ =

m0 + m1 + · · · + mλ−2 + mλ−1 and any integer following it belongs to Arf(S). Therefore, n(a) = λ(S) = λ

and f(a) = m0 +m1 + · · ·+mλ−2 +mλ−1 − 1.

In the rest of this section, we will present an algorithmic procedure for computing the Arf closure of a

given numerical semigroup. Combining Corollary 3.4 and Corollary 4.5, we obtain a practical procedure for

computing nonzero non-gaps of Arf(S) for any numerical semigroup S . This procedure, which is given in

terms of multiplicities of the Lipman sequence, is very similar to the procedure given in [6].

If S is a numerical semigroup with minimal system of generators {a1 = m, a2, . . . , ae} , then m = m0

is the multiplicity of S = L0 and we see by Lemma 3.4 that L1 = L(S) =< m, a2 −m, . . . , ae −m > . The

multiplicity of L1 is min{m, a2 − m} . Obviously we can compute the multiplicity mk of Lk by using the

minimal system of generators of Lk−1 for each k ≥ 2. We proceed until we find the multiplicity mλ = 1 of

Lλ = N0 .

Example 4.6 Let us determine the Arf closure Arf(S) for S =< 4, 10, 25 > . We have m = m0 = 4 and

L0 = S =< 4, 10, 25 >, m0 = 4

L1 = L(S) =< 4, 6, 21 >, m1 = 4

L2 = L(L1) =< 4, 2, 17 >=< 2, 17 >, m2 = 2

L3 = L(L2) =< 2, 15 >, m3 = 2

L4 = L(L3) =< 2, 13 >, m4 = 2

L5 = L(L4) =< 2, 11 >, m5 = 2

L6 = L(L5) =< 2, 9 >, m6 = 2

L7 = L(L6) =< 2, 7 >, m7 = 2

L8 = L(L7) =< 2, 5 >, m8 = 2

L9 = L(L8) =< 2, 3 >, m9 = 2

L10 = L(L9) =< 2, 1 >=< 1 >= N0, m10 = 1, λ = 10.

It follows that
Arf(S) = {0, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25,→}.

Here f(Arf(S)) = 23, n(Arf(S)) = λ(S) = λ(Arf(S)) = 10. The number of gaps of Arf(S) is 14.

5. Conditions equivalent to the Arf condition

In this section we will give alternative characterizations of Arf numerical semigroups in the context of the

previous sections. Some of the characterizations that we give here coincide with those given in [2]. We first

present some notations.

Let S = {s0 = 0, s1 = m, s2, . . . , sn−1, sn = f+1,→} be a numerical semigroup as before, where m is the
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multiplicity, n is the number of nonzero non-gaps, and f is the Frobenius number of S . Denote the maximal

ideal of S by M . Now for each i = 0, . . . , n we define

Si = {x ∈ S : x ≥ si}

and
S(i) = S − Si.

Thus, S0 = S, S(0) = S, S1 = M , and S(1) = M − M . Let us note that S(i) = Si − Si for each

i = 1, . . . , n and

S ⊂ S(1) ⊂ S(2) ⊂ · · · ⊂ S(n− 1) ⊂ S(n) = N0.

We have S(1) = N0 if and only if S = N0 (see Lemma 3.1).

We use a different notation for S(1); namely, we write B(S) = M −M and thus we obtain the sequence

of numerical semigroups

B0(S) = S ⊆ B1(S) = B(S) ⊆ · · · ⊆ Bk(S) = B(Bk−1(S)) ⊆ · · · .

Since N0 \S is finite, the above sequence is stationary at N0 (see Lemma 3.1). We let β be the smallest

nonnegative integer such that Bβ(S) = N0 .

Lemma 5.1 For a numerical semigroup S = {s0, s1, . . . , sn−1, sn = f+ 1,→} , the following are equivalent:

(i) S is Arf.

(ii) L(S) is Arf and L(S) = B(S).

(iii) λ(S) = β(S) and Lk(S) = Bk(S) for all k = 0, . . . , λ = λ(S).

(iv) λ(S) = n(S) and Lk(S) = −sk + Sk for all k = 1, . . . , λ = λ(S).

(v) λ(S) = n(S) and Lk(S) = S(k) for all k = 1, . . . , λ = λ(S).

(vi) S(k) = −sk + Sk for all k = 1, . . . , n = n(S).

(vii) −sk + 2Sk = Sk for all k = 1, . . . , n = n(S).

Proof As usual, let Mk and mk denote the maximal ideal and the multiplicity, respectively, of the k th

term Lk = Lk(S) of the Lipman sequence of S . We will use the fact that the maximal ideal of L0 = S is

M0 = M = S1 and its multiplicity is m0 = m = s1 .

(i) ⇒ (ii) S ⊆ (m+ L(S)) ∪ {0} ⊆ Arf(S) by Lemma 4.1. Therefore, S = (m+ L(S)) ∪ {0} and L(S)

is Arf by Corollary 2.4. Here M = m+ L(S) and thus B(S) = M −M = L(S)− L(S) = L(S).

(ii) ⇒ (iii) By the first part of the proof, L2(S) = L(L(S)) is Arf and we have L2(S) = L(L(S)) =

B(L(S)) = B(B(S)) = B2(S). Repeated application of this gives λ(S) = β(S) and Lk(S) = Bk(S) for all

k = 0, . . . , λ = λ(S).
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(iii) ⇒ (iv) L1(S) = L(S) = B(S) = M −M = M0 −M0 ⇒ L1(S) = −m0 +M0 by Lemma 3.5. Hence,

L1(S) = −s1+S1, m1 = s2−s1 and M1 = −s1+S2 . Now L2(S) = B2(S) = B(B1(S)) = B(L1(S)) = M1−M1

and this implies L2(S)) = −m1 +M1 = −(s2 − s1)+ (−s1 +S2) = −s2 +S2 ; M2 = −s2 +S3 . By induction on

k , we get Lk(S) = −sk + Sk for all k ≥ 1. Moreover, Ln(S) = −sn + Sn = −(f + 1) + {f + 1,→} = N0 and

−sk + Sk ̸= N0 for k < n , showing that n(S) = λ(S).

(iv) ⇒ (v) Since Lk(S) = −sk + Sk , we have

S(k) = Sk − Sk = Lk(S)− Lk(S) = Lk(S)

for each k = 1, . . . , n .

(v) ⇒ (vi) L1(S) = L(S) = S(1) = M − M ⇒ L1(S) = S(1) = −m + M by Lemma 3.5. Thus,

S(1) = −s1 + S1 , M1 = −s1 + S2 and m1 = s2 − s1 . Now L2(S) = S(2) = S2 − S2 = M1 − M1

⇒ S(2) = −m1 + M1 again by Lemma 3.5. Thus, S(2) = −(s2 − s1) + (−s2 + S2) = −s2 + S2 . We

have M2 = −s2 + S3 and m2 = s3 − s2 . By induction, S(k) = −sk + Sk for each k = 1, . . . , n = n(S).

(vi) ⇒ (vii) Clearly, sk + Sk ⊆ 2Sk and thus Sk ⊆ −sk + 2Sk for each k = 1, . . . , n . Let x, y ∈ Sk so

that x+ y ∈ 2Sk . Since S(k) = −sk + Sk , −sk + x ∈ S(k) and therefore (−sk + x) + y = −sk + (x+ y) ∈ Sk .

This proves that −sk + 2Sk ⊆ Sk . Hence, we have the equality −sk + 2Sk = Sk .

(vii) ⇒ (i) Take x, y, z ∈ S with x ≥ y ≥ z . If z > f , then x + y − z > f and thus x + y − z ∈ S .

Therefore, we may assume that z = sk for some k ≤ n . Then x and y belong to Sk and we have

x+ y − z ∈ −sk + 2Sk = Sk ⊆ S . 2
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