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Abstract: We prove the conjugacy of Sylow 2-subgroups in pseudofinite Mc (in particular linear) groups under the

assumption that there is at least one finite Sylow 2-subgroup. We observe the importance of the pseudofiniteness

assumption by analyzing an example of a linear group with nonconjugate finite Sylow 2-subgroups, which was constructed

by Platonov.

1. Introduction

Sylow theory originated and was developed in the world of finite groups. There is also some work on a possible

generalization to infinite groups (for a comprehensive survey, see [19]). While in some particular families of

infinite groups conjugacy results hold for Sylow subgroups, there are pathological situations (nonconjugate

Sylow p-subgroups) even in the case of linear groups. However, the existence of a finite Sylow p -subgroup

yields conjugacy results in some classes of groups (e.g., groups of finite Morley rank for p = 2 [1, Lemma 6.6]

and locally finite groups [6, Proposition 2.2.3]). In this paper, we show that this existence assumption gives

the desired conjugacy result for Sylow 2-subgroups in the case of pseudofinite Mc -groups. We also present

an interesting example constructed by Platonov [10, Example 4.11] that shows that having a finite Sylow

2-subgroup does not guarantee conjugacy in the case of linear groups.

The main result of this paper is stated below.

Theorem 3.3. If one of the Sylow 2-subgroups of a pseudofinite Mc -group G is finite then all Sylow 2-subgroups

of G are conjugate and hence finite.

The structure of this paper is as follows.

In the second section, we recall some of the basic notions in group theory and we fix our terminology and

notation.

In the third section, we emphasize some properties of pseudofinite groups and provide some (non)-

examples. Then we state and prove our main result (Theorem 3.3).

In the last section, we analyze an example constructed by Platonov [10, Example 4.11] in detail.
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2. Preliminaries

In this section, we recall definitions of some basic notions in group theory and list some well-known results that

will be needed in the sequel.

A group G is called phperiodic if every element of it has finite order and it is called a php -group for a

prime p if each element of G has order pn for a natural number n . An example of an infinite p -group is the

Prüfer p -group, denoted by Cp∞ . By a phSylow p -subgroup of a group G , we mean a maximal p -subgroup of

G . Note that the existence of Sylow p -subgroups is guaranteed by Zorn’s lemma.

A group G is said to satisfy the phnormalizer condition if any proper subgroup is properly contained in

its normalizer. It is well known that finite nilpotent groups satisfy the normalizer condition.

Let P denote a group theoretical property such as solvability, nilpotency, commutativity, finiteness, etc.

A group G is called phlocally P if every finite subset of G generates a subgroup with the property P . A group

G is said to be phP -by-finite if G has a normal subgroup N with the property P such that the quotient group

G/N is finite.

A phlinear group is a subgroup G ⩽ GLn(F ) for some field F where GLn(F ) denotes the general linear

group over F . A group G is said to satisfy the phdescending chain condition on centralizers (or phminimal

condition on centralizers) if every proper chain of centralizers in G stabilizes after finitely many steps and such

groups are called phMc -groups. If moreover there is a global finite bound on the length of such chains, then

we say that G has phfinite centralizer dimension. It is well known that any linear group has finite centralizer

dimension (see for example the remark after Corollary 2.10 in [16]) and hence the class of Mc -groups contains

the class of linear groups.

The following results about Mc -groups, which generalize the corresponding classical results for linear

groups, will be needed in the sequel.

Fact 2.1 (Wagner, Corollary 2.4 in [15]). Sylow 2-subgroups of Mc -groups are locally finite.

Fact 2.2 (Bryant, Theorem A in [4]). Periodic, locally nilpotent Mc -groups are nilpotent-by-finite.

Fact 2.3 (Wagner, Fact 1.3 in [15]). A nilpotent-by-finite and locally nilpotent group has nontrivial center and

satisfies the normalizer condition.

Remark 2.4. Note that Sylow 2-subgroups of Mc -groups are locally finite by Fact 2.1 and hence locally nilpotent

since finite 2-groups are nilpotent. Therefore, they are nilpotent-by-finite by Fact 2.2 and they satisfy the

normalizer condition by Fact 2.3.

3. A conjugacy result for pseudofinite groups

In this section, we briefly introduce pseudofinite groups without giving precise definitions of the related notions

(such as ultrafilters, ultraproducts, and other basic model theoretical concepts) and we emphasize some prop-

erties of these groups that will be needed in the proof of the main result of this paper. We refer the reader to

the books [3] and [5] for detailed information about the ultraproduct construction, to [13] for a more complete

introduction to pseudofinite groups, and to [18] for a more detailed discussion of these groups.

Pseudofinite groups are defined as infinite models of the theory of finite groups. These groups are group

theoretical analogs of pseudofinite fields, which were introduced, studied, and algebraically characterized by

James Ax (see [2]). Unfortunately, such an algebraic characterization is not known for pseudofinite groups.
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One can also describe (up to elementary equivalence) pseudofinite groups as nonprincipal ultraproducts

of finite groups (see [18] for details). This description together with  Loś’s theorem [9] (which states that a

first-order formula is satisfied in the ultraproduct if and only if it is satisfied in the structures indexed by a set

belonging to the ultrafilter) allows us to logically characterize pseudofinite groups as infinite groups satisfying

the first-order properties shared by phalmost all (depending on the choice of an ultrafilter) of the finite groups.

A well-known example of a pseudofinite group is the additive group of the rational numbers (Q,+) (see,

e.g., [13, Fact 2.2]). However, the additive group of integers, (Z,+), is not a pseudofinite group, since while all

finite groups satisfy the following first-order statement,

the map x 7→ x + x is one-to-one if and only if it is onto,

the group (Z,+) does not.

In the following remark, we mention another first-order property shared by all finite groups. This property

will be an important ingredient of our proof.

Remark 3.1. In any finite group G , two involutions g, h are either conjugate or there is an involution y

commuting with both g and h . The first-order sentence below shows that this statement can be expressed in a

first-order way in the language of groups.

∀g, h
[
(g ̸= 1 ̸= h) ∧ (g2 = 1 = h2)

]
−→

[(
∃x gx = h) ∨ (∃y (y ̸= 1) ∧ (y2 = 1) ∧ (gy = g) ∧ (hy = h)

)]
.

Since this property is satisfied by all finite groups, pseudofinite groups satisfy it as well.

Although pseudofinite groups are in a way similar to finite groups, there are also many differences. For

example, while all finite groups are isomorphic to linear groups, this is not true for pseudofinite groups. To

see this, it is enough to construct a pseudofinite group that does not have finite centralizer dimension since

all linear groups have finite centralizer dimension. Consider a nonprincipal ultraproduct of alternating groups,

G =
∏

An/U , such that there is no bound on the orders of the alternating groups in the ultraproduct (if there is

a bound, then the ultraproduct is finite; that is, G is not a pseudofinite group). By just considering centralizers

of a disjoint even number of transpositions, it easy to see that the centralizer dimension of the alternating

groups increases as the rank increases. Since having finite centralizer dimension c is a first-order property of

groups (see [7]), the ultraproduct
∏

An/U has finite centralizer dimension if and only if there is a bound on

the orders of the alternating groups in the ultraproduct. However, by our assumption, there is no bound on

the orders of the alternating groups. This proves that
∏

An/U does not have finite centralizer dimension, and

hence it is not linear.

We will need the following result about pseudofinite groups.

Fact 3.2 (Houcine and Point, Lemma 2.16 in [8]). Let G be a pseudofinite group. Any definable subgroup or

any quotient by a definable normal subgroup is (pseudo)finite.

Note that when we say phdefinable we mean definable in the language of groups and possibly with

parameters (for details, see, for example, the book [5]). In particular, finite sets are definable. It is well known

that if X is a definable set in a group G then the centralizer and the normalizer of X in G are definable.

Moreover, if G is a group of finite centralizer dimension then the centralizer of any set in G is definable.
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In the proof of the following proposition, we will use the well-known results about definability mentioned

above as well as some ideas from the proof of a similar result in the context of groups of finite Morley rank (see

Lemma 6.6 in [1]).

Theorem 3.3. If one of the Sylow 2-subgroups of a pseudofinite Mc -group G is finite then all Sylow 2-

subgroups of G are conjugate and hence finite.

Proof Let P be a finite Sylow 2-subgroup of G . Assume that there is a Sylow 2-subgroup Q of G that is

not conjugate to P and let D = P ∩Q . Without loss of generality, we may assume that Q is chosen so that |D|
is maximal (for this fixed finite Sylow 2-subgroup P ). Since D is finite, both D and NG(D) are definable and

hence NG(D)/D is a (pseudo)finite group by Fact 3.2. Moreover, as both P and Q are locally finite (Fact 2.1),

locally nilpotent, and nilpotent-by-finite, they satisfy the normalizer condition (see Remark 2.4). Therefore, we

have

NG(D) ∩ P = NP (D) > D and NG(D) ∩Q = NQ(D) > D.

Claim. There are nonconjugate Sylow 2-subgroups P1, Q1 of G such that |P1 ∩Q1| > |P ∩Q| , and P and P1

are conjugate.

Proof [Proof of the claim] Take two involutions ī = iD, j̄ = jD from the nontrivial 2-subgroups NP (D)/D

and NQ(D)/D of NG(D)/D . We know that they are either conjugate or commute with another involution in

NG(D)/D since NG(D)/D is (pseudo-)finite (see Remark 3.1).

Case 1. Assume that ī, j̄ are conjugate in NG(D)/D .

In this case, we have īx̄ = j̄ for some x̄ ∈ NG(D)/D . This means that xix−1D = jD ; that is,

j = xix−1d for some d ∈ D . We get j = xix−1dxx−1 = xid1x
−1 for some d1 ∈ D . However, since id1 ∈ P ,

we get j ∈ P x ∩Q . Moreover, since x normalizes D , we get D ⩽ P x and hence D ⩽ P x ∩Q . Thus, we have

D < ⟨D, j⟩ ⩽ P x ∩Q and so we take P1 = P x and Q1 = Q .

Case 2. Assume that there is an involution k̄ ∈ NG(D)/D such that ī and j̄ commute with k̄ .

Now consider the 2-groups ⟨D, i, k⟩ and ⟨D, j, k⟩ and let Ri and Rj denote the Sylow 2-subgroups of

G containing them, respectively. Clearly we have the following inclusions:

D < ⟨D, i⟩ ⩽ P ∩Ri, D < ⟨D, k⟩ ⩽ Ri ∩Rj , D < ⟨D, j⟩ ⩽ Rj ∩Q.

If P is not conjugate to Ri then take P1 = P and Q1 = Ri . If P is conjugate to Ri but not conjugate to Rj

then take P1 = Ri and Q1 = Rj . If P is conjugate to both Ri and Rj then take P1 = Rj and Q1 = Q .

The claim follows.

Let P1, Q1 be nonconjugate Sylow 2-subgroups of G as in the claim so that P1 = P g for some g ∈ G .

Now we have

|D| = |P ∩Q| < |P1 ∩Q1| = |P g ∩Q1| = |(P g ∩Q1)g
−1

| = |P ∩Qg−1

1 |.

Clearly, Qg−1

1 is a Sylow 2-subgroup of G . By the maximality of |D| , we conclude that P is conjugate to

Qg−1

1 and hence conjugate to Q1 . This contradicts the fact that P1 = P g is not conjugate to Q1 .
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Remark 3.4. The situation is quite complicated when we remove the assumption (in Theorem 3.3) on the

existence of a finite Sylow 2-subgroup, even in the linear case (work in progress).

When we restrict ourselves to GLn(K) , there is a criterion given by Vol’vachev (for an arbitrary field K )

about the conjugacy of the Sylow p-subgroups (see [14]). This criterion implies in particular that nonconjugacy

can occur only for Sylow 2-subgroups and only when the characteristic of the field K is zero.

4. On Platonov’s example

In this section, we analyze in detail an example constructed by Platonov (Example 4.11 in [10]). The reason

for the detailed presentation below is the fact that some computational arguments were skipped in Platonov’s

original article [10].

For each i ∈ N , consider the following elements in the group SL2(Q) :

gi =

(
0 −pi

p−1
i 0

)
,

where (pi)i∈N is a sequence of distinct primes of the form 4k + 3, k ∈ N .

We will observe that Si := ⟨gi⟩ is a Sylow 2-subgroup of SL2(Q) of order 4 for each i ; however, Si is

not conjugate to Sj if i ̸= j .

Clearly, for each i we have |Si| = 4.

Claim 1. For each i , the group Si is a Sylow 2-subgroup of SL2(Q) .

Since a proof for this claim is not provided in [10], we list some properties of SL2(Q) (some of which are

very well known), which lead to a proof of Claim 1.

(1) If A ∈ SL2(Q) has finite order then A is diagonalizable over C .

(2) The group SL2(Q) has a unique involution.

(3) There is no element of order 8 in SL2(Q).

(4) There is no subgroup of order 8 in SL2(Q).

(5) Sylow 2-subgroups of SL2(Q) are finite.

Note that properties (1)–(3) follow from basic results in linear algebra. However, since (4) and (5) are

more involved, we would like to support them with proofs.

Proof [Proof of (4).] Assume that H ⩽ SL2(Q) such that |H| = 8. We know that there are only five groups

of order 8 up to isomorphism: C8 , C2 × C2 × C2 , C4 × C2 , D8 (dihedral group of order 8), and Q8

(quaternions). Since SL2(Q) has a unique involution, we have H ∼= Q8 or H ∼= C8 . However, as SL2(Q) has

no element of order 8, the latter is not possible and hence H ∼= Q8 .

Now we will show that Q8 does not embed in SL2(Q) (actually, we can prove more: Q8 does not embed

in GL2(R)). By the structure of Q8 , it is enough to show that there are no A,B ∈ GL2(R) such that

A2 = B2 = −I2 and AB = −BA. (∗)

We will observe (∗) in two steps.
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Step 1. If A ∈ GL2(R) is an element of order 4 then there is g ∈ GL2(R) such that

Ag =

(
0 1
−1 0

)
.

There is h ∈ GL2(C) such that Ah =

(
λ1 0
0 λ2

)
, where λ4

1 = λ4
2 = 1. Without loss of generality we

may assume that λ1 is a primitive 4th root of unity; that is, λ1 = ±i .

First assume λ1 = i and let z⃗ = x⃗ + y⃗i be a corresponding eigenvector (note that x⃗, y⃗ ∈ R2 ). We have

Az⃗ = iz⃗

A(x⃗ + y⃗i) = i(x⃗ + y⃗i)

Ax⃗ + Ay⃗i = ix⃗− y⃗.

Therefore, we get Ax⃗ = −y⃗ and Ay⃗ = x⃗ . Note that {x⃗, y⃗} forms a basis for R2 since they are linearly

independent over R (if y⃗ = αx⃗ for some α ∈ R , then we get Ax⃗ = −αx⃗ and Aαx⃗ = x⃗ , which in turn gives

α2 = −1, a contradiction). When we represent A with respect to this basis, we can conclude that A is conjugate

to the matrix

(
0 1
−1 0

)
. Similarly, if λ1 = −i , then A is conjugate to

(
0 −1
1 0

)
in GL2(R), which is in

turn conjugate to

(
0 1
−1 0

)
.

Step 2. There are no A,B ∈ GL2(R) satisfying the conditions (∗).

Assume that there are A,B ∈ GL2(R) satisfying the conditions (∗). Using Step 1, without loss

of generality, we can assume that A =

(
0 1
−1 0

)
. Let B =

(
a b
c d

)
. Since AB = −BA , we get

B =

(
a b
b −a

)
, but on the other hand, since the order of B is 4, its square, B2 =

(
a2 + b2 0

0 a2 + b2

)
is

an involution. By the uniqueness of the involution, we get

(
a2 + b2 0

0 a2 + b2

)
=

(
−1 0
0 −1

)
,

which leads to a contradiction since a, b ∈ R .

Proof [Proof of (5).] Assume that SL2(Q) has an infinite Sylow 2-subgroup P . Since periodic linear groups

are locally finite (see [11]), P is locally finite. Therefore, P has a finite subgroup, say X , of order greater than

8 (just consider the subgroup generated by 8 distinct elements of P ). Then, by Sylow’s first theorem, X has

a subgroup of order 8, which is clearly a subgroup of SL2(Q). Since this is not possible, (5) follows.

By properties (4) and (5), we conclude that the groups Si = ⟨gi⟩ defined above are Sylow 2-subgroups

of SL2(Q).

Claim 2. For i ̸= j , the groups Si, Sj are not conjugate in SL2(Q) .
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Assume that Si = Sg
j for some g =

(
a b
c d

)
∈ SL2(Q). Then we either have ggig

−1 = gj or

ggig
−1 = g3j . We consider the first case:

ggig
−1 = gj

ggi = gjg(
a b
c d

)(
0 −pi

p−1
i 0

)
=

(
0 −pj

p−1
j 0

)(
a b
c d

)
.

This equation gives the following equalities:

bp−1
i = −cpj , dp−1

i = ap−1
j , −api = −dpj , −cpi = bp−1

j .

Multiplying both sides of the first and third equations by −cpi and −ap−1
j , respectively, we get

−bc = c2pjpi, ad = a2pip
−1
j .

By combining this with the fact that ad− bc = 1, we have

a2pip
−1
j + c2pjpi = 1,

which in turn gives

pi(a
2 + c2p2j ) = pj . (⋄)

We give an argument for the impossibility of (⋄), since it is skipped in [10]. Note that the pj -adic

valuation of the right-hand side of the equation (⋄) is clearly 1. However, the pj -adic valuation of the left-hand

side is even by the following fact, which is folklore.

Fact 4.1. Suppose p is a prime such that p ≡ 3(mod 4) and α, β ∈ Q . Then vp(α2 + β2) is even, where vp

denotes the p-adic valuation.

Proof First, without loss of generality, we may assume that α, β are integers. To see this let α =
α1

α2
, β =

β1

β2

for some α1, α2, β1, β2 ∈ Z . Clearly, we have

vp(α2 + β2) = vp

(
α2
1

α2
2

+
β2
1

β2
2

)
= vp((α1β2)2 + (β1α2)2) − vp((α2β2)2).

Therefore, vp(α2 + β2) is even if and only if vp((α1β2)2 + (β1α2)2) is even, since the valuation of a square is

always even.

Since p ≡ 3(mod 4), p is irreducible in the ring of Gaussian integers Z[i] . (If p = (x + yi)(z + ti) in

Z[i] , then squaring the norms of both sides we get p2 = (x2 + y2)(z2 + t2). Since p can not be sum of two

squares (which is 0, 1 modulo 4), either x + yi or z + ti is a unit; that is, p is irreducible.) Moreover, since

Z[i] is a unique factorization domain p is a prime in Z[i] . Now, if p does not divide α2 +β2 , clearly the p -adic

valuation is zero. Assume that p divides α2 + β2 (in Z). Then p divides (α + βi)(α − βi) in Z[i] . Then, as

a prime in Z[i] , p divides either α + βi or α − βi , but then both α and β are divisible by p in Z and so

α2 = p2k2 and β2 = p2l2 for some k, l ∈ Z . Now α2 + β2 = p2(k2 + l2). Inductively, we can conclude that

vp(α2 + β2) is even.
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The computations for the second case (when ggig
−1 = g3j ) are very similar and we obtain

pi(a
2 + c2p2j ) = −pj .

This is clearly not possible. We conclude that Si and Sj are not conjugate.

As a result, we have observed that SL2(Q) has infinitely many pairwise nonconjugate Sylow 2-subgroups

of order 4.

Remark 4.2. Note that Theorem 3.3 together with Platonov’s example shows that SL2(Q) is not a pseudofinite

group. One may also observe this directly by first defining Q× , the multiplicative group of Q , as a centralizer

in SL2(Q) and then using the fact that Q× is not a pseudofinite group (note that the definable endomorphism

of Q× that maps x to x3 is one-to-one but not onto).

More generally, one can observe that for any infinite field K , the group SLn(K) is pseudofinite if and

only if K is a pseudofinite field (for n > 1). It is well known that if K is a pseudofinite field then SLn(K)

is a pseudofinite group. To see the other direction, we work with the Chevalley group PSLn(K), which is also

pseudofinite, as a definable quotient of SLn(K) and we will refer to the article of Wilson [17]. In this article,

Wilson states the following results obtained by Thomas in his dissertation [12]: the class {X(K) | K field} is an

elementary class where X denotes a Chevalley group of untwisted type and moreover whenever X(K) ≡ X(F )

and K is pseudofinite it follows that F is pseudofinite. If we apply Wilson’s theorem [17, Theorem on p. 471]

together with the result of Thomas to PSLn(K), we get PSLn(K) ∼= PSLn(F ) for some pseudofinite field F .

By referring to the “moreover” part of Thomas’ result, we finally conclude that the field K is pseudofinite.
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