Restriction of a quadratic form over a finite field to a nondegenerate affine quadric hypersurface

Edoardo BALLICO*
Department of Mathematics, University of Trento, Povo, Trentino, Italy

| Received: 05.12 .2016 | Accepted/Published Online: 24.02 .2017 | Final Version: 22.01 .2018 |
| :--- | :--- | :--- | :--- |

Abstract

Let $h, h_{M}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be quadratic forms with h not degenerate. Fix $k \in \mathbb{F}_{q}$ and set $C_{n}(k, h)_{\mathbb{F}_{q}}:=$ $\left\{h\left(x_{1}, \ldots, x_{n}\right)=k\right\} \subset \mathbb{F}_{q}^{n}$. We compute (in many cases) the image of $h_{M \mid C_{n}(k, h)_{\mathbb{F}_{q}}}$. This question is related to a question on the numerical range of matrices over a finite field.

Key words: Quadratic form, finite field

1. Introduction

For any field K let $M_{n, n}(K)$ denote the set of all $n \times n$ matrices with coefficients in K. Take a field K, a nondegenerate quadratic form $h: K^{n} \rightarrow K$, and an $n \times n$ matrix $M=\left(m_{i j}\right) \in M_{n, n}(K), i, j=1, \ldots, n$. For any $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ set $h_{M}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i j} m_{i j} x_{i} x_{j}$. For any $k \in K$ set $C_{n}(k, h)_{K}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\left.K^{n} \mid h\left(x_{1}, \ldots, x_{n}\right)=k\right\}$. Let $\operatorname{Num}_{k}(M)_{h, K} \subseteq K$ be the set of all $h_{M}\left(x_{1}, \ldots, x_{n}\right)$ with $\left(x_{1}, \ldots, x_{n}\right) \in$ $C_{n}(k, h)_{K}$. We came to this topic in [1], motivated to a similar set-up related to the numerical range of a matrix over a finite field introduced in [2]. We consider the case in which K is a finite field \mathbb{F}_{q} and prove the following result.

Theorem 1 Take $n \geq 2$, any nondegenerate quadratic form $h: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$, any $k \in \mathbb{F}_{q}$, and any $M \in M_{n, n}\left(\mathbb{F}_{q}\right)$.
(a) Assume $k=0$. Either $\operatorname{Num}_{0}(M)_{h, \mathbb{F}_{q}}=\{0\}$ or $\operatorname{Num}_{0}(M)_{h, \mathbb{F}_{q}}=\mathbb{F}_{q}$ or q is odd, $\sharp\left(\operatorname{Num}_{0}(M)_{h, \mathbb{F}_{q}}\right)=$ $(q+1) / 2$ and there is $c \in \mathbb{F}_{q}^{*}$ such that $\operatorname{Num}_{0}(M)_{h, \mathbb{F}_{q}}$ is the union of $\{0\}$ and all $g \in \mathbb{F}_{q}^{*}$ such that g / c is a square.
(b) Assume $n \geq 3$ and $q \neq 2$. $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=1$ for some $k \in \mathbb{F}_{q}$ if and only if h_{M} is a multiple of h.
(c) Assume $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right) \neq 1$. If $n=2$, then $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right) \geq\lceil(q-1) / 4\rceil$. If $n \geq 3$, then $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right) \geq\lceil q / 2\rceil$.

See Example 1 for a discussion on the strength of parts (a) and (c) of Theorem 1.
See [3, Ch. 5] and [4, §22.1] for the classification of nondegenerate quadratic forms. In $[1, \S 3]$ we considered the case $k=0$ of a similar problem with instead of h the quadratic form $\sum_{i=1}^{n} x_{i}^{2}$, which is nondegenerate if q is odd, but it has rank 1 if q is even. For any $k \in \mathbb{F}_{q}$ set $C_{n}(k)_{q}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2}=k\right\}$.

[^0]Let $\operatorname{Num}_{k}(M)_{q}$ be the set of all $h_{M}(u)$ with $u \in C_{n}(k)_{q}$. In Section 3 we consider the case in which we take $x_{1}^{2}+\cdots+x_{n}^{2}$ instead of h. We improve in this case part (c) of Theorem 1 (see Proposition 3 for q odd). We give very precise descriptions of $\operatorname{Num}_{k}(M)_{q}$ when M is the matrix with a unique Jordan block (see Propositions 4,5 , and 6 for the cases $n=2,3,4$, respectively). We get $\operatorname{Num}_{k}(M)_{q}=\mathbb{F}_{q}$ for all $n \geq 4$ for these matrices (Proposition 6 and Remark 6). In each case standard lemmas or reduction steps compute $\operatorname{Num}_{k}(M)_{q}$ for many matrices related to direct sums of Jordan blocks.

2. Proof of Theorem 1

For any field K set $K^{*}:=K \backslash\{0\}$. Let $e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ be the standard basis of \mathbb{F}_{q}^{n}. For each $n>0$ let $\mathbb{I}_{n \times n}$ denote the $n \times n$ identity matrix.

Remark 1 Fix $M=\left(m_{i j}\right), N=\left(n_{i j}\right) \in M_{n, n}\left(\mathbb{F}_{q}\right)$ such that $m_{i i}=n_{i i}$ for all i and $m_{i j}+m_{j i}=n_{i j}+n_{j i}$ for all $i \neq j$. Then $h_{M}=h_{N}$.

Remark 2 Fix $k \in \mathbb{F}_{q}$, positive integers $n, m, A \in M_{n, n}\left(\mathbb{F}_{q}\right)$, and $B \in M_{m, m}\left(\mathbb{F}_{q}\right)$. Set $M:=A \oplus B \in$ $\left.M_{n+m, n+m}\right)\left(\mathbb{F}_{q}\right)$. We have

$$
\operatorname{Num}_{k}(M)_{q}=\cup_{k_{1}, k_{2} \in \mathbb{F}_{q}, k_{1}+k_{2}=k} \operatorname{Num}_{k_{1}}(A)_{q}+\operatorname{Num}_{k_{2}}(B)_{q} .
$$

For any nondegenerate h we also have

$$
\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}=\cup_{k_{1}, k_{2} \in \mathbb{F}_{q}, k_{1}+k_{2}=k} \operatorname{Num}_{k_{1}}(A)_{h, \mathbb{F}_{q}}+\operatorname{Num}_{k_{2}}(B)_{h, \mathbb{F}_{q}} .
$$

Lemma 1 For any $n \geq 2$, any nondegenerate quadratic form h, and any $k \in \mathbb{F}_{q}$ we have $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}} \neq \emptyset$.
Proof We have $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}} \neq \emptyset$ if and only if $h: \mathbb{F}_{n}^{q} \rightarrow \mathbb{F}_{q}$ has k in its image. Thus, $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}} \neq \emptyset$ for all k if and only if h is surjective. If q is odd, then h is surjective by [6, Theorem 4.12]. If q is even, then h is surjective by [6, Theorem 4.16].

Lemma 2 Assume $n \geq 3$ and $q \neq 2$. The following conditions are equivalent:
(a) h_{M} is proportional to h;
(b) there is $k \in \mathbb{F}_{q}$ such that $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=1$;
(c) $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=1$ for all $k \in \mathbb{F}_{q}$.

Proof By Lemma 1 we have $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}} \neq \emptyset$. For each $t, w \in \mathbb{F}_{q}$ the system $h\left(x_{1}, \ldots, x_{n}\right)-k=$ $h_{M}\left(x_{1}, x_{2}, \ldots, x_{m}\right)-w=0$ has a solution if and only $h\left(x_{1}, \ldots, x_{n}\right)-k=h_{M}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-t h\left(x_{1}, \ldots, x_{n}\right)-$ $(w-t k)=0$ has a solution. Hence, if h_{M} is a multiple of h, then $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=1$ for all $k \in \mathbb{F}_{q}$. Now assume $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=1$ for some $k \in \mathbb{F}_{q}$. Set $Z:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \mid h\left(x_{1}, \ldots, x_{n}\right)\right\}$. We take x_{1}, \ldots, x_{n}, z as homogeneous coordinates of \mathbb{P}^{n} and set $Z^{\prime}:=\left\{\left(x_{1}: \cdots: x_{n}: z\right) \in \mathbb{P}^{n}\left(\mathbb{F}_{q}\right) \mid h\left(x_{1}, \ldots, x_{n}\right)=\right.$ $\left.k z^{2}\right\}$. If $k=0$, then Z^{\prime} is a quadric cone with vertex $(0: \ldots, 0: 1) \notin Z$ and with as a basis the smooth quadric $\left\{h\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ of $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$. If $k \neq 0$ and q is odd, then Z^{\prime} is a smooth quadric hypersurface, because the partial derivative ∂ / ∂_{z} of $h\left(x_{1}, \ldots, x_{n}\right)-k z^{2}$ is $-2 k z$, which vanishes only if $z=0$, while the partial derivatives of $h\left(x_{1}, \ldots, x_{n}\right)$ vanish simultaneously only at $x_{1}=\cdots=x_{n}=0$, because h is assumed to
be nondegenerate. If q is even, then Z^{\prime} is nondegenerate for n even, while it has corank 1 if n is odd (use the canonical forms in [3, Theorem 5.1.7] or [4, §22.1]).

Claim 1: Assume q odd, $k \neq 0$, and $n=3$. Then Z^{\prime} is a hyperbolic quadric.
Proof of Claim 1: Take $a \in \mathbb{F}_{q}^{*}$ such that $-a$ is a square in \mathbb{F}_{q}. Since all smooth conics over \mathbb{F}_{q} are projectively equivalent $\left(\left[3\right.\right.$, Theorem 5.1.6]), there is a linear change of coordinates such that $h\left(y_{1}, y_{2}, y_{3}\right)=$ $y_{1} y_{2}+a k y_{3}^{2}$, where y_{1}, y_{2}, y_{3} are the new linear coordinates. Hence, $h\left(y_{1}, y_{2}, y_{3}\right)-k z^{2}=y_{1} y_{2}-k\left(z^{2}+a y_{3}^{2}\right)$. By the choice of a we have $z^{2} 2+a y_{3}^{2}=w_{3} w_{4}$ with w_{3}, w_{4} a linear combination of y_{3} and z. Since Z^{\prime} is nondegenerate, w_{3} and w_{4} are not proportional. In the coordinates $y_{1}, y_{2}, w_{3}, w_{4}$ the quadric Z^{\prime} has the canonical form of a hyperbolic quadric.

Claim 2: For each $u \in Z^{\prime}$ there is a line $\ell \subset Z^{\prime}$ with $u \in \ell$.
Proof of Claim 2: If $k=0$, then Claim 2 is true, because Z^{\prime} is a cone. If $n \geq 4$, then Claim 2 is true for an arbitrary quadric hypersurface. If $n=3, k \neq 0$, and q is even, then Claim 2 is true, because Z^{\prime} is a cone. If $n=3, n \neq 0$, and q is odd, then Claim 2 is equivalent to Claim 1.

If $h_{M}(u)=0$ for all $u \in \mathbb{F}_{q}^{n}$, then it is a multiple of h, because for $n \geq 3$ no homogeneous degree 2 polynomial vanishes at all points of \mathbb{F}_{q}^{n}. Hence, we may assume that the quadratic function h_{M} induces a nonconstant map $u: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$. Since u is not constant, for each $t \in \mathbb{F}_{q}$ the set $u^{-1}(t)$ is an affine quadric hypersurface of \mathbb{F}_{q}^{n} defined over \mathbb{F}_{q}. By assumption the affine quadric hypersurface $C_{n}(k, h)_{\mathbb{F}_{q}}=\left\{h\left(x_{1}, \ldots, x_{n}\right)=k\right\}$ is one of the fibers of u, say $C_{n}(k, h)_{\mathbb{F}_{q}}=u^{-1}(t)$. Set $W:=\left\{\left(x_{1}: \cdots: x_{n}: z\right) \in \mathbb{P}^{n}\left(\mathbb{F}_{q}\right) \mid h_{M}\left(x_{1}, \ldots, x_{n}\right)-t z^{2}=0\right\}$. Let $H \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ be the hyperplane $\{z=0\}$. Take $u \in Z$ and call L a line defined over \mathbb{F}_{q}, contained in Z^{\prime} and with $u \in L$ (Claim 2). We have $\sharp(L \cap Z)=q$. By assumption $W \backslash W \cap H \supseteq L \cap Z$. Since $\sharp(L \cap W) \geq q \geq 3>\operatorname{deg}\left(h_{M}\right)$, we have $L \subset W$. Hence, we see that W contains all lines of Z^{\prime} intersecting Z. By Claim 2 this implies first that W has the same rank as Z^{\prime} and then that $Z^{\prime}=W$. Since $n \geq 3$, there is $c \in \mathbb{F}_{q}^{*}$ such that $h_{M}\left(x_{1}, \ldots, x_{m}\right)-t=c\left(h\left(x_{1}, \ldots, x_{m}\right)-k\right)$.

Proof of Theorem 1. We have $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}} \neq \emptyset$ by Lemma 1.
Lemma 2 gives part (b). We take Z and Z^{\prime} as in the proof of Lemma 2.
(a) Take $k=0$. Taking $0 \in \mathbb{F}_{q}^{n}$ we get $0 \in \operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}$. Assume the existence of $c \in \mathbb{F}_{q}^{*} \cap \operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}$ and take $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ such that $h_{M}\left(a_{1}, \ldots, a_{n}\right)=c$. Note that for any $t \in \mathbb{F}_{q}$ we have $\left(t a_{1}, \ldots, t a_{n}\right) \in Z$ and $h_{M}\left(t a_{1}, \ldots, t a_{m}\right)=t^{2} c$. Hence, $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}$ contains all elements $x \in \mathbb{F}_{q}^{*}$ such that c / x is a square. If q is even we get that either $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}=\{0\}$ or $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}=\mathbb{F}_{q}$. If q is odd we get that $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right) \in\{1,(q+1) / 2, q\}$ and the description in part (a).
(b) From now on we fix $k \in \mathbb{F}_{q}^{*}$ and we assume $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)>1$. First assume $n=2$. In this case Z is a nonempty affine conic whose degree 2 part has rank 2 and hence $\sharp(Z) \geq q-1$. Since h_{M} is induced by a degree 2 polynomial and $Z \nsubseteq h_{M}^{-1}(t)$ for any $t \in \mathbb{F}_{q}$, each fiber of $h_{M \mid Z}$ has cardinality ≤ 4 and hence the image of $h_{M \mid Z}$ has cardinality $\geq\lceil(q-1) / 4\rceil$.

Now assume $n \geq 3$. By assumption $h_{M \mid Z}$ is not a constant. Take a line $L \subset Z^{\prime}$ such that $L \cap Z \neq \emptyset$. We have $\sharp(L \cap Z)=q$. Since $h_{M \mid L \cap Z}$ is induced by a polynomial of degree ≤ 2, either $h_{M \mid L \cap Z}$ is constant or each fiber of $h_{M \mid L \cap Z}$ has cardinality at most 2 . In the latter case the image of $h_{M \mid Z \cap L}$ has cardinality $\geq q / 2$. Thus, to conclude the proof of Theorem 1, it is sufficient to find a line $L \subset Z^{\prime}$ such that $L \cap Z \neq \emptyset$ and $h_{M \mid L \cap Z}$ is not a constant. We assume that no such a line exists. By assumption $m:=h_{M \mid Z}: Z \rightarrow \mathbb{F}_{q}$ is not constant.

Take $o, o^{\prime} \in Z$ such that $m(o) \neq m\left(o^{\prime}\right)$. By Claim 2 of the proof of Lemma 2 there are lines $L, L^{\prime} \subset Z^{\prime}$ such that $o \in L$ and $o^{\prime} \in L^{\prime}$. Our assumptions on the lines of Z^{\prime} meeting Z imply that $m_{\mid L \cap Z}$ and $m_{\mid L^{\prime} \cap Z}$ are constant. Let $R \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ be the line spanned by $\left\{o, o^{\prime}\right\}$. Since $o, o^{\prime} \in Z$ and $m(o) \neq m\left(o^{\prime}\right)$, our assumption on the lines contained in Z^{\prime} and intersecting Z implies $R \nsubseteq Z^{\prime}$.
(b1) Assume $L \cap L^{\prime}=\emptyset$. In this case the linear span $E \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ of $L \cup L^{\prime}$ has dimension 3. First assume $E \subset Z^{\prime}$. In this case the line R joining o and o^{\prime} is contained in Z^{\prime}, a contradiction. Now assume $E \nsubseteq Z^{\prime}$ and so $E \cap Z^{\prime}$ is a quadric hypersurface of E defined over \mathbb{F}_{q}. Since $E \cap Z^{\prime}$ contains two disjoint lines (L and L^{\prime}) either $Z^{\prime} \cap E$ is a smooth hyperbolic quadric surface or it is the union of two different planes ([4, page 4]).
(b1.1) Assume that $Z^{\prime} \cap E$ is a smooth hyperbolic quadric surface. Since $L \cap L^{\prime}=\emptyset, L$ and L^{\prime} are in the same ruling of $Z^{\prime} \cap E$ (call it the first ruling of $E \cap Z$). Since $Z \cap E \neq \emptyset, Z^{\prime} \cap E \cap H$ is a divisor of bidegree $(1,1)$, i.e. either a reducible conic or a smooth conic. For any $a \in L$ let R_{a} be the line of the second ruling of $E \cap Z^{\prime}$ containing a. The set $R_{a} \cap L^{\prime}$ is a unique point, b_{a}, and the map $a \mapsto b_{a}$ induces a bijection $L \rightarrow L^{\prime}$. Since $\sharp(L \cap Z)=\sharp\left(L^{\prime} \cap Z\right)=q>2$, there is $a \in L \cap Z$ with $b_{a} \in L^{\prime} \cap Z$. Since $m_{\mid Z \cap R_{a}}$ is not constant, we get a contradiction.
(b1.2) Assume that $Z^{\prime} \cap E=H_{1} \cup H_{2}$ with H_{1} and H_{2} planes. Note that this case does not occur if $n=3$, because h is nonsingular. Each H_{i} is defined over \mathbb{F}_{q}, because $Z^{\prime} \cap H$ contains 2 disjoint lines defined over \mathbb{F}_{q}. Fix $b \in H_{1} \cap H_{2} \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$. There are lines $L_{1} \subset H_{1}, L_{2} \subset H_{2}$ defined over \mathbb{F}_{q}, with $L_{i} \neq H_{1} \cap H_{2}$, $L_{i} \cap Z \neq \emptyset$ for all i and $\{b\}=L_{1} \cap L_{2}$. Since $m_{\mid Z \cap D}$ is constant for every line $D \subset Z^{\prime}$ with $D \cap Z \neq \emptyset$, we get $H_{1} \cap H_{2} \subset H$. Hence, $H_{i} \backslash H_{1} \cap H_{2} \subset Z$. By step (b1.1) we get that this is the case for all lines L, L^{\prime} with $Z \cap L \neq \emptyset, Z \cap L^{\prime} \neq \emptyset$, and $L \cap L^{\prime}=\emptyset$. In particular, for every line $D \subset Z^{\prime}$ with $L \cap D=\emptyset$ and $D \cap Z \neq \emptyset$, we have $D \cap H_{1} \cap H_{2} \neq \emptyset$ and the plane U_{D} spanned by $D \cup\left(H_{1} \cap H_{2}\right)$ is contained in Z^{\prime}. Fix one such line D not contained in E. In the same way we check that $T \cap H_{1} \cap H_{2} \neq \emptyset$ for each line $T \subset Z^{\prime}$ with $T \cap Z \neq \emptyset$ and either $T \cap L^{\prime}=\emptyset$ or $T \cap D=\emptyset$ or $T \cap L=\emptyset$. Every line J with $J \cap L \neq \emptyset$ and $J \cap L^{\prime} \neq \emptyset$ is contained in E. If $D \cap E=\emptyset$ (we are always in this case if $n \geq 5$), then we get that every line T contained in Z^{\prime} and intersecting Z (i.e. not contained in H) meets the line $H_{1} \cap H_{2}$, which is obviously false since Z^{\prime} has rank at least $n \geq 4$ and every point of Z^{\prime} is contained in a line contained in Z^{\prime}. If $D \cap E$ is a point, u, then we take instead of D a line D^{\prime} with $u \notin D^{\prime}, D^{\prime} \subset Z^{\prime}, D^{\prime} \cap Z \neq \emptyset$, and $L \cap D^{\prime}=\emptyset$. We get $T \cap D^{\prime}=\emptyset$ if $T \subset E$ and $u \in T$, and conclude using D^{\prime} instead of D.
(b2) Assume q odd and $L \cap L^{\prime} \neq \emptyset$. Since $m_{\mid L \cap Z}$ and $m_{\mid L^{\prime} \cap Z}$ are constant and different functions, we have $L \cap L^{\prime} \in H$. Let $F \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ be the plane spanned by $L \cup L^{\prime} . F$ is defined over \mathbb{F}_{q}. We have $R \subset F$. If $F \subset Z^{\prime}$, then $R \subset Z^{\prime}$, a contradiction. Hence, $F \cap Z^{\prime}=L \cup L^{\prime}$. For any $a \in \mathbb{P}^{n}\left(\mathbb{F}_{q}\right) \backslash F$ let W_{a} be the 3 -dimensional linear space spanned by $F \cup\{a\} . W_{a}$ is defined over \mathbb{F}_{q} and $W_{a} \cap Z^{\prime}$ is a quadric surface defined over \mathbb{F}_{q} and containing 2 intersecting lines and at least another point not in the plane they spanned. Hence, $W_{a} \cap Z$ is either a hyperbolic quadric surface or an irreducible quadric cone with vertex the point $L \cap L^{\prime}$ or the union of two different planes, each of them defined over \mathbb{F}_{q}. Since q is odd, Z^{\prime} is not a cone. Since Z^{\prime} is not a cone with vertex $L \cap L^{\prime}$, we may find $a \in Z$ such that $W_{a} \cap Z^{\prime}$ is not a cone with vertex containing the point $L \cap L^{\prime}$. Now assume $W_{a} \cap Z^{\prime}=H_{1} \cup H_{2}$ with each H_{i} a plane defined over \mathbb{F}_{q}. Since $F \nsubseteq Z^{\prime}, H_{1}$ contains one of the lines L, L^{\prime} (say, it contains L) and H_{2} contains the other one, L^{\prime}. Hence, $L \cap L^{\prime} \in H_{1} \cap H_{2}$. Thus, $W_{a} \cap Z^{\prime}$ is a cone with vertex containing $L \cap L^{\prime}$.

Now assume that $Z^{\prime} \cap E$ is an irreducible hyperbolic quadric. In particular $\sharp\left(Z^{\prime} \cap E\right)=(q+1)^{2}$. Call I the ruling of $Z^{\prime} \cap E$ containing L and $I I$ the ruling of $Z^{\prime} \cap E$ containing $L^{\prime} . Z^{\prime} \cap E \cap H$ is a curve of bidegree $(1,1)$ of $Z^{\prime} \cap E$ and hence it is either a reducible conic (with each line defined over \mathbb{F}_{q} and so of cardinality $2 q+1$) or a smooth conic (and so of cardinality $q+1$). For each $a \in Z \cap L$ (resp. $b \in L^{\prime} \cap Z$) let R_{a} (resp. D_{b}) be the line in the ruling $I I$ (resp. I) containing a. All lines D_{a} and R_{b} are contained in Z^{\prime}, defined over \mathbb{F}_{q}, and each R_{a} meets hence D_{b} at exactly one point of $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$. The restriction of m to each $Z \cap R_{a}$ and to each $Z \cap D_{b}$ is constant. The set of all $R_{a} \cap R_{b}$ is a subset of $Z^{\prime} \cap H$ with cardinality q^{2} and hence at least some of these points must be contained in Z, contradicting the constancy of all $m_{\mid R_{a}}$ and all $m_{\mid D_{b}}$.
(c) Now assume q even. By the proof in step (b) it is sufficient to do the case $n=3$. Up to a linear change of coordinates we may take $h=x_{1} x_{2}+x_{3}^{2}$. Hence, Z^{\prime} has equation $x_{1} x_{2}+x_{3}^{2}+k z^{2}=0$. Write $k=c^{2}$. We have $x_{1} x_{2}+x_{3}^{2}+k z^{2}=x_{1} x_{2}+\left(x_{3}+c x_{2}\right)^{2}$ and hence Z^{\prime} is an irreducible quadric cone with vertex $w=(0: 0: c: 1)$. Note that $w \notin H$ and so $w \in Z$. Thus, Z is covered by lines intersecting at a point $w \in Z$. Hence, m is a constant.

Lemma 3 Let $C \subset \mathbb{F}_{q}^{2}$ be the zero-locus of a polynomial $u \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right]$ with degree 2 and whose homogeneous degree 2 part v has rank 2. Then $C \neq \emptyset$.
Proof Let $J \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ be the zero-locus of the degree 2 form $v\left(x_{1}, x_{2}, z\right)$ obtained homogenizing v. Either v is a smooth conic (and so $\sharp(J)=q+1$ with at least $q-1>0$ points in \mathbb{F}_{q}^{2}) or it contains a line defined over \mathbb{F}_{q} (not the line $z=0$) and so $\sharp(C) \geq q$) or it is the union of two lines defined over $\mathbb{F}_{q^{2}}$ and exchanged by the map induced by the Frobenius $t \mapsto t^{q}$. In the latter case $\sharp(J)=1$, but the point of J lies in C, because v has rank 2 (it is the common point of the 2 irreducible components of J over $\mathbb{F}_{q^{2}}$).

Lemma 4 Let $u \in k\left[x_{1}, x_{2}, x_{3}\right]$ be a degree 2 polynomial whose homogeneous part v has rank at least 2 . Then u induces a surjection $f: \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$.
Proof There is a linear change of coordinates $\mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}^{3}$ such that in the new coordinates y_{1}, y_{2}, y_{3} we have $v\left(y_{1}, y_{2}, y_{3}\right)=w\left(y_{1}, y_{2}\right)+y_{3}\left(a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}\right)$ with $w\left(y_{1}, y_{2}\right)$ with rank 2 . Write $u\left(y_{1}, y_{2}, y_{3}\right)=$ $v\left(y_{1}, y_{2}, y_{3}\right)+b_{1} y_{1}+b_{2} y_{3}+b_{3} y_{3}+b_{4}$. Fix $d \in \mathbb{F}_{q}$. We need to find $\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{F}_{q}^{3}$ with $u\left(m_{1}, m_{2}, m_{3}\right)=d$. We take $m_{3}=0$ and apply Lemma 3 .

Lemma 5 Take $n \geq 4$, a nonzero linear form $\ell: \mathbb{F}_{q}^{n}$, and $k \in \mathbb{F}_{q}$. Then $\ell_{\mid C_{n}(k, h)}: C_{n}(k, h) \rightarrow \mathbb{F}_{q}$ is surjective. Proof It is sufficient to do the case $n=4$. Up to a linear change of coordinates it is sufficient to do the case $\ell=x_{4}$. Take $d \in \mathbb{F}_{q}$. We need to find $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}_{q}^{3}$ such that $h\left(x_{1}, x_{2}, x_{3}, d\right)=k$. Since h has rank 4 , the homogeneous degree 2 part of $h\left(x_{1}, x_{2}, x_{3}, d\right)$ has at least rank 2. Apply Lemma 4.

Example 1 Take a nondegenerate quadratic form $h: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}, n \geq 4$, and a nonzero linear form $\ell: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$. Assume $h_{M}=c h+\ell^{2}$ for some $c \in \mathbb{F}_{q}$. Fix any $k \in \mathbb{F}_{q}$. We claim the following statements:
(i) If q is even, then $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}=\mathbb{F}_{q}$;
(ii) If q is odd, then $\sharp\left(\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}\right)=(q+1) / 2$ and $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}$ is the set of all squares in \mathbb{F}_{q}.

Indeed, it is sufficient to prove the case $h_{M}=\ell^{2}$, so that it is obvious that all elements of $\operatorname{Num}_{k}(M)_{h, \mathbb{F}_{q}}$ are squares and we only need to prove the opposite containment. Thus, it is sufficient to prove that the map $\mu=\ell_{\mid C_{n}(k, h)_{\mathbb{F}_{q}}}: C_{n}(k, h)_{\mathbb{F}_{q}} \rightarrow \mathbb{F}_{q}$ is surjective. Apply Lemma 5.

3. The \mathbb{F}_{q}-numerical range

Remark 3 Fix $M \in M_{n, n}\left(\mathbb{F}_{q}\right)$. Take $t \in \mathbb{F}_{q}^{*}, k \in \mathbb{F}_{q}$. If $u=\left(x_{1}, \ldots, x_{n}\right) \in C_{n}(k)_{q}$, then tu $\in C_{n}\left(t^{2} k\right)_{q}$ and $h_{M}(t u)=t^{2} h_{M}(u)$. Hence, to compute the integers $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)$ for all k (and often to get a complete description of $\operatorname{Num}_{k}(M)_{q}$ for all $k \in \mathbb{F}_{q}$) it is sufficient to do it for $k=1, k=0$, and (if q is odd) for a single k, which is not a square in $\mathbb{F}_{q}\left(\mathbb{F}_{q}\right.$ has $(q-1) / 2$ nonsquares for any odd prime power $\left.q\right)$.

Remark 4 For all $a, b, k \in \mathbb{F}_{q}$ and all $M \in M_{n, n}\left(\mathbb{F}_{q}\right)$ we have $\operatorname{Num}_{k}\left(a M+b \mathbb{I}_{n, n}\right)_{q}=a \operatorname{Num}_{k}(M)_{q}+k b$. Write $M=\left(m_{i j}\right), i, j=1, \ldots, n$, and assume that $k=c^{2}$ for some $c \in \mathbb{F}_{q}$. Since ce $i_{i} \in C_{n}\left(c^{2}\right)_{q}$ and $h_{M}\left(c e_{i}\right)=c^{2} m_{i i}$, we have $\left\{c^{2} m_{11}, \ldots c^{2} m_{n n}\right\} \subseteq \operatorname{Num}_{c^{2}}(M)_{q}$.

Lemma 6 Assume q odd and take $k \in \mathbb{F}_{q}^{*}$. Set $\eta:=0$ if $q \equiv 1(\bmod 4)$ and $\eta:=2$ if $q \equiv-1(\bmod 4)$. Then $\sharp\left(C_{2}(k)_{q}\right)=q-1+\eta$.

Proof Set $T:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid x_{1}^{2}+x_{2}^{2}=k x_{3}^{2}\right\}$. Since $k \neq 0$ and q is odd, T is a smooth conic defined over \mathbb{F}_{q}. Thus, $\sharp(T)=q+1$. The line $x_{3}=0$ meets T at two points (resp. no point) defined over \mathbb{F}_{q} if and only if -1 has (resp. has not) a square-root in \mathbb{F}_{q}, i.e. if and only if $q \equiv 1(\bmod 4)(\operatorname{resp} . q \equiv-1(\bmod 4))$.

Remark 5 Assume q even and take $k \in \mathbb{F}_{q}$. Since \mathbb{F}_{q} is a perfect field, there is a unique $c \in \mathbb{F}_{q}$ such that $c^{2}=k$. Take $u=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$. Since $(a+b)^{2}=a^{2}+b^{2}$ for all $a, b \in \mathbb{F}_{q}$ we have $\sum_{i=1} x_{i}^{2}=k$ (i.e. $\left.u \in C_{n}(k)_{q}\right)$ if and only if $x_{1}+\cdots+x_{n}=c$.

Proposition 1 Assume q even. Take $M \in M_{2,2}\left(\mathbb{F}_{q}\right), M=\left(m_{i j}\right), i, i=1,2$.
(a) We have $\operatorname{Num}_{1}(M)_{q}=\left\{m_{11}\right\}$ if and only if $m_{22}=m_{11}$ and $m_{12}=m_{21}$.
(b) We have $\operatorname{Num}_{1}(M)_{q}=\mathbb{F}_{q}$ if and only if $m_{12}=m_{21}$ and $m_{22} \neq m_{11}$.
(c) If $m_{12} \neq m_{21}$ and $m_{11} \neq m_{22}$, then $\left.\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)\right)=q / 2$.

Proof Fix $u=\left(x_{1}, x_{2}\right) \in C_{2}(1)_{q}$, i.e. assume $x_{2}=x_{1}+1$ (Remark 5). We have $h_{M}(u)=\left(m_{11}+m_{12}+\right.$ $\left.m_{21}+m_{22}\right) x_{1}^{2}+\left(m_{12}+m_{21}\right) x_{1}+\left(m_{12}+m_{21}\right)$. If $m_{11}+m_{22}=m_{12}+m_{21}=0$, then $\operatorname{Num}_{1}(M)_{q}=\left\{m_{11}\right\}$. If $m_{11}+m_{12}+m_{21}+m_{22}=0$ and $m_{12}+m_{21} \neq 0$, then $\operatorname{Num}_{1}(M)_{q}=\mathbb{F}_{q}$. If $m_{11}+m_{12}+m_{21}+m_{22} \neq 0$ and $m_{12}+m_{21}=0$, then $\operatorname{Num}_{1}(M)=\mathbb{F}_{q}$, because every element of \mathbb{F}_{q} is a square. If $m_{11}+m_{12}+m_{21}+m_{22} \neq 0$ and $m_{12}+m_{21} \neq 0$, for any $\gamma \in \mathbb{F}_{q}$ the polynomial $\left(m_{11}+m_{12}+m_{21}+m_{22}\right) t^{2}+\left(m_{12}+m_{21}\right) t+\left(m_{12}+m_{21}\right)+\gamma$ has 2 distinct roots in $\overline{\mathbb{F}}_{q}$ and either none of both roots are contained in \mathbb{F}_{q}. Thus, $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=q / 2$.

Proposition 2 Assume q even and take $k \in \mathbb{F}_{q}^{*}$. Take $M=\left(m_{i j}\right) \in M_{n, n}\left(\mathbb{F}_{q}\right)$.
(a) We have $\sharp\left(\operatorname{Num}_{k}(M)\right)=1$ if and only if $m_{i j}+m_{j i}=0$ for all $i \neq j$ and $m_{i i}=m_{11}$ for all i.
(b) If $\sharp\left(\operatorname{Num}_{k}(M)\right) \neq 1$, then $\sharp\left(\operatorname{Num}_{k}(M)\right) \geq q / 2$.

Proof By Remark 3 it is sufficient to do the case $k=1$. By Remark 1 it is sufficient to prove the statements for the matrix $N=\left(n_{i j}\right)$ with $n_{i i}=m_{i i}$ for all $i, n_{i j}=0$ if $i>j$ and $n_{i j}=m_{i j}+m_{i j}$ if $i<j$. Take N with $\sharp\left(\operatorname{Num}_{1}(N)_{q}\right)=1$. Applying Proposition 1 to all $N_{\mid \mathbb{F}_{q} e_{i}+\mathbb{F}_{q} e_{j}}$ we get the "only if" part of (a), while the "if" part is trivial. Proposition 1 also gives part (b).

Proposition 3 Assume q odd and take $k \in \mathbb{F}_{q}^{*}$ and $M:=\left(m_{i j}\right) \in M_{2,2}\left(\mathbb{F}_{q}\right)$.
(a) If k is not a square, assume $q \geq 7$. We have $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)=1$ if and only if $m_{11}=m_{22}$ and either $m_{12}+m_{21}=0$ or $q=3,5$.
(b) Assume $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)>1$. We have $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right) \geq\lceil(q-1+\eta) / 4\rceil$ with $\eta=0$ if $q \equiv 1(\bmod 4)$ and $\eta=2$ if $q \equiv-1(\bmod 4)$.
Proof We have $\operatorname{Num}_{k}(M)_{q} \neq \emptyset$. Take $u=\left(x_{1}, x_{2}\right)$ with $x_{1}^{2}+x_{2}^{2}=k$. By Lemma 6 we have $\sharp\left(C_{2}(k)_{q}\right)=$ $q-1+\eta$. The map $u \mapsto h_{M}(u)$ induces a surjection $\pi: C_{2}(k)_{q} \rightarrow \operatorname{Num}_{k}(M)_{q}$. The map π is induced by the restriction to $C_{2}(1, k)$ of a homogeneous quadratic equation of \mathbb{F}_{q}^{2}. Since $C_{2}(k)_{q}$ is irreducible (even over the algebraic closure of \mathbb{F}_{q}), either π is a constant map or each of its fibers have cardinality at most 4, concluding the proof of part (b).

Now assume $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)=1$. We get that the the restriction to $C_{2}(k)_{q}$ (i.e. taking $\left.x_{2}^{2}=k-x_{11}^{2}\right)$ of the function $h\left(x_{1}, x_{2}\right):=\left(m_{11}-m_{22}\right) x_{11}^{2}+\left(m_{12}+m_{21}\right) x_{1} x_{2}-k m_{22}$ is a constant function, i.e. ($m_{11}-$ $\left.m_{22}\right) x_{11}^{2}+\left(m_{12}+m_{21}\right) x_{1} x_{2}$ is constant.
(i) First assume that k is a square in \mathbb{F}_{q}, say $k=c^{2}$. We have $c \neq 0$. Since $\operatorname{Num}_{c^{2}}(M)_{q}=c \operatorname{Num}_{1}(M)_{q}$ (Remark 4), it is sufficient to do the case $k=1$. By the second part of Remark 4 we have $\left\{m_{11}, m_{22}\right\} \subseteq$ $\operatorname{Num}_{1}(M)_{q}$ and thus $m_{11}=m_{22}=0$. Taking $M-m_{11} \mathbb{I}_{2,2}$ instead on M we reduce to the case $m_{11}=m_{22}=0$ by the first part of Remark 4. If $m_{12}+m_{21}=0$, then $h_{M} \equiv 0$ and hence $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)=1$. If $m_{12}+m_{21} \neq 0$, then Proposition 4 below gives $\sharp\left(\operatorname{Num}_{k}(M)_{q}\right)>1$, unless $q=3,5$.
(ii) Now assume that k is not a square in \mathbb{F}_{q}. Set $E:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid x_{1}^{2}+x_{2}^{2}=k x_{3}^{2}\right\}$, so that $C_{2}(k)_{q}=E \backslash E \cap\left\{x_{3}=0\right\}$. Write $\operatorname{Num}_{k}(M)_{k}=\{\alpha\}$ and set $Z:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid\right.$ $\left.m_{11} x_{1}^{2}+m_{22} x_{2}^{2}+\left(m_{12}+m_{21}\right) x_{1} x_{2}=\alpha x_{3}^{2}\right\}$. If $Z=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$, then $\alpha=0$ and $m_{11}=m_{22}=m_{12}+m_{21}=0$ and hence $\operatorname{Num}_{k}(M)_{q}=\{0\}$. Hence, we may assume that Z is a conic defined over \mathbb{F}_{q} (not necessarily a smooth conic). Since E is geometrically irreducible, either $E=Z$ or $\sharp(Z \cap E) \leq 4$. Since $\sharp\left(C_{2}(k)_{q}\right)>4$, then $E=Z$. Thus, $m_{11}=m_{22}$ and $m_{12}+m_{21}=0$.

Proposition 4 Take

$$
M=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
$$

for some $b \in \mathbb{F}_{q}^{*}$.
(a) If q is even then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=q / 2$; we have $\operatorname{Num}_{1}(M)_{2}=\{0\}$ and $\operatorname{Num}_{1}(M)_{q}=b \mathbb{F}_{q / 2}$ if $q>2$.
(b) Assume that $q=p^{e}$ is odd, $e \geq 1$.
(b1) Assume that either e is even or that $\left(p^{2}-1\right) / 8$ is even and that $q \equiv 1(\bmod 4)$. Then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=$ $(q+3) / 4$.
(b2) Assume that either e is even or that $\left(p^{2}-1\right) / 8$ is even and that $q \equiv-1(\bmod 4)$. Then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=(q+5) / 4$.
(b3) Assume that e and $\left(p^{2}-1\right) / 8$ are odd and that $q \equiv 1(\bmod 4)$. Then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=(q-1) / 4$.
(b4) Assume that e and $\left(p^{2}-1\right) / 8$ are odd and that $q \equiv-1(\bmod 4)$. Then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=(q+1) / 4$.
Proof Taking $(1 / b) M$ instead of M we reduce to the case $b=1$. Take $u=\left(x_{1}, x_{2}\right)$ such that $x_{1}^{2}+x_{2}^{2}=1$. We have $h_{M}(u)=x_{1} x_{2}$. Hence, $0 \in \operatorname{Num}(M)_{q}$ and $h_{M}(u) \neq 0$ if and only if $x_{1} \neq 0$ and $x_{2} \neq 0$.
(a) Assume that q is even and so $x_{2}=x_{1}+1$ and $h_{M}(u)=x_{1}^{2}+x_{1}$. If $q \geq 4$, the function $t \mapsto t^{2}+t$ is a trace-function $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q / 2}$, while $t^{2}+t=0$ if $t \in \mathbb{F}_{2}$. Thus, $\operatorname{Num}_{1}(M)_{2}=\{0\}$ and $\operatorname{Num}_{1}(M)_{q}=\mathbb{F}_{q / 2}$ if $q>2$.
(b) Assume that q is odd. Recall that $\sharp\left(C_{2}(1)_{q}\right)=q-1$ if $q \equiv-1(\bmod 4)$ and $\sharp\left(C_{2}(1)_{q}\right)=q+1$ if $q \equiv 1(\bmod 4)\left(\right.$ Lemma 6). If $x_{1}^{2}+x_{2}^{2}=1=y_{1}^{2}+y_{2}^{2}$ and $x_{1} x_{2}=y_{1} y_{2}$, then $\left(x_{1}+x_{2}\right)^{2}=\left(y_{1}+y_{2}\right)^{2}$ (i.e. either $x_{1}+x_{2}=y_{1}+y_{2}$ or $\left.x_{1}+x_{2}=-y_{1}-y_{2}\right)$ and $\left(x_{1}-x_{2}\right)^{2}=\left(y_{1}-y_{2}\right)^{2}$ (i.e. either $x_{1}-x_{2}=y_{1}-y_{2}$ or $\left.x_{1}-x_{2}=y_{2}-y_{1}\right)$ and hence (since 2 is invertible in \mathbb{F}_{q}) either $\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)$ or $\left(y_{1}, y_{2}\right)=\left(x_{2}, x_{1}\right)$ or $\left(y_{1}, y_{2}\right)=\left(-x_{1},-x_{2}\right)$ or $\left(y_{1}, y_{2}\right)=\left(-x_{2},-x_{1}\right)$. If $x_{i} \neq 0$ for all $i, x_{1} \neq x_{2}$ and $x_{1} \neq-x_{2}$, then the set $A:=\left\{\left(x_{1}, x_{2}\right),\left(-x_{1},-x_{2}\right),\left(x_{2}, x_{1}\right),\left(-x_{2},-x_{1}\right)\right\}$ has cardinality 4 . If $x_{1}=0$, then $x_{2}= \pm 1$ and the set A has cardinality 4. The same is true if $x_{2}=0$. If $x_{2}= \pm x_{1} \neq 0$, then A has cardinality 2 . If $x_{2}= \pm x_{1}$ we have $x_{1}^{2}+x_{2}^{2}=1$ if and only if $x_{1}^{2}=1 / 2$ and this is the case for some $x_{1} \in \mathbb{F}_{q}$ if and only if 2 is a square in \mathbb{F}_{q}. Write $q=p^{e}$ for some $e \geq 1.2$ is a square in \mathbb{F}_{p} if and only if $\left(p^{2}-1\right) / 8$ is even by the Gauss reciprocity law ($[5$, Proposition 5.2.2]). If e is even, 2 is always a square in \mathbb{F}_{q}, because if a square-root of 2 is not contained in \mathbb{F}_{p}, then it generates $\mathbb{F}_{p^{2}} \supseteq \mathbb{F}_{p}$. If e is odd, \mathbb{F}_{q} has a square-root of 2 if and only if \mathbb{F}_{p} has a square-root of 2 , because \mathbb{F}_{q} contains \mathbb{F}_{p}, but not $\mathbb{F}_{p^{2}}$. Note that there is $A \subset C_{2}(1)_{q}$ with $x_{2}=x_{1}$ if and only if there is $A \subset C_{2}(1)_{q}$ with $x_{2}=-x_{1}$. Thus, we counted the cardinality of the fibers of the surjection $\pi: C_{2}(1)_{q} \rightarrow \operatorname{Num}(M)_{q}$ in terms of q (either all fibers have cardinality 4 or 2 have cardinality 2 and the other ones have cardinality 4).

Proposition 4 shows that part (b) of Proposition 3 is often sharp.
Proposition 5 Take $b, b^{\prime} \in \mathbb{F}_{q}^{*}$ and set

$$
M=\left(\begin{array}{ccc}
0 & b & 0 \\
0 & 0 & b^{\prime} \\
0 & 0 & 0
\end{array}\right)
$$

1. If q is even and $b=b^{\prime}$, then $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=q / 2$ with $\operatorname{Num}_{1}(M)_{2}=\{0\}$ and $\operatorname{Num}_{1}(M)_{q}=b \mathbb{F}_{q / 2}$ for all $q \geq 4$.
2. If q is even and $b \neq b^{\prime}$, then $\operatorname{Num}_{0}(M)_{q}=\mathbb{F}_{q}$.
3. If $q \equiv 1(\bmod 4)$, then $\operatorname{Num}_{1}(M)=\mathbb{F}_{q}$.

Proof Taking b / b^{\prime} instead of b and $\frac{1}{b^{\prime}} M$ instead of M we reduce to the case $b^{\prime}=1$. Take $u=\left(x_{1}, x_{2}, x_{3}\right)$. We have $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}\left(b x_{1}+x_{3}\right)$.
(a) Assume q even and take $x_{3}=x_{1}+x_{2}+1$, i.e. we compute $\operatorname{Num}_{1}(M)_{q}$. We get $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{2}\left((b-1) x_{1}+x_{2}+1\right)$. First assume $b=1$. In this case $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2}+x_{2}$ and hence $\operatorname{Num}_{1}(M)_{q}$ is the image of the trace map $x_{2} \rightarrow x_{2}^{2}+x_{2}$. Hence, $\sharp\left(\operatorname{Num}_{1}(M)_{q}\right)=q / 2$ with $\operatorname{Num}_{1}(M)_{2}=\{0\}$ and
$\operatorname{Num}_{1}(M)_{q}=b \mathbb{F}_{q / 2}$ for all $q \geq 4$. Now assume $b \neq 1$. For any $c \in \mathbb{F}_{q}$ take $x_{2}=1, x_{1}=c /(b-1)$, and $x_{3}=x_{1}+x_{2}+1$.
(b) Assume q even and take $x_{3}=x_{1}+x_{2}$, i.e. we compute $\operatorname{Num}_{0}(M)_{q}$. We have $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{2}\left((b+1) x_{1}+x_{2}\right)$. Fix $c \in \mathbb{F}_{q}$. Since c is a square, say $c=s^{2}$, we take $x_{2}=s$ and $x_{1}=0$.
(c) Assume $q \equiv 1(\bmod 4)$. Hence, there is $\epsilon \in \mathbb{F}_{q}$ with $\epsilon^{2}=-1$. Take $x_{2}=1$ and $x_{3}=\epsilon x_{1}$, so that for any x_{1} we have $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. We have $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}(b+\epsilon)$ and hence $h_{M \mid C_{3}(1)_{q}}$ is surjective, i.e. $\operatorname{Num}_{1}(M)=\mathbb{F}_{q}$, if $b \neq-\epsilon$. Now assume $b=-\epsilon$. In this case we take $x_{2}=1$ and $x_{3}=-\epsilon x_{1}$, so that for any x_{1} we have $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ and $h_{M}\left(x_{1}, x_{2}, x_{3}\right)=-2 \epsilon x_{1}$. Hence, $h_{M \mid C_{3}(1)_{q}}$ is surjective.

Proposition 6 Fix $k \in \mathbb{F}_{q}$ and $b \in \mathbb{F}_{q}^{*}$. Set

$$
M=\left(\begin{array}{llll}
0 & b & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then $\operatorname{Num}_{k}(M)_{q}=\mathbb{F}_{q}$.
Proof Taking $\frac{1}{b} M$ instead of M we reduce to the case $b=1$. If $u=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, then $h_{M}(u)=$ $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}$.
(a) Assume q even. Since $x_{4}=k+x_{3}+x_{2}+x_{1}$, we get $h_{M}(u)=x_{1} x_{2}+x_{3}^{2}+x_{1} x_{3}+k x_{3}$. For any $c \in \mathbb{F}_{q}$, take $x_{3}=0, x_{1}=c$, and $x_{2}=1$.
(b) Assume q odd.
(b1) Assume that k is a nonzero square in \mathbb{F}_{q}. By Remark 3 we may assume $k=1$. Taking $x_{1}=1$ and $x_{2}=x_{3}=x_{4}=0$ we see that $0 \in \operatorname{Num}_{1}(M)_{q}$. Set $x_{2}=1$ and hence $h_{M}(u)=x_{1}+x_{3}\left(x_{4}+x_{3}\right)$. Take $c \in \mathbb{F}_{q}^{*}$. We need to find $\left(x_{1}, x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{3}$ with $x_{1}^{2}+x_{3}^{2}+x_{4}^{2}=0$ and $c=x_{1}+x_{3}\left(x_{4}+x_{3}\right)$, i.e. $\left(x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{2}$ with $\left(c-x_{3}\left(x_{4}+x_{3}\right)\right)^{2}+x_{3}^{2}+x_{4}^{2}=0$. The latter is the equation of an affine degree 4 curve $T \subset \mathbb{F}_{q}^{2}$. Call $J \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ the projective completion of its defining equation, i.e. the curve with $\left(c z^{2}-x_{3}\left(x_{4}+x_{3}\right)\right)^{2}+z^{2} x_{3}^{2}+z^{2} x_{4}^{2}=0$ as its equation. If $T \neq \emptyset$, then we are done. Hence, we may assume $T=\emptyset$. The line at infinity $\{z=0\}$ intersects J in the points $\{(0: 1: 0),(1:-1: 0)\}$, which are singular points of J with multiplicity 2 and on them lie at most 4 points over the normalization of the reduced curve J; if J is geometrically irreducible with geometric genus 1 , then there are at most 3 because at $(0: 1: 0)$ the tangent cone has z^{2} as its equation.

Claim 1: Over $\overline{\mathbb{F}}_{q} J$ is not a union of lines (counting multiplicities) defined over $\overline{\mathbb{F}}_{q}$.
Proof of Claim 1: The singular points of J are its multiple components and the intersection of its components defined over $\overline{\mathbb{F}}_{q}$. At $(0: 1: 0)$ the equation of J has z^{2} as its leading part and hence the tangent cone to J at $(0: 1: 0)$ is $\{z=0\}$ counted with multiplicity 2 . Hence, z^{2} divides the equation of J, which is false.

Claim 2: J is not a union of two smooth conics defined over $\mathbb{F}_{q^{2}}$, but not over \mathbb{F}_{q}.
Proof of Claim 2: Assume that this is the case with $J=C_{1} \cup C_{2}$. We have $\sigma\left(C_{1}\right)=C_{2}$ and $\sigma\left(C_{2}\right)=C_{1}$, where σ is induced by the Frobenius map $t \mapsto t^{q}$. The singular points of J are the points $C_{1} \cap C_{2}$ and $(0: 1: 0),(1:-1: 0)$ are two of these points, both defined over \mathbb{F}_{q}. As in the proof of Claim 1 we get that
$\{z=0\}$ is the tangent line to both C_{1} and C_{2} at $(0: 1: 0)$. Writing $y=x_{3}+x_{4}$, the multiplicity 2 part at $(1:-1: 0)$ of the equation of J is $x_{3}^{2}\left(y^{2}+z^{2}\right)$ and so C_{1} and C_{2} have different tangents at $(1:-1: 0)$. We get that $C_{1} \cap C_{2}$ has exactly one point (call it o) outside the line $\{z=0\}$. Since $\sigma\left(C_{i}\right)=C_{3-i}, i=1,2$, and σ fixes $\{(0: 1: 0),(1:-1: 0)\}$, we have $\sigma(o)=o$, i.e. $o \in \mathbb{F}_{q}^{2}$, i.e. $T \neq \emptyset$, a contradiction, concluding the proof of Claim 2.

An irreducible conic defined over \mathbb{F}_{q} has $q+1$ points ([3, Table 7.2]). Since over $J \backslash T$ the normalization of J has at most 4 points, the Hasse-Weil lower bound for the number of points of a curve of genus ≤ 1 (applied if J is reducible to the connected components of its normalization) gives $T \neq \emptyset$ if $q+1>2 \sqrt{q}+3$, i.e. if $q \geq 9$. All cases with $q \equiv 1(\bmod 4)$ are covered by Proposition 5 . Take $q=3 ; u=(1,1,1,1)$ gives $0 \in \operatorname{Num}_{1}(M)_{3}$; $u=(2,2,1,1)$ gives $1 \in \operatorname{Num}_{1}(M)_{q} ; u=(2,1,1,2)$ gives $2 \in \operatorname{Num}(M)_{3}$. Take $q=7 ; u=(0,0,0,1)$ gives $0 \in \operatorname{Num}_{1}(M)_{7} ; u=(4,2,1,1)$ gives $4 \in \operatorname{Num}_{1}(M)_{7} ; u=(2,4,1,1)$ gives $6 \in \operatorname{Num}_{1}(M)_{7} ; u=(2,5,0,0)$ gives $3 \in \operatorname{Num}_{1}(M)_{7} ; u=(3,0,2,3)$ gives $1 \in \operatorname{Num}_{1}(M)_{7} ; u=(4,3,3,4)$ gives $5 \in \operatorname{Num}_{1}(M)_{7} ; u=(5,1,1,3)$ gives $2 \in \operatorname{Num}_{1}(M)_{7}$.
(b2) Take $k=0 . u=(0,0,0,0)$ gives $0 \in \operatorname{Num}_{0}(M)_{q}$. Take $x_{4}=-x_{2}$ and so $h_{M}(u)=x_{1} x_{2}$. Fix $c \in \mathbb{F}_{q}^{*}$ and take $x_{2}=c / x_{1}$. We need to find $\left(x_{1}, x_{3}\right) \in T$, where $T \subset \mathbb{F}_{q}^{2}$ is the affine curve $x_{1}^{4}+c^{2}+x_{1}^{2} x_{3}^{2}=0$. Assume $T=\emptyset$ and call $J \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ the projective completion of the equation defining T, i.e. the curve with $x_{1}^{4}+z^{4} c^{2}+x_{1}^{2} x_{3}^{2}=0$ as its equation. $J \cap\{z=0\}$ contains the points ($0: 1: 0$) (which has multiplicity 2 with x_{1}^{2} as its tangent cone) and (over any extension of \mathbb{F}_{q} on which -1 has a root) two other points at which J is smooth. Take the affine set $J^{\prime \prime}:=J \cap\left\{x_{3} \neq 0\right\}$. Taking $x_{3}=1, w=c z^{2}$, and $y=x_{1}^{2}$ we see that J is irreducible and that the normalization J^{\prime} of J is a double covering of the rational curve $y^{2}+w^{2}=y$ ramified at at most 4 points. The Hasse-Weil lower bound gives $T \neq \emptyset$ if $q+1>2 \sqrt{q}+3$, i.e. if $q \geq 9$. Now assume $q=3 ; u=(1,1,1,0)$ gives $2 \in \operatorname{Num}_{0}(M)_{3} ; u=(1,0,1,1)$ gives $1 \in \operatorname{Num}_{0}(M)_{3}$. Now assume $q=5$; $u=(2,1,0,0)$ gives $2 \in \operatorname{Num}_{0}(M)_{5} ; u=(2,1,2,1)$ gives $1 \in \operatorname{Num}_{0}(M)_{5} ; u=(3,1,0,0)$ gives $3 \in \operatorname{Num}_{0}(M)_{5}$; $u=(3,1,3,1)$ gives $4 \in \operatorname{Num}_{0}(M)_{5}$. Now assume $q=7 ; u=(0,0,0,0)$ gives $0 \in \operatorname{Num}_{0}(M)_{7}$; to get all squares it is sufficient to prove that $4 \in \operatorname{Num}_{0}(M)_{7}$: take $u=(6,4,2,0)$; to get all nonsquares it is sufficient to prove that $5 \in \operatorname{Num}_{0}(M)_{7}$: take $u=(3,1,2,0)$.
(b3) Take as k any nonsquare. Taking $x_{2}=x_{3}=0$ and x_{1}, x_{4} with $x_{1}^{2}+x_{4}^{2}=k$ ([3, Lemma 5.1.4]) we see that $0 \in \operatorname{Num}_{k}(M)_{q}$. We adapt the proof of step (b1). Set $x_{2}=1$ and hence $h_{M}(u)=x_{1}+x_{3}\left(x_{4}+x_{3}\right)$. Fix $c \in \mathbb{F}_{q}^{*}$. We need to find $\left(x_{1}, x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{3}$ with $x_{1}^{2}+x_{3}^{2}+x_{4}^{2}=k-1$ and $c=x_{1}+x_{3}\left(x_{4}+x_{3}\right)$, i.e. $\quad\left(x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{2}$ with $\left(c-x_{3}\left(x_{4}+x_{3}\right)\right)^{2}+x_{3}^{2}+x_{4}^{2}=k-1$. The latter is the equation of an affine degree 4 curve $T \subset \mathbb{F}_{q}^{2}$. Call $J \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ the projective completion of its equation, i.e. the curve with $\left(c z^{2}-x_{3}\left(x_{4}+x_{3}\right)\right)^{2}+z^{2} x_{3}^{2}+z^{2} x_{4}^{2}=(k-1) z^{4}$ as its equation. If $T \neq \emptyset$, then we are done. Hence, we may assume $T=\emptyset$. The line at infinity $\{z=0\}$ intersects J in the points $\{(0: 1: 0),(1:-1: 0)\}$, which are singular points of J with multiplicity 2 and on them lie at most 4 points over the normalization J^{\prime} of the reduced curve J (at most 3 if J^{\prime} is not rational). As in step (b1) we see that J is neither the union of 4 lines not defined over \mathbb{F}_{q} nor the union of 2 smooth conics not defined over \mathbb{F}_{q}. Then using the Hasse-Weil bound we get $T \neq \emptyset$, unless $q=3,5,7$. Take $q=3$ and so $k=2 ; u=(1,1,0,0)$ gives $1 \in \operatorname{Num}_{2}(M)_{3} ; u=(2,1,0,0)$ gives $2 \in \operatorname{Num}_{2}(M)_{3}$. Now assume $q=5$; we take $k=2 ; u=(1,1,0,0)$ gives $1 \in \operatorname{Num}_{2}(M)_{5} ; u=(2,1,1,1)$ gives $4 \in \operatorname{Num}_{2}(M)_{5} ; u=(2,2,2,0)$ gives $3 \in \operatorname{Num}_{2}(M)_{5} ; u=(4,4,1,2)$ gives $2 \in \operatorname{Num}_{2}(M)_{5}$. Now assume $q=7$;
we take $k=3 ; u=(3,0,0,1)$ implies $0 \in \operatorname{Num}_{3}(M)_{7} ; u=(0,3,1,0)$ implies $3 \in \operatorname{Num}_{3}(M)_{7} ; u=(1,1,1,0)$ implies $2 \in \operatorname{Num}_{3}(M)_{7} ; u=(1,1,0,1)$ implies $1 \in \operatorname{Num}_{3}(M)_{7} ; u=(4,3,3,2)$ implies $6 \in \operatorname{Num}_{3}(M)_{7}$; $u=(3,3,3,5)$ gives $5 \in \operatorname{Num}_{3}(M)_{q} ; u=(5,6,1,3)$ gives $4 \in \operatorname{Num}_{3}(M)_{7}$.

Remark 6 Fix an integer $n \geq 5$ and let $M=\left(m_{i j}\right) \in M_{n, n}\left(\mathbb{F}_{q}\right)$ be the Jordan matrix with a unique block, i.e. $m_{i j}=0$, unless $j=i+1, i=1, \ldots, n-1$. Taking $u=\left(x_{1}, \ldots, x_{n}\right) \in C_{n}(k)_{q}$ with $x_{i}=0$ for all $i>4$ we see that Proposition 5 implies $\operatorname{Num}_{k}(M)_{q}=\mathbb{F}_{q}$.

References

[1] Ballico E. The Hermitian null-range of a matrix over a finite field. arXiv: 1611.08840.
[2] Coons JI, Jenkins J, Knowles D, Luke RA, Rault PX. Numerical ranges over finite fields. Linear Algebra Appl 2016; 501: 37-47.
[3] Hirschfeld JWP. Projective Geometries over Finite Fields. Oxford, UK: Clarendon Press, 1979.
[4] Hirschfeld JWP, Thas JA. General Galois Geometries. Oxford, UK: Oxford University Press, 1991.
[5] Ireland K, Rosen M. A Classical Introduction to Modern Number Theory. New York, NY, USA: Springer, 1982.
[6] Small C. Arithmetic of Finite Fields. New York, NY, USA: Marcel \& Dekker, 1973.

[^0]: *Correspondence: ballico@science.unitn.it
 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

