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Abstract: Let h,hy : Fy — F, be quadratic forms with h not degenerate. Fix k € F; and set Cn(k,h)r, :=
{h(z1,...,2n) = k} C Fy. We compute (in many cases) the image of haricn (kihye, - This question is related to a

question on the numerical range of matrices over a finite field.
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1. Introduction

For any field K let M, ,(K) denote the set of all n x n matrices with coefficients in K. Take a field K, a
nondegenerate quadratic form h: K™ — K, and an n x n matrix M = (m;;) € M, o(K), i¢,j =1,...,n. For
any (x1,...,2,) € K™ set hpy(x1,...,2p,) = Zij mi;xix;. For any k € K set Cp(k,h)kx = {(z1,...,2,) €
K™ | h(z1,...,2,) = k}. Let Numy(M)px C K be the set of all hp(21,...,2,) with (21,...,2,) €
Cr(k,h)k. We came to this topic in [1], motivated to a similar set-up related to the numerical range of a
matrix over a finite field introduced in [2]. We consider the case in which K is a finite field F, and prove the

following result.

Theorem 1 Take n > 2, any nondegenerate quadratic form h: ¥y — F,, any k € Fy, and any M € M, »(F,).
(a) Assume k = 0. Either Numo(M)pr, = {0} or Numg(M)pr, = Fy or q is odd, §(Numo(M)pr,) =
(¢ +1)/2 and there is ¢ € F}; such that Numo(M)nr, is the union of {0} and all g € F, such that g/c is a
square.
(b) Assume n >3 and q # 2. §(Numy(M)pr,) =1 for some k € Fy if and only if has is a multiple of

(c) Assume §(Numy(M)pr,) # 1. If n = 2, then §(Numy(M)nr,) > [(¢ —1)/4]. If n > 3, then
§(Numy, (M)nr,) = [q/2].

See Example 1 for a discussion on the strength of parts (a) and (c) of Theorem 1.

See [3, Ch. 5] and [4, §22.1] for the classification of nondegenerate quadratic forms. In [1, §3] we considered

the case k = 0 of a similar problem with instead of h the quadratic form > | #?, which is nondegenerate if

77

q is odd, but it has rank 1 if ¢ is even. For any k € Fy set Cy(k)q := {(z1,...,2n) € FJ [ 2} +--- + 2] = k}.
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Let Numy (M), be the set of all has(u) with uw € C,(k)q. In Section 3 we consider the case in which we take
2?4 -+22 instead of h. We improve in this case part (c) of Theorem 1 (see Proposition 3 for ¢ odd). We give
very precise descriptions of Numy (M), when M is the matrix with a unique Jordan block (see Propositions
4,5, and 6 for the cases n = 2,3,4, respectively). We get Numy (M), = F, for all n > 4 for these matrices
(Proposition 6 and Remark 6). In each case standard lemmas or reduction steps compute Numy (M), for many

matrices related to direct sums of Jordan blocks.

2. Proof of Theorem 1
For any field K set K*:= K \ {0}. Let e; = (1,0,...,0),...,e, = (0,...,0,1) be the standard basis of I .

For each n > 0 let I,,x, denote the n X n identity matrix.

Remark 1 Fiz M = (my;), N = (n;5) € My, o(Fy) such that my; = ny; for all ¢ and m;; +mj; = ni; +nj; for
all i # 5. Then hpyr = hy .

Remark 2 Fiz k € F,, positive integers n,m, A € M, ,(F,), and B € My, ,(F,). Set M := A® B €
Myimontm)(Fq). We have

Numy (M)q = Uk, ka€Fy by ko =kNump, (A)g + Numg, (B),.
For any nondegenerate h we also have

Numy (M)n 5, = Uk koeFy.ky+ko=k Numg, (A)p 5, + Nump, (B)nF,-

q

Lemma 1 For any n > 2, any nondegenerate quadratic form h, and any k € Fy we have Numy(M)pr, # 0.

Proof We have Numy (M), # 0 if and only if h: F? — F, has k in its image. Thus, Num (M), r, # 0
for all k if and only if h is surjective. If ¢ is odd, then h is surjective by [6, Theorem 4.12]. If ¢ is even, then
h is surjective by [6, Theorem 4.16]. O

Lemma 2 Assume n >3 and q # 2. The following conditions are equivalent:
(a) har is proportional to h;
(b) there is k € Fy such that §(Numy(M)pr,) = 1;
(c¢) §(Numy(M)pr,) =1 for all k € F,.

Proof By Lemma 1 we have Numy (M), # 0. For each t,w € F, the system h(zi,...,2,) —k =
hy(z1, 22, ..., 2ym) —w = 0 has a solution if and only h(z1,...,z,) —k = hy (21, 22,. .., 2,) —th(x1, ..., 2,) —
(w —tk) = 0 has a solution. Hence, if hj; is a multiple of h, then f(Numg(M),r,) = 1 for all k& € F,.
Now assume §(Numg(M)pr,) = 1 for some k € F,. Set Z := {(z1,...,2,) € Fy | h(w1,...,2,)}. We take
Z1,...,%n, 2 as homogeneous coordinates of P* and set Z' := {(z1: -+ : zp : 2) € P*"(F,) | h(z1,...,2p) =
kz%}. If k = 0, then Z’ is a quadric cone with vertex (0 :...,0: 1) ¢ Z and with as a basis the smooth
quadric {h(z1,...,z,) = 0} of P""1(F,). If k # 0 and ¢ is odd, then Z’ is a smooth quadric hypersurface,
because the partial derivative 9/9, of h(w1,...,x,) — k2% is —2kz, which vanishes only if 2 = 0, while the

partial derivatives of h(x1,...,x,) vanish simultaneously only at 1 = --- = x,, = 0, because h is assumed to
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be nondegenerate. If ¢ is even, then Z’ is nondegenerate for n even, while it has corank 1 if n is odd (use the
canonical forms in [3, Theorem 5.1.7] or [4, §22.1]).

Claim 1: Assume q odd, k # 0, and n = 3. Then Z’ is a hyperbolic quadric.

Proof of Claim 1: Take a € Fy such that —a is a square in Fy. Since all smooth conics over F, are
projectively equivalent ([3, Theorem 5.1.6]), there is a linear change of coordinates such that h(y1,y2,y3) =
y1y2 + aky3, where yi1,y2,ys are the new linear coordinates. Hence, h(y1,y2,y3) — k2?2 = y1ya — k(2% + ay3).
By the choice of a we have 222 + ay% = wswy with w3, wy a linear combination of y3 and z. Since Z’ is
nondegenerate, ws and w4 are not proportional. In the coordinates yi,ys,ws,ws the quadric Z’ has the
canonical form of a hyperbolic quadric.

Claim 2: For each u € Z’ there is a line ¢ C Z’ with u € £.

Proof of Claim 2: If k = 0, then Claim 2 is true, because Z’ is a cone. If n > 4, then Claim 2 is true
for an arbitrary quadric hypersurface. If n = 3, k # 0, and ¢ is even, then Claim 2 is true, because Z’ is a
cone. If n =3, n# 0, and ¢ is odd, then Claim 2 is equivalent to Claim 1.

If hps(u) =0 forall u € [y , then it is a multiple of 1, because for n > 3 no homogeneous degree 2 polyno-
mial vanishes at all points of . Hence, we may assume that the quadratic function hj; induces a nonconstant
map u : Fy — F,. Since u is not constant, for each t € Fy the set u~1(t) is an affine quadric hypersurface of
[Fy defined over F,. By assumption the affine quadric hypersurface Cy,(k, h)r, = {h(z1,...,7,) = k} is one of
the fibers of u, say Cp(k,h)r, = u'(t). Set W :={(z1 : - : @y : 2) € P"(Fy) | har(w1, ..., 2n) — t22 = 0}.
Let H Cc P*(F,) be the hyperplane {z = 0}. Take u € Z and call L a line defined over F,, contained
in Z' and with v € L (Claim 2). We have §(L N Z) = q. By assumption W\ W NH DO LN Z. Since
$(LNW)>q>3>deg(hn), we have L C W. Hence, we see that W contains all lines of Z’ intersecting Z.
By Claim 2 this implies first that W has the same rank as Z’ and then that Z’ = W. Since n > 3, there is
c € Fy such that hyr(@1,...,2m) —t = c(h(z1,...,2m) — k). O

Proof of Theorem 1. We have Numy (M), r, # () by Lemma 1.

Lemma 2 gives part (b). We take Z and Z’ as in the proof of Lemma 2.

(a) Take k = 0. Taking 0 € F} we get 0 € Numg(M)pr, . Assume the existence of ¢ € Fy"\Numy (M) r,
and take (a1,...,a,) € F} such that hp(ai,...,a,) = c. Note that for any ¢t € Fy we have (tay, ..., ta,) € Z
and hp(tay, ... tay) = t*c. Hence, Numy (M), contains all elements = € F} such that c/z is a square.
If ¢ is even we get that either Numy(M)yr, = {0} or Nump(M),r, = F,. If ¢ is odd we get that
f(Numy (M )nr,) € {1,(¢+1)/2,q} and the description in part (a).

(b) From now on we fix k € F; and we assume #(Numy, (M) r,) > 1. First assume n = 2. In this case
Z is a nonempty affine conic whose degree 2 part has rank 2 and hence #(Z) > ¢ — 1. Since hys is induced by
a degree 2 polynomial and Z ¢ hl\_/Il (t) for any t € F, each fiber of hpsz has cardinality < 4 and hence the
image of hjyz has cardinality > [(q —1)/4].

Now assume n > 3. By assumption hjyz is not a constant. Take a line L C Z’ such that LN Z # ().
We have (L N Z) = q. Since hysjpnz is induced by a polynomial of degree < 2, either hyspnz is constant or
each fiber of hj i nz has cardinality at most 2. In the latter case the image of hjsznr has cardinality > /2.
Thus, to conclude the proof of Theorem 1, it is sufficient to find a line L € Z’ such that LNZ # () and h M|LNZ

is not a constant. We assume that no such a line exists. By assumption m := hysz : Z — F, is not constant.
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Take 0,0 € Z such that m(o) # m(o’). By Claim 2 of the proof of Lemma 2 there are lines L, L’ C Z’ such
that o € L and o' € L’. Our assumptions on the lines of Z’ meeting Z imply that m|;nz and m|;nz are
constant. Let R C P"(F,) be the line spanned by {o,0'}. Since 0,0’ € Z and m(o) # m(0’), our assumption

on the lines contained in Z’ and intersecting Z implies R ¢ Z'.

(bl) Assume LN L' = . In this case the linear span E C P"(F,) of L UL’ has dimension 3. First
assume F C Z’. In this case the line R joining o and o’ is contained in Z’, a contradiction. Now assume
E ¢ 7' and so ENZ' is a quadric hypersurface of E defined over F,. Since ENZ’ contains two disjoint lines
(L and L) either Z' N E is a smooth hyperbolic quadric surface or it is the union of two different planes ([4,
page 4]).

(b1.1) Assume that Z' N E is a smooth hyperbolic quadric surface. Since LN L' =@, L and L’ are in
the same ruling of Z'NFE (call it the first ruling of FNZ). Since ZNE # 0, Z’NENH is a divisor of bidegree
(1,1), i.e. either a reducible conic or a smooth conic. For any a € L let R, be the line of the second ruling of
ENZ' containing a. The set R, N L’ is a unique point, b,, and the map a — b, induces a bijection L — L'.
Since (LN Z) =4(L'NZ) = q > 2, there is a € LN Z with b, € L' N Z. Since m|zng, is not constant, we
get a contradiction.

(b1.2) Assume that Z' N E = H; U Hy with H; and Hy planes. Note that this case does not occur if
n = 3, because h is nonsingular. Each H; is defined over Fy, because Z’' N H contains 2 disjoint lines defined
over F,. Fix b€ Hy N Hy C P*"(F,). There are lines Ly C Hy, Ly C Hy defined over F,, with L; # Hy N Ha,
LinZ # 0 for all i and {b} = L1 N Ly. Since m|znp is constant for every line D C Z" with DN Z # (), we
get HiNHy C H. Hence, H; \ Hi N Hy C Z. By step (b1l.1) we get that this is the case for all lines L, L’ with
ZNL#0,ZNL #0,and LNL = 0. In particular, for every line D C Z’ with LN D =0 and DN Z # 0,
we have DN Hy N Hy # () and the plane Up spanned by D U (H; N Hy) is contained in Z’. Fix one such line
D not contained in E. In the same way we check that T N Hy N Hy # (0 for each line T'C Z' with TNZ # 0
and either TNL' =0 or TND =0 or TNL=0. Every line J with JNL #® and JN L' # 0 is contained
in E. If DNE =0 (we are always in this case if n > 5), then we get that every line T' contained in Z’ and
intersecting Z (i.e. not contained in H ) meets the line Hy N Hy, which is obviously false since Z’ has rank at
least n > 4 and every point of Z’ is contained in a line contained in Z’. If DN E is a point, u, then we take
instead of D aline D' with wu ¢ D', D' C Z', D'NZ #0,and LND' =0. Weget TND' =0 if T C E and
u € T, and conclude using D’ instead of D.

(b2) Assume g odd and LN L' # (). Since m|pnz and mipnz are constant and different functions, we
have LNL' € H. Let F C P"(F,) be the plane spanned by LU L’. F is defined over F,. We have R C F'.
If F cZ,then RC Z', a contradiction. Hence, FNZ" = LUL'. For any a € P*(F,) \ F let W, be the
3-dimensional linear space spanned by FU{a}. W, is defined over F, and W,NZ’ is a quadric surface defined
over [F, and containing 2 intersecting lines and at least another point not in the plane they spanned. Hence,
W, NZ is either a hyperbolic quadric surface or an irreducible quadric cone with vertex the point L N L’ or the
union of two different planes, each of them defined over F,. Since ¢ is odd, Z’ is not a cone. Since Z’ is not a
cone with vertex LN L', we may find a € Z such that W, N Z’ is not a cone with vertex containing the point
LN L' Now assume W, NZ' = H; U Hy with each H; a plane defined over F,. Since F' ¢ Z’, H; contains
one of the lines L, L’ (say, it contains L) and Hs contains the other one, L'. Hence, LNL' € H; N Hy. Thus,

W, N Z' is a cone with vertex containing L N L'.
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Now assume that Z’ N E is an irreducible hyperbolic quadric. In particular #(Z’NE) = (¢+1)2. Call I
the ruling of Z' N E containing L and IT the ruling of Z'N E containing L'. Z'NENH is a curve of bidegree
(1,1) of Z’ N E and hence it is either a reducible conic (with each line defined over F, and so of cardinality
2¢ + 1) or a smooth conic (and so of cardinality ¢+ 1). For each a € ZNL (resp. b€ L' N Z) let R, (resp.
Dy) be the line in the ruling IT (resp. I) containing a. All lines D, and Ry are contained in Z’, defined over
F,, and each R, meets hence D} at exactly one point of P"(FF,). The restriction of m to each ZN R, and to
each Z N Dy is constant. The set of all R, N R, is a subset of Z' N H with cardinality ¢®> and hence at least
some of these points must be contained in Z, contradicting the constancy of all mg, and all mp, .

(c) Now assume ¢ even. By the proof in step (b) it is sufficient to do the case n = 3. Up to a linear
change of coordinates we may take h = zixy + x% Hence, Z' has equation zizo + x% + kz? = 0. Write
k= c?. We have z122 + x?,) + k2?2 =219+ (zs+ cx2)2 and hence Z' is an irreducible quadric cone with vertex
w=(0:0:c¢:1). Note that w ¢ H and so w € Z. Thus, Z is covered by lines intersecting at a point w € Z.

Hence, m is a constant. O

Lemma 3 Let C C IE‘?I be the zero-locus of a polynomial u € Fy[x1, x2] with degree 2 and whose homogeneous
degree 2 part v has rank 2. Then C # ().

Proof Let J C P?(F,) be the zero-locus of the degree 2 form v(z1,2,2) obtained homogenizing v. Either
v is a smooth conic (and so #(.J) = ¢+ 1 with at least ¢—1 > 0 points in F2) or it contains a line defined over
Fy (not the line z = 0) and so §(C) > ¢) or it is the union of two lines defined over F» and exchanged by the
map induced by the Frobenius ¢+ t?. In the latter case #(J) = 1, but the point of J lies in C', because v has

rank 2 (it is the common point of the 2 irreducible components of J over F2 ). O

Lemma 4 Let u € klz1, 22, 23] be a degree 2 polynomial whose homogeneous part v has rank at least 2. Then
u induces a surjection f : ]Fg — Fy.

Proof There is a linear change of coordinates Fg — Fg such that in the new coordinates yi,¥y2,y3 we
have v(y1,¥y2,¥3) = w(yr,y2) + ys(aryr + az2y2 + asys) with w(y1,y2) with rank 2. Write u(y1,y2,y3) =
v(y1, Y2,Y3) + b1y +bays +bsys + ba. Fix d € F,. We need to find (mq,msg,ms3) € Fg with u(my, ma,ms) =d.
We take m3 = 0 and apply Lemma 3. O

Lemma 5 Take n > 4, a nonzero linear form € : ¥y, and k € Fy. Then Lo, (k,n) : Cnlk, h) — Fy is surjective.

Proof It is sufficient to do the case n = 4. Up to a linear change of coordinates it is sufficient to do the case
¢ =2x4. Take d € F;. We need to find (21,2, 23) € IF‘Z’ such that h(z1,z2,23,d) = k. Since h has rank 4, the

homogeneous degree 2 part of h(z1,x2,xs,d) has at least rank 2. Apply Lemma 4. O

Example 1 Take a nondegenerate quadratic form h:Fy — Fy, n >4, and a nonzero linear form £ : ¥y — F,.
Assume hyr = ch + 02 for some ¢ € F,. Fiz any k € F,. We claim the following statements:

(i) If q is even, then Numg (M), = Fq;

(ii) If q is odd, then §(Numg(M)pr,) = (¢ +1)/2 and Numy(M )y, is the set of all squares in I .
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Indeed, it is sufficient to prove the case har = £2, so that it is obvious that all elements of Numyg (M) r,
are squares and we only need to prove the opposite containment. Thus, it is sufficient to prove that the map

= Elcn(k;h)lb‘q : Cp(k, h)r, — [y is surjective. Apply Lemma 5.

3. The FF,-numerical range

Remark 3 Fiz M € M, ,(F;). Take t € F}, k € Fy. If u = (x1,...,2,) € Cn(k)q, then tu € Cp(t%k)q
and has(tu) = t2hp(u). Hence, to compute the integers §(Numy(M),) for all k (and often to get a complete
description of Numg (M), for all k € Fy) it is sufficient to do it for k =1, k =0, and (if ¢ is odd) for a

single k, which is not a square in Fy (Fy has (¢ —1)/2 nonsquares for any odd prime power q ).

Remark 4 For all a,b,k € Fy and all M € M, ,(F,;) we have Numg(aM + bl ) = aNumy (M), + kb.
Write M = (my;), i,j = 1,...,n, and assume that k = c* for some ¢ € F,. Since ce; € Cy(c?), and

has(ce;) = 2my; , we have {c*may, ... c2mp,} € Num,. (M),

Lemma 6 Assume q odd and take k € F;. Set n:=0 if ¢=1 (mod 4) and 1 :=2 if ¢ = —1 (mod 4). Then
8(Ca(k)g) =q—1+1n.

Proof Set T := {(z1,72,23) € P*(F,) | 22 +23 = kx3}. Since k # 0 and ¢ is odd, T is a smooth conic defined
over F,. Thus, §(T) = ¢+ 1. The line 3 = 0 meets T at two points (resp. no point) defined over F, if and
only if —1 has (resp. has not) a square-root in F,, i.e. if and only if ¢ =1 (mod 4) (resp. ¢ = —1 (mod 4)). O

Remark 5 Assume q even and take k € F,. Since Fy is a perfect field, there is a unique ¢ € Fy such that
@ =k. Take u = (21,...,2,) € FI'. Since (a+b)* = a®> +b* for all a,b € Fy we have Y, 27 =k (i.e.
u € Cy(k)q) if and only if z1 + -+ x, = c.

Proposition 1 Assume q even. Take M € My o(Fy), M = (my;), i,i=1,2.

(a) We have Numy (M), = {mi1} if and only if moz = m11 and miz = moy.

(b) We have Numy (M), =F, if and only if mia =mo1 and mae # ma; .

(c¢) If mia # mo1 and mqy # maa, then f(Num;(M),)) = q/2.
Proof Fix u = (x1,22) € C2(1),, ie. assume zo = x1 + 1 (Remark 5). We have hps(u) = (m11 + miz +
ma1 + ma2)xt + (Mia + may)z1 + (Mig +ma1). If mig + maoz = mas + moy = 0, then Numy (M), = {mq1}. If
mi1 + Mmag + ma1 + maa = 0 and myg + meoy # 0, then Numy (M), = Fy. If mqq1 + maz + maog + mee # 0 and
miz +me1 = 0, then Num; (M) = F,, because every element of F, is a square. If mq1 + mig + mo1 +maz # 0
and mi2+mag1 # 0, for any v € Fy the polynomial (mi1 +mi2+ma +mag2)t2 + (Mg +may )t + (Mg +may) +7
has 2 distinct roots in F, and either none of both roots are contained in F,. Thus, §(Num;(M),) = ¢/2. O

Proposition 2 Assume q even and take k € F,. Take M = (m;;) € My »(Fy).
(a) We have §(Numg(M)) =1 if and only if m;; + mj; =0 for all i # j and m;; = may for all 7.
(b) If H(Numy (M) # 1, then #(Numy(M)) > ¢/2.
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Proof By Remark 3 it is sufficient to do the case k = 1. By Remark 1 it is sufficient to prove the statements
for the matrix N = (TLZJ) with n;; = m;; for all i, Nij = 0 if 4 >j and Nij = Myj erij if 1 < j Take N
with #(Num;(N),) = 1. Applying Proposition 1 to all Njg ¢, 1, We get the “only if” part of (a), while the

“if” part is trivial. Proposition 1 also gives part (b). O

Proposition 3 Assume q odd and take k € F; and M := (m;;) € Mao(F,).

(a) If k is not a square, assume q > 7. We have §(Numg(M),) =1 if and only if m11 = maz and either
mis +moy =0 or ¢g=3,5.

(b) Assume $(Numy(M),) > 1. We have §(Numg(M),) > [(¢g—1+n)/4] with n=0 if ¢=1 (mod 4)

and n=2 if g=—1 (mod 4).
Proof We have Numy (M), # 0. Take u = (21,22) with 27 + 23 = k. By Lemma 6 we have §(Ca(k),) =
g —1+mn. The map u — hy(u) induces a surjection 7 : Co(k),; — Numy(M),. The map 7 is induced by the
restriction to C(1,k) of a homogeneous quadratic equation of F2. Since Cy(k), is irreducible (even over the
algebraic closure of Fy), either 7 is a constant map or each of its fibers have cardinality at most 4, concluding
the proof of part (b).

Now assume f#(Numy(M),) = 1. We get that the the restriction to Cz(k), (i.e. taking 23 = k — 2%,)
of the function h(xy,x2) := (M1 — ma2)x?; + (M12 + Mao1)x1w9 — kmas is a constant function, i.e. (mi; —
Maz)x3, + (Mia + may )T T2 is constant.

(i) First assume that k is a square in Fy, say k = ¢2. We have ¢ # 0. Since Num,2 (M), = cNum; (M),
(Remark 4), it is sufficient to do the case kK = 1. By the second part of Remark 4 we have {mq1,me2} C
Num; (M), and thus mq; = maa = 0. Taking M —mq 1l 2 instead on M we reduce to the case mq1 = maz =0
by the first part of Remark 4. If mqa+mo1 = 0, then hps =0 and hence §(Numy(M),) = 1. If mia+mo1 #0,
then Proposition 4 below gives #(Numy(M)q) > 1, unless ¢ = 3,5.

(ii) Now assume that k is not a square in F,. Set E := {(z1,29,23) € P*(F,) | 2% + 23 = ka3},
so that Cy(k), = E\ EN{zz = 0}. Write Numy(M), = {a} and set Z = {(x1,22,23) € P3(F,) |
m1123 + Mmoox3 + (mag + mar)z1ms = azd}. If Z =P(F,), then o =0 and my; = mas = mia + mo; =0 and
hence Numg (M), = {0}. Hence, we may assume that Z is a conic defined over F, (not necessarily a smooth
conic). Since E is geometrically irreducible, either E = Z or §(ZNE) < 4. Since §(Cz(k)q) > 4, then E = Z.

Thus, mq1 = maos and mqs + moy; = 0. O

Proposition 4 Take

0 b
=0 0)
Jor some b € Fy.

(a) If q is even then §(Num;(M),) = q/2; we have Numy(M)y = {0} and Numy (M), = bF, /5 if ¢ > 2.

(b) Assume that ¢ = p°© is odd, e > 1.

(b1) Assume that either e is even or that (p*—1)/8 is even and that ¢ =1 (mod 4). Then §(Num;(M),) =
(q+3)/4.
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(b2) Assume that either e is even or that (p?> — 1)/8 is even and that ¢ = —1 (mod 4). Then
t(Numy (M)g) = (g +5)/4.

(b3) Assume that e and (p*> —1)/8 are odd and that ¢ =1 (mod 4). Then §(Num;(M),) = (¢ —1)/4.

(b4) Assume that e and (p*> —1)/8 are odd and that ¢ = —1 (mod 4). Then §(Numi(M),) = (¢+1)/4.

Proof Taking (1/b)M instead of M we reduce to the case b =1. Take u = (x1,z2) such that =3 + 23 = 1.
We have hp(u) = x122. Hence, 0 € Num(M), and hps(u) # 0 if and only if 2; # 0 and x9 # 0.

(a) Assume that ¢ is even and so w3 = 21 + 1 and hy(u) = 23 +21. If ¢ > 4, the function ¢ — 2 + ¢
is a trace-function Fy — Fy/o, while t* 4t = 0 if ¢t € Fo. Thus, Num; (M), = {0} and Num; (M), = Fy» if
q>2.

(b) Assume that ¢ is odd. Recall that §(Cs(1)y) = ¢—1 if ¢ = —1 (mod 4) and §(Ca(1)q) = ¢+ 1 if
g =1 (mod4) (Lemma 6). If 22 + 23 = 1 = 32 + y3 and z122 = y1y2, then (z1 + 22)% = (y1 + y2)? (i-e.
either 71 + 22 = y1 +y2 or o1 + 22 = —y1 — y2) and (21 — 22)? = (y1 — y2)? (ie. either x1 — 22 = y1 — Yo
or 1 —x2 = Y2 — y1) and hence (since 2 is invertible in F,) either (y1,y2) = (z1,22) or (y1,¥2) = (z2,21)
or (y1,y2) = (—x1,—x2) or (y1,y2) = (—x2,—x1). If ; #0 for all i, 1 # x5 and 1 # —xo, then the set
A= {(z1,x2), (—x1, —22), (T2, 21), (—22, —z1)} has cardinality 4. If x; = 0, then xz = +1 and the set A has
cardinality 4. The same is true if zo = 0. If 9 = £27 # 0, then A has cardinality 2. If 2o = +2; we have
23 +23 =1 if and only if 22 = 1/2 and this is the case for some z; € F, if and only if 2 is a square in F,. Write
q = p® for some e > 1. 2 is a square in F, if and only if (p*> — 1)/8 is even by the Gauss reciprocity law ([5,
Proposition 5.2.2]). If e is even, 2 is always a square in [, because if a square-root of 2 is not contained in Fp,,
then it generates F,2 2 F,,. If e is odd, F, has a square-root of 2 if and only if I, has a square-root of 2, because
F, contains F,, but not F,2. Note that there is A C C5(1), with 2o = 21 if and only if there is A C C5(1),
with xo = —z7. Thus, we counted the cardinality of the fibers of the surjection 7 : C3(1); — Num(M), in
terms of ¢ (either all fibers have cardinality 4 or 2 have cardinality 2 and the other ones have cardinality 4). O

Proposition 4 shows that part (b) of Proposition 3 is often sharp.

Proposition 5 Take b,b’ € Fy and set

0 b 0
M=10 0V
0 0 O

1. If q is even and b = b', then §(Numy(M),) = q/2 with Num;(M)s = {0} and Num; (M), = bF, /5 for
all ¢ > 4.

2. If q is even and b# b, then Numy(M), =F,.

3. If g=1 (mod 4), then Num; (M) =TF,.
Proof Taking b/b’ instead of b and M instead of M we reduce to the case V' = 1. Take u = (21,22, z3).
We have hps(z1, 22, 23) = xo(bxy + x3).
(a) Assume ¢ even and take z3 = x1 + 22 + 1, i.e. we compute Num;(M),. We get hps(z1,x2,23) =
z2((b — 1)@y + 2 + 1). First assume b = 1. In this case hp(z1,22,23) = 23 + 22 and hence Num; (M),

is the image of the trace map xa — 3 + x2. Hence, §(Num;(M),) = ¢/2 with Num;(M), = {0} and
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Num; (M), = bF,/, for all ¢ > 4. Now assume b # 1. For any ¢ € F, take x5 = 1, xy = ¢/(b — 1), and
r3=x1+x9+ 1.

(b) Assume ¢ even and take x3 = 1 + x2, i.e. we compute Numg(M),. We have hpr(x1,22,23) =
z2((b+ 1)x1 + z2). Fix c € F,. Since c is a square, say ¢ = s?, we take zo = s and 1 = 0.

(c) Assume ¢ = 1 (mod 4). Hence, there is € € F, with ¢ = —1. Take x5 = 1 and z3 = ez, so that
for any 21 we have x7 4+ 23 + 23 = 1. We have hy(x1,2,23) = 1(b+ €) and hence hpyicy), is surjective,
i.e. Num; (M) =TF,, if b # —e. Now assume b = —e. In this case we take zo =1 and z3 = —exy, so that for

any xri we have x% + x% + :v% =1 and hps(z1, 22, 23) = —2exy. Hence, hM|C3(1)q is surjective. O

Proposition 6 Fiz k € F; and b € F;. Sel

o o oo
oo oo
o O o O
o ot O O

Then Numg (M), =TF,.

Proof Taking M instead of M we reduce to the case b = 1. If u = (w1, 22,23,74), then hy(u) =
X1X2 + Toxs + X324 .

(a) Assume g even. Since w4 = k + x3 + x3 + 21, we get har(u) = z129 + 23 + 2123 + k2z. For any
celF,, take 23 =0, 21 =c, and 22 = 1.

(b) Assume ¢ odd.

(b1l) Assume that k is a nonzero square in F,. By Remark 3 we may assume k = 1. Taking z; = 1 and
xo = x3 = x4 = 0 we see that 0 € Num; (M),. Set x2 =1 and hence hps(u) = x1 + z3(zs + x3). Take c € Fy.
We need to find (1, x3,24) € F3 with 27 + 23 + 23 = 0 and ¢ = 21 + 23(24 + 23), Le. (r3,24) € F2 with
(c—x3(w4+x3))* +25+ 23 = 0. The latter is the equation of an affine degree 4 curve T C F2. Call J C P*(F,)
the projective completion of its defining equation, i.e. the curve with (c2? — z3(zy +23))? + 2223 + 2223 =0 as
its equation. If T # (), then we are done. Hence, we may assume T = (). The line at infinity {z = 0} intersects
J in the points {(0:1:0),(1:—1:0)}, which are singular points of J with multiplicity 2 and on them lie at
most 4 points over the normalization of the reduced curve J; if J is geometrically irreducible with geometric

2

genus 1, then there are at most 3 because at (0:1:0) the tangent cone has z* as its equation.

Claim 1: Over F, J is not a union of lines (counting multiplicities) defined over F,,.
Proof of Claim 1: The singular points of J are its multiple components and the intersection of its
components defined over Fq. At (0:1:0) the equation of J has 22 as its leading part and hence the tangent

cone to J at (0:1:0) is {z =0} counted with multiplicity 2. Hence, 2% divides the equation of J, which is
false.

Claim 2: J is not a union of two smooth conics defined over Fg2, but not over F,.

Proof of Claim 2: Assume that this is the case with J = C;UCs. We have ¢(C7) = C and o(Cs) = C4,
where o is induced by the Frobenius map t +— t?. The singular points of J are the points C; N Cs and
(0:1:0), (1:—1:0) are two of these points, both defined over F,. As in the proof of Claim 1 we get that
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{z = 0} is the tangent line to both C; and Cs at (0:1:0). Writing y = x3 + x4, the multiplicity 2 part at
(1: —1:0) of the equation of J is x3(y? + 22) and so C; and Cy have different tangents at (1: —1:0). We
get that C7 N Cy has exactly one point (call it o) outside the line {z = 0}. Since o(C;) = C3_;, i = 1,2, and
o fixes {(0:1:0),(1:—1:0)}, we have o(0) = 0, i.e. 0 € Fg, iie. T # 0, a contradiction, concluding the
proof of Claim 2.

An irreducible conic defined over F, has ¢+ 1 points ([3, Table 7.2]). Since over J\ 7 the normalization
of J has at most 4 points, the Hasse-Weil lower bound for the number of points of a curve of genus < 1 (applied
if J is reducible to the connected components of its normalization) gives T' # 0 if ¢+1 > 2,/g+3, i.e. if ¢ > 9.
All cases with ¢ =1 (mod 4) are covered by Proposition 5. Take ¢ = 3; v = (1,1,1,1) gives 0 € Num;(M)3;
u=(2,21,1) gives 1 € Numy(M)y; v = (2,1,1,2) gives 2 € Num(M)3. Take ¢ =7; u = (0,0,0,1) gives
0 € Num;(M)7; v = (4,2,1,1) gives 4 € Numy(M)7; v = (2,4,1,1) gives 6 € Num;(M)7; v = (2,5,0,0)
gives 3 € Numy (M)7; u = (3,0,2,3) gives 1 € Num;(M)7; v = (4,3,3,4) gives 5 € Num;(M)7; v = (5,1,1,3)
gives 2 € Num; (M)7.

(b2) Take k = 0. u = (0,0,0,0) gives 0 € Numg(M),. Take x4 = —x2 and so hy(u) = z122. Fix
c € F; and take xo = c¢/z;. We need to find (z1,23) € T', where T' C Fg is the affine curve zf +c® + 2323 = 0.
Assume T = ) and call J C P%(F,) the projective completion of the equation defining 7', i.e. the curve with
zf + 24c® + 2323 = 0 as its equation. J N {z = 0} contains the points (0 : 1 : 0) (which has multiplicity 2
with 2% as its tangent cone) and (over any extension of F, on which —1 has a root) two other points at which
J is smooth. Take the affine set J” := J N {x3 # 0}. Taking x3 = 1, w = c2?, and y = 27 we see that
J is irreducible and that the normalization J’ of J is a double covering of the rational curve y? + w? = y
ramified at at most 4 points. The Hasse-Weil lower bound gives T # 0 if ¢+ 1 > 2,/q+3,ie. if ¢ >9. Now
assume ¢ = 3; u = (1,1,1,0) gives 2 € Numg(M)s; u = (1,0,1,1) gives 1 € Numg(M)3. Now assume q = 5;
u=1(2,1,0,0) gives 2 € Numg(M)5; u=(2,1,2,1) gives 1 € Numg(M)5; v = (3,1,0,0) gives 3 € Numgo(M)s;
u=(3,1,3,1) gives 4 € Numg(M)5. Now assume ¢ = 7; u = (0,0,0,0) gives 0 € Numg(M)7; to get all squares
it is sufficient to prove that 4 € Numg(M)7: take u = (6,4,2,0); to get all nonsquares it is sufficient to prove
that 5 € Numg(M)7: take u = (3,1,2,0).

(b3) Take as k any nonsquare. Taking xo = 23 = 0 and z1, 24 with 2 + 22 = k ([3, Lemma 5.1.4]) we
see that 0 € Numy(M),. We adapt the proof of step (bl). Set x5 =1 and hence hps(u) = x1 + x3(xs + x3).
Fix ¢ € F;. We need to find (z1,23,24) € F3 with 23 + 23 + 2] = k— 1 and ¢ = x1 + 2324 + 3),
e (x3,x4) € F2 with (¢ — x3(xg4 + 23))> + 23 + 27 = k — 1. The latter is the equation of an affine
degree 4 curve T C IF?I. Call J C IP’Q(Fq) the projective completion of its equation, i.e. the curve with
(2% — w3(wy + 23))% + 2223 + 2223 = (k — 1)2* as its equation. If T # ), then we are done. Hence, we may
assume 7' = (). The line at infinity {z = 0} intersects J in the points {(0:1:0),(1: —1:0)}, which are singu-
lar points of J with multiplicity 2 and on them lie at most 4 points over the normalization J’ of the reduced
curve J (at most 3 if J' is not rational). As in step (bl) we see that J is neither the union of 4 lines not
defined over F, nor the union of 2 smooth conics not defined over F,. Then using the Hasse-Weil bound we get
T # (), unless ¢ = 3,5,7. Take ¢ =3 and so k =2; v = (1,1,0,0) gives 1 € Nums(M)3; u=(2,1,0,0) gives
2 € Numy(M)3. Now assume ¢ = 5; we take k =2; u=(1,1,0,0) gives 1 € Numas(M)5; u=(2,1,1,1) gives
4 € Numy(M)s5; u=(2,2,2,0) gives 3 € Numa(M)s5; u = (4,4,1,2) gives 2 € Numy(M)5. Now assume g = 7;

10
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we take k = 3; u=(3,0,0,1) implies 0 € Numg(M)7; u = (0,3,1,0) implies 3 € Nums(M)7; u = (1,1,1,0)
implies 2 € Numgs(M)7; v = (1,1,0,1) implies 1 € Nums(M)7; v = (4,3,3,2) implies 6 € Numg(M)7;
u=(3,3,3,5) gives 5 € Nums(M),; v = (5,6,1,3) gives 4 € Numg(M)7. O

Remark 6 Fiz an integer n > 5 and let M = (m;;) € My, n(Fq) be the Jordan matriz with a unique block, i.e.
mi; =0, unless j=i+1,i=1,...,n—1. Taking v = (x1,...,xy,) € Cy(k)q with x; =0 for all i > 4 we see
that Proposition 5 implies Numy (M), = F,.
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