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1. Introduction

Coupled integro-differential equations have many applications in science and engineering. In computational

neuroscience, the Wilson–Cowan model describes the dynamics of interactions between populations of very

simple excitatory and inhibitory model neurons. It was developed by H.R. Wilson and Jack D. Cowan [16, 17]

and extensions of the model have been widely used in modeling neuronal populations [11, 13, 15, 18]. The

model is important historically because it was the first of its kind and it did fit the data uniformly. Because the

model neurons are simple, only elementary limit cycle behavior, i.e. neural oscillations, and stimulus-dependent

evoked responses are predicted. The key findings include the existence of multiple stable states and hysteresis

in the population response.

In addition, coupled differential or integro-differential equations have been used in many areas of biological

and environmental sciences. Lotka–Volterra models for competitive species are probably the best-known

examples of such coupled equations [2, 6]. A particular case where the Lotka–Volterra model has successfully

been used is the famous predator–prey problem for two competing species. Two interlocked or coupled equations

are required to model such a problem. Coupled equations are also used in other fields to study various qualitative

properties of solutions [3, 4, 8, 12, 14]. In [3, 4] the authors studied the existence of asymptotically periodic

solutions of linear systems of Volterra difference equations, and in [8, 12, 14] the authors studied oscillation

properties and asymptotic or limiting properties of solutions.

In this paper we study the existence of periodic and asymptotically periodic solutions of the following

coupled nonlinear Volterra integro-differential equations with infinite delay{
x′(t) = h1(t)x(t) + h2(t)y(t) +

∫ t

−∞ a(t, s)f(x(s), y(s))ds,

y′(t) = p1(t)y(t) + p2(t)x(t) +
∫ t

−∞ b(t, s)g(x(s), y(s))ds,
(1.1)
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where the functions a , b , f , g , hi , and pi, i = 1, 2 are assumed to be continuous in their arguments throughout

the paper.

In the paper [9] the author considered a simpler version of the system given by (1.1) and studied the

existence of asymptotically periodic and periodic solutions. For the readers interested in periodic, asymptotically

periodic, and almost periodic solutions of Volterra equations, we refer to the partial list [1, 2, 5, 7, 10], and the

references therein.

Some of the studies mentioned above deal with the periodicity on systems of Volterra integral equations

with infinite delay, but our results are different with respect to assumptions and methods. However, for

asymptotic periodicity we can hardly find any study on equations like the one we considered in this paper. In [2],

the author considered a forced asymptotic periodicity on a predator–prey system. The equations, assumptions,

and the method are very different from ours. Our considered model is very general and hence it encompass all

existing models in coupled Volterra integro-differential systems. We show the existence of periodic solutions

in Section 2 and the existence of asymptotic periodic solutions in Section 3 and provide an example. In the

analysis, we invert both equations in (1.1), transform them into integral equations, and then use Schauder’s

fixed point theorem.

We assume that there exists a positive real number T , such that

a(t+ T, s+ T ) = a(t, s), b(t+ T, s+ T ) = b(t, s)

pi(t+ T ) = pi(t), hi(t+ T ) = hi(t), i = 1, 2 (1.2)

for all t ∈ R .

To have a well behaved mapping we must assume that∫ T

0

h1(s)ds ̸= 0, and

∫ T

0

p1(s)ds ̸= 0. (1.3)

Define PT = {(φ,ψ) : (φ,ψ)(t+ T ) = (φ,ψ)(t)}, where both ϕ and ψ are real valued continuous functions on

R . Then PT is a Banach space when endowed with the maximum norm

||(x, y)|| = max

{
max
t∈[0,T ]

|x(t)|, max
t∈[0,T ]

|y(t)|
}
.

Lemma 1.1 Assume (1.2) and (1.3). If x, y ∈ PT , then x(t) and y(t) is a solution of equation (1.1) if and

only if

x(t) =

∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∫ u

−∞
a(u, s)f(x(s), y(s)) dsdu

+

∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)y(u) du, (1.4)

and

y(t) =

∫ t+T

t

e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∫ u

−∞
b(u, s)g(x(s), y(s)) dsdu

+

∫ t+T

t

e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
p2(u)x(u) du. (1.5)
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Proof Let x, y ∈ PT be a solution of (1.1). Next we multiply both sides of the first equation in (1.1) with

e−
∫ t
0
h1(s)ds , and then integrate from t to t+ T to obtain

x(t+ T )e−
∫ t+T
0

h1(s)ds −x(t)e−
∫ t
0
h1(s)ds

=

∫ t+T

t

∫ u

−∞
a(u, s)f(x(s), y(s)) dse−

∫ u
0

h1(s)(s)dsdu

+

∫ t+T

t

h2(u)y(u)e
−

∫ t+T
0

h1(s)dsdu.

Multiply both sides with e
∫ t+T
0

h1(s)ds and then use the fact that x(t+T ) = x(t) and e
∫ t+T
t

h1(s)ds = e
∫ T
0

h1(s)ds

to arrive at Eq. (1.4). The proof is complete by reversing every step. The proof of Eq. (1.5) is similar and

hence we omit it. 2

2. Periodic solutions

Theorem 2.1 (Schauder’s fixed point theorem) Let X be a Banach space and K be a closed, bounded,

and convex subset of X . If T :K→K is completely continuous then T has a fixed point in K .

A map is completely continuous if it is continuous and it maps bounded sets into relatively compact sets.

Let L1 and L2 be positive constants such that 0 < Li < 1, i = 1, 2. Moreover, assume the existence of

positive constants M1,M2,K1 , and K2 such that

|f(x, y)| ≤M1, (2.1)

|g(x, y)| ≤M2, (2.2)

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)| dsdu ≤ K1, (2.3)

∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣ ∫ u

−∞
|b(u, s)| dsdu ≤ K2, (2.4)

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣|h2(u)| du ≤ L1, (2.5)

and ∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣|p2(u)| du ≤ L2. (2.6)

Set

M = max

{
M1K1

1− L1
,
M2K2

1− L2

}
. (2.7)
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We define a subset Ωx,y of PT as follows: Ωx,y = {(x, y) : (x, y) ∈ PT with ||(x, y)|| ≤ M}. Then Ωxy is a

bounded, closed, and convex subset of PT . Now for (x, y) ∈ Ωxy we can define an operator E : Ωxy → PT by

E (x, y) (t) = (E1(x, y)(t), E2(x, y)(t)) ,

where

E1(x, y)(t) =

∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∫ u

−∞
a(u, s)f(x(s), y(s)) dsdu

+

∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)y(u) du, (2.8)

and

E2(x, y)(t) =

∫ t+T

t

e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∫ u

−∞
b(u, s)g(x(s), y(s)) dsdu

+

∫ t+T

t

e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
p2(u)x(u) du. (2.9)

Theorem 2.2 Suppose (1.2), (1.3), and (2.1)–(2.6) hold. Then (1.1) has a T -periodic solution.

Proof It is clear from Lemma 1.1 that E1(y)(t + T ) = E1(y)(t) and E2(x)(t + T ) = E2(x)(t). Therefore,

E(x, y)(t+ T ) = E(x, y)(t). Moreover, if (x, y) ∈ Ωxy , then

∣∣∣E1(x, y)(t)
∣∣∣ ≤

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)||f(x(s), y(s))| dsdu

+

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)y(u)

∣∣∣ du
≤ M1K1 +ML1.

As a consequence of (2.7),

M1K1

1− L1
≤M, we have M1K1 ≤ (1− L1)M.

This implies that ∣∣∣E1(x, y)(t)
∣∣∣ ≤M1K1 +ML1 ≤ (1− L1)M +ML1 =M.

In a similar way one can easily show that∣∣∣E2(x, y)(t)
∣∣∣ ≤M.

Thus, E maps Ωxy into itself, i.e. E(Ωxy) ⊆ Ωxy . Now we have to show that E is continuous. Let
{
(xl, yl)

}
be a sequence in Ωx,y such that

lim
l→∞

||(xl, yl)− (x, y)|| = 0.
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Since Ωx,y is closed, we have (x, y) ∈ Ωx,y . Then by the definition of E we have

∥∥E(xl, yl)− E(x, y)
∥∥ = max

{
max
t∈[0,T ]

∣∣E1(x
l, yl)(t)− E1(x, y)(t)

∣∣
, max
t∈[0,T ]

∣∣E2(x
l, yl)(t)− E2(x, y)(t)

∣∣} ,
in which

∣∣∣E1(x
l, yl)(t)− E1(x, y)(t)

∣∣∣ =
∣∣∣ ∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∫ u

−∞
a(u, s)f(xl(s), yl(s)) dsdu

−
∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∫ u

−∞
a(u, s)f(x(s), y(s)) dsdu

+

∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)y

l(u) du

−
∫ t+T

t

e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)y(u) du

∣∣∣
≤

∫ t+T

t

| e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
|
(∫ u

−∞
|a(u, s)||f(xl(s), yl(s))− f(x(s), y(s))|ds

)
du

+

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
h2(u)

∣∣∣∣∣∣yl(u)− y(u)
∣∣∣ du

The continuity of f along with the Lebesgue dominated convergence theorem implies that

lim
l→∞

max
t∈[0,T ]

|E1(x
l, yl)(t)− E1(x, y)(t)| = 0.

By a similar argument one can easily argue that

lim
l→∞

max
t∈[0,T ]

|E2(x
l, yl)(t)− E2(x, y)(t)| = 0.

Thus,

lim
l→∞

||E(xl, yl)− E(x, y)|| = 0.

This shows that E is a continuous map. To show that the map E is completely continuous, we will show

that E(Ωx,y) is relatively compact. We already know from Theorem 2.2 that E(Ωxy) ⊆ Ωxy , which means

E(Ωxy) is uniformly bounded because Ωxy is uniformly bounded. It is an easy exercise to show that for all

(x, y) ∈ Ωxy , there exists a constant L > 0 such that | ddtE1(x, y)(t)| ≤ L , and | ddtE2(x, y)(t)| ≤ L . This means

| ddtE(x, y)(t)| ≤ L . Therefore the set E(Ωxy) is equicontinuous, and hence by Arzela–Ascoli’s theorem, it is

relatively compact.

By Schauder’s fixed point theorem, we conclude that there exist (x, y) ∈ Ωx,y such that (x, y) = E(x, y).
2

In the next theorem we relax condition (2.2).
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Theorem 2.3 Suppose (1.2), (1.3), (2.1), and (2.3)–(2.6) hold. In addition, we assume the existence of

continuous nondecreasing function G such that

|g(x, y)| ≤ g(|x|, y) ≤ QG(|x|) for some positive constant Q (2.10)

and for u > 0 we ask that

G(u)

u
≤ 1− L2

K2Q
. (2.11)

Then (1.1) has a T -periodic solution.

Proof Set

M = max

{
M1K1

1− L1
,
K2QG(M)

1− L2

}
. (2.12)

Note that due to (2.11) we have

M ≥ K2QG(M)

1− L2

and hence (2.11) is well defined. For (x, y) ∈ Ωx,y , we have by the proof of the previous theorem that∣∣∣E1(x, y)(t)
∣∣∣ ≤M.

Thus,

∣∣∣E2(x, y)(t)
∣∣∣ ≤

∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣ ∫ u

−∞
|b(u, s)||g(x(s), y(s))| dsdu

+

∫ t+T

t

| e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
||p2(u)|x(u) du

≤
∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣ ∫ u

−∞
|b(u, s)|g(|E1(x(s), y(s))|, y(s)) dsdu

+

∫ t+T

t

| e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
||p2(u)||E1(x(s), y(s))| du

≤ Q

∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣ ∫ u

−∞
|b(u, s)|G(|E1(x(s), y(s))|) dsdu

+

∫ t+T

t

| e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
||p2(u)||E1(x(s), y(s))| du

≤ Q

∫ t+T

t

∣∣∣ e∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds

∣∣∣ ∫ u

−∞
|b(u, s)|G(M) dsdu

+M

∫ t+T

t

| e
∫ t+T
u

p1(s)ds

1− e
∫ T
0

p1(s)ds
||p2(u)| du

≤ K2QG(M) +ML2

≤ M(1− L2) +ML2 =M.

113



RAFFOUL/Turk J Math

The rest of the proof follows along the lines of the proof of Theorem 2.2. 2

In the next theorem we relax condition (2.1).

Theorem 2.4 Suppose (1.2), (1.3), (2.2), and (2.3)–(2.6) hold. In addition, we assume the existence of

continuous nondecreasing function G such that

|f(x, y)| ≤ f(x, |y|) ≤ RW (|y|) for some positive constant R (2.13)

and for u > 0 we ask that

W (u)

u
≤ 1− L1

K1R
. (2.14)

Then (1.1) has a T -periodic solution.

Proof Set

M = max

{
K1RW (M)

1− L1
,
M2K2

1− L2

}
. (2.15)

Note that due to (2.14) we have

M ≥ K1RW (M)

1− L1

and hence (2.14) is well defined. For (x, y) ∈ Ωx,y , we have by the proof of the previous theorem that

∣∣∣E2(x, y)(t)
∣∣∣ ≤M.

Thus,

∣∣∣E1(x, y)(t)
∣∣∣ ≤

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)||f(x(s), y(s))| dsdu

+

∫ t+T

t

| e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
||h2(u)|y(u) du

≤
∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)|f(x(s), |E2(x(s), y(s))|) dsdu

+

∫ t+T

t

| e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
||h2(u)||E2(x(s), y(s))| du

≤ R

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)|W (|E2(x(s), y(s))|) dsdu

+

∫ t+T

t

| e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
||h2(u)||E2(x(s), y(s))| du
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≤ R

∫ t+T

t

∣∣∣ e∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds

∣∣∣ ∫ u

−∞
|a(u, s)|W (M) dsdu

+M

∫ t+T

t

| e
∫ t+T
u

h1(s)ds

1− e
∫ T
0

h1(s)ds
||h2(u)| du

≤ K1RW (M) +ML1

≤ M(1− L1) +ML1 =M.

The rest of the proof follows along the lines of the proof of Theorem 2.2. 2

3. Asymptotically periodic solutions

In this section, we show that under mild conditions one obtains asymptotically periodic solutions.

Definition 3.1 A function x(t) is called asymptotically T -periodic if there exist two functions x1(t) and x2(t)

such that x1(t) is T -periodic, limt→∞ x2(t) = 0 and x(t) = x1(t) + x2(t) for all t.

In this section we do not assume the periodicity condition on the functions a(t, s) and b(t, s). We only

assume h1(t) and p1(t) are T -periodic, and∫ T

0

h1(s)ds = 0 and

∫ T

0

p1(s)ds = 0. (3.1)

Since h and p are T -periodic, there are constants mk , M
∗
k , k = 1, 2, such that

m1 ≤ e
∫ t
0
h1(s)ds ≤M∗

1 and m2 ≤ e
∫ t
0
p1(s)ds ≤M∗

2 . (3.2)

Furthermore, we assume that there are positive numbers A and B such that∫ ∞

0

∫ u

−∞
|a(u, s)|ds du ≤ A and

∫ ∞

0

∫ u

−∞
|b(u, s)|ds du ≤ B (3.3)

In addition, we suppose that

lim
t→∞

∫ ∞

t

∫ u

−∞
|a(u, s)|ds du = lim

t→∞

∫ ∞

t

∫ u

−∞
|b(u, s)|ds du = 0, (3.4)

∫ ∞

t

|h2(u)|du→ 0 as t→ ∞, (3.5)

∫ ∞

t

|p2(u)|du→ 0 as t→ ∞, (3.6)

and for positive constants M∗
3 and M∗

4 we ask that∫ ∞

0

|h2(u)|du ≤M∗
3 (3.7)
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and ∫ ∞

0

|p2(u)|du ≤M∗
4 . (3.8)

Finally, we make the assumption that

1−M∗
3M

∗
1m

−1
1 > 0 (3.9)

and

1−M∗
4M

∗
2m

−1
2 > 0. (3.10)

Theorem 3.2 Suppose that (2.1), (2.2), and (3.1)–(3.10) hold. Then system (1.1) has asymptotically T -

periodic solution (x, y) satisfying

x(t) := x1(t) + x2(t)

y(t) := y1(t) + y2(t),

where

x1(t) = c1e
∫ t
0
h1(s)ds, y1(t) = c2e

∫ t
0
p1(s)ds, t ∈ R

for arbitrary but fixed nonzero constants c1, c2 and

lim
t→∞

x2(t) = lim
t→∞

y2(t) = 0.

Proof Define P ∗
T = {(φ,ψ) : φ = φ1 + φ2, ψ = ψ1 + ψ2, (φ1, ψ1)(t + T ) = (φ1, ψ1)(t), and (φ2, ψ2)(t) →

(0, 0) as t→ ∞}. Then P ∗
T is a Banach space when endowed with the maximum norm

||(x, y)|| = max

{
max
t∈[0,T ]

|x(t)|, max
t∈[0,T ]

|y(t)|
}
.

We define a subset Ωx,y of P ∗
T as follows. For a constant W ∗ to be defined later in the proof, let Ωx,y =

{(x, y) : (x, y) ∈ P ∗
T with ||(x, y)|| ≤ W ∗}. Then Ωxy is a bounded, closed, and convex subset of P ∗

T . Now for

(x, y) ∈ Ωxy we can define an operator F : Ωxy → P ∗
T by

F (x, y) (t) = (F1(y)(t), F2(x)(t)) ,

where

F1(y)(t) = c1e
∫ t
0
h1(s)ds −

∫ ∞

t

h2(u)
e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
y(u)du

−
∫ ∞

t

∫ u

−∞

e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
a(u, s)f(x(s), y(s))ds du, (3.11)

and

F2(x)(t) = c2e
∫ t
0
p1(s)ds −

∫ ∞

t

p2(u)
e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
y(u)du

−
∫ ∞

t

∫ u

−∞

e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
b(u, s)g(x(s), y(s))ds du, (3.12)
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We will show that the mapping F has a fixed point in Ωxy . Set

W ∗ = max{M
∗
1m

−1
1 M1A+ c1M1

1−M∗
3M

∗
1m

−1
1

,
M∗

2m
−1
2 M2B + c2M2

1−M∗
4M

∗
2m

−1
2

}.

We note that W ∗ is well defined due to (3.9) and (3.10). First, we demonstrate that F (Ωx,y) ⊆ Ωx,y. If

{(x, y)} ∈ Ωx,y, then by (3.9) we have

∣∣∣F1(y)(t)− c1e
∫ t
0
h1(s)ds

∣∣∣ ≤W ∗M∗
3M

∗
1m

−1
1 +M∗

1m
−1
1 M1

∫ ∞

t

∫ u

−∞
|a(u, s)| ds du

≤W ∗M∗
3M

∗
1m

−1
1 +M∗

1m
−1
1 M1

∫ ∞

0

∫ u

−∞
|a(u, s)| ds du

=W ∗M∗
3M

∗
1m

−1
1 +M∗

1m
−1
1 M1A, (3.13)

and in a similar way we have

∣∣∣F2(x)(t)− c2e
∫ t
0
p1(s)ds

∣∣∣ ≤ W ∗M∗
4M

∗
2m

−1
2 +M∗

2m
−1
2 M2B. (3.14)

This implies that

|F1(y)(t)| ≤W ∗M∗
3M

∗
1m

−1
1 +M∗

1m
−1
1 M1A+ c1M1 ≤W ∗

and

|F2(x)(t)| ≤W ∗M∗
4M

∗
2m

−1
2 +M∗

2m
−1
2 M2B + c2M2 ≤W ∗.

Hence, F (Ωx,y) ⊆ Ωx,y as desired. The work to show that F is completely continuous is similar to the

corresponding work in Theorem 2.1, and hence we omit it here. Therefore, by Schauder’s fixed point theorem,

there exists a fixed point (x, y) ∈ Ωxy such that F (x, y)(t) = (F1(y)(t), F2(x)(t)) = (x(t), y(t)). Now we show

that this fixed point is a solution of (1.1). Let

x(t) = c1e
∫ t
0
h1(s)ds −

∫ ∞

t

h2(u)
e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
y(u)du

−
∫ ∞

t

∫ u

−∞

e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
a(u, s)f(x(s), y(s))ds du.
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Then a differentiation with respect to t gives

x′(t) = c1h1(t)e
∫ t
0
h1(s)ds + h2(t)y(t) +

∫ t

−∞

e
∫ t
0
h1(l)dl

e
∫ t
0
h1(l)dl

a(t, s)f(x(s), y(s))ds

−h1(t)
∫ ∞

t

∫ u

−∞

e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
a(u, s)f(x(s), y(s))ds du

−h1(t)
∫ ∞

t

h2(u)
e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
y(u)du

= h1(t)
[
c1e

∫ t
0
h1(s)ds −

∫ ∞

t

∫ u

−∞

e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
a(u, s)f(x(s), y(s))ds du

−
∫ ∞

t

h2(u)
e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
y(u)du

]
+

∫ t

−∞
a(t, s)f(x(s), y(s))ds+ h2(t)y(t)

= h1(t)x(t) + h2(t)y(t) +

∫ t

−∞
a(t, s)f(x(s), y(s))ds.

In a similar fashion we can easily show that if

y(t) = c2e
∫ t
0
p1(s)ds −

∫ ∞

t

p2(u)
e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
y(u)du

−
∫ ∞

t

∫ u

−∞

e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
b(u, s)g(x(s), y(s))ds du,

then it is a solution to the second equation in (1.1).

For an arbitrary fixed point (x, y) ∈ Ωxy of F , we obtain from (3.4), (3.5), and (3.6),

lim
t→∞

|x(t)− c1x1(t)| = lim
t→∞

|F1(y)(t)− c1x1(t)| = 0,

and
lim
t→∞

|y(t)− c1y1(t)| = lim
t→∞

|F2(x)(t)− c1y1(t)| = 0.

By letting

x2(t) = −
∫ ∞

t

h2(u)
e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
y(u)du−

∫ ∞

t

∫ u

−∞

e
∫ t
0
h1(l)dl

e
∫ u
0

h1(l)dl
a(u, s)f(y(s))ds du

and

y2(t) = −
∫ ∞

t

p2(u)
e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
y(u)du−

∫ ∞

t

∫ u

−∞

e
∫ t
0
p1(l)dl

e
∫ u
0

p1(l)dl
b(u, s)g(x(s))ds du

we see that (x(t), y(t)) given by

x(t) := x1(t) + x2(t)

y(t) := y1(t) + y2(t)
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is an asymptotically T -periodic solution of (1.1). Note that by (3.4), (3.5), and (3.6),

lim
t→∞

|x2(t)| ≤W ∗M∗
1m

−1
1 lim

t→∞

∫ ∞

t

|h2(u)|du+M∗
1m

−1
1 M1 lim

t→∞

∫ ∞

t

∫ u

−∞
|a(u, s)|ds du = 0.

Hence,

lim
t→∞

x2(t) = 0.

Similarly,

lim
t→∞

y2(t) = 0.

Finally, we show that x1 and y1 are T -periodic. From (3.1), one can see

x1(t+ T ) = c1e
∫ t+T
0

h1(s)ds

= c1e
∫ t
0
h1(s)ds+

∫ t+T
t

h1(s)ds

= c1e
∫ t
0
h1(s)dse

∫ t+T
t

h1(s)ds

= c1e
∫ t
0
h1(s)ds

= x1(t).

Similarly, y1(t) is T -periodic. 2

We end this paper with a example in which we show the existence of an asymptotically periodic solution.

Example 3.3 Let h1(t) = p1(t) = cos(t), a(t, s) = b(t, s) = e−2t+s, and h2(t) = p2(t) =
2t

(t2 + 2)2
. Also

assume that f(x, y) = sin(x + y), and g(x, y) = cos(x + y). Then all conditions of Theorem 3.2 are satisfied

and hence the system

{
x′(t) = cos(t)x(t) + 2t

(t2+2)2 y(t) +
∫ t

−∞ e−2t+ssin(x(s) + y(s))ds,

y′(t) = cos(t)y(t) + 2t
(t2+2)2x(t) +

∫ t

−∞ e−2t+scos(x(s) + y(s))ds

has an asymptotically 2π -periodic solution.
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