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Abstract: Let T be an L-weakly compact operator defined on a Banach lattice E without order continuous norm. We

prove that the bounded operator S defined on a Banach space X has a nontrivial closed invariant subspace if there exists

an operator in the commutant of S that is quasi-similar to T. Additively, some similar and relevant results are extended

to a larger classes of operators called super right-commutant. We also show that quasi-similarity need not preserve

L-weakly or M-weakly compactness.
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1. Introduction

The notion of quasi-similarity was first introduced by Sz.-Nagy and Foiaş in [8]. Following that, there has been

considerable interest in quasi-similarity. If T is an operator that is quasi-similar to an operator with an invariant

subspace, then it is not known if T needs to have an invariant subspace. However, the following theorem was

proved in [5]:

If S and T are quasi-similar operators acting on the Hilbert spaces H and K respectively, and if S

has a hyperinvariant subspace, then so does T . If, in addition, S is normal, then the lattice of hyperinvariant

subspaces for T contains a sublattice that is lattice isomorphic to the lattice of spectral projections for S .

As is known, if E is a Banach lattice without order continuous norm and Ea ̸= {0} , then L -weakly

compact operators have a common nontrivial closed invariant subideal. Based on this, using the notion of

quasi-similarity, we can consider the existence of nontrivial invariant subspaces for bounded operators on a

Banach space X , which is different from E. For this reason, the purpose of this paper is to present invariant

subspaces of bounded operators quasi-similar to some L -weakly or M -weakly compact operators defined on

Banach lattices in terms without order continuous norm or dual norm.

In this paper, X and Y are infinite-dimensional Banach spaces while E and F denote infinite-

dimensional Banach lattices. The positive cone of E will be denoted by E+ and we will write L (X,Y ),

WL (X,E), and WM (X,E) for the bounded operators, L -weakly compact operators, and M -weakly compact

operators respectively. We use the abbreviations L (X,X) = L (X), WL (E,E) = WL (E), and WM (E,E) =

WM (E). The commutant of an operator S ∈ L (X) is

{S}′ = {R ∈ L (X) : SR = RS} .
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The super right-commutant and super left-commutant of an operator S ∈ L+ (F ) are

[S⟩ =
{
B ∈ L+ (F ) : SB ≤ BS

}
and ⟨S] =

{
B ∈ L+ (F ) : SB ≥ BS

}
,

respectively.

A closed subspace U ⊂ X is a nontrivial invariant closed subspace under T ∈ L (X) (or nontrivial closed

T -invariant) if {0} ̸= U ̸= X and T (U) ⊆ U. Also, U is a T -hyperinvariant subspace if U is invariant

under every operator that commutes with T . For T ∈ L (X) and for 0 ̸= x ∈ X , the linear span of{
x, Tx, T 2x, T 3x, ...

}
is denoted by OT (x) and is called the T -orbit space of x . If OT (x) ̸= X for some

0 ̸= x ∈ X then OT (x) is a nontrivial closed T -invariant subspace. Also, trivially, RangeT and KerT are

closed T -hyperinvariant subspaces. For the subspace U of a Banach lattice if |x| ≤ |y| and y ∈ U imply x ∈ U

then U is called an ideal.

L-weakly and M -weakly compactnesses were introduced by Meyer-Nieberg in [6]. Recall that a nonempty

bounded subset A of Banach lattice E is said to be L -weakly compact if ∥xn∥ → 0 as n → ∞ for every disjoint

sequence (xn) in the solid hull of A . A bounded linear operator T : X → E is called L -weakly compact if

T (BX) is L -weakly compact in E , where BX denotes the closed unit ball of X . A bounded linear operator

T : E → X is M -weakly compact if ∥Txn∥ → 0 as n → ∞ for every disjoint sequence (xn) in BE . In [6],

it was shown that an operator defined between two Banach lattices is L-weakly (M -weakly) compact if and

only if its adjoint operator is M -weakly (L-weakly) compact. Also, it is indicated that L-weakly compact and

M -weakly compact operators are weakly compact operators. In general, L -weakly (or M -weakly) compact

operators and compact operators are different classes.

An operator P ∈ L (X,Y ) is a quasi-affinity if it is injective and has dense range. An operator S ∈ L (X)

is said to be a quasi-affine transform of an operator T ∈ L (Y ) if there exists a quasi-affinity P ∈ L (X,Y )

such that TP = PS . The operators S ∈ L (X) and T ∈ L (Y ) are quasi-similar, denoted by S
qs∽ T, if there

exist quasi-affinities P ∈ L (X,Y ) and Q ∈ L (Y,X) such that TP = PS and QT = SQ. If T ∈ L+ (E) ,

S ∈ L+ (F ) , P ∈ L+ (F,E) , Q ∈ L+ (E,F ) then S ∈ L (F ) and T ∈ L (E) are positively quasi-similar,

denoted by S
pqs∽ T ([4, Definition 2.1]). Quasi-similarity is an equivalence relation on the class of all operators.

We refer to [2, 7] for notations and terminology concerning Banach lattices and operators on them and

[1] for further details on the invariant subspace problem.

2. Auxiliary results

A Banach lattice E has an order continuous norm if xα ↓ 0 in E implies ∥xα∥ ↓ 0. All separable Dedekind

complete Banach lattices have order continuous norm but ℓ∞ and c (with the sup norm) are the best known

examples of Banach lattices without order continuous norms. The order continuous part of a Banach lattice

E is Ea = {x ∈ E : |x| ⩾ xα ↓ 0 ⇒ ∥xα∥ → 0}. For example, (ℓ∞)
a
= c0 and (L∞ (µ))

a
= {0} where µ

is a measure without atom. Ea is a closed order ideal and contains all L -weakly compact subsets of E ([7,

Proposition 2.4.10, Proposition 3.6.2]).

Suppose that E ̸= Ea and Ea ̸= {0} . The equality Ea = {0} is equivalent to the fact that the zero

operator is a unique E -valued L-weakly compact operator, and so considering such type of operators it is

natural to assume Ea ̸= {0} . Since L -weakly compact sets are contained in Ea then RangeT ⊂ Ea for

0 ̸= T ∈ WL (E) ([2, Theorem 5.66]). Therefore, RangeT is a nontrivial closed T -hyperinvariant subspace.
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More generally, we can state that a bounded operator that commutes with some L -weakly compact operator

defined on a Banach lattice without order continuous norm has a nontrivial closed invariant subspace. Can we

extend this observation to a larger class of operators?

J ⊂ L (E) is called a two-sided ideal if ST ∈ J and TS ∈ J for S, T ∈ J. It is well known that

TS ∈ WL (E) always holds for S ∈ L (E) and for T ∈ WL (E). However, WL (E) and WM (E) need not be

two-sided ideals in L (E) (or in Lr (E)) ([3, Example 1.2]). In [3], it was proved that WL(E) ∩ Lr(E) is a

two-sided ideal in Lr(E) if and ony if E has an order continuous norm. As a dual version, WM (E)∩Lr(E) is

a two-sided ideal in Lr(E) if and only if the dual E′ has an order continuous norm.

Theorem 2.1 Let E be a Banach lattice such that E ̸= Ea ̸= {0} . If 0 ̸= T ∈ L (E) and 0 ̸= S ∈ L (E) such

that SkT ∈ WL (E) for k = 1, 2, ... then S has a nontrivial closed invariant subspace.

Proof Let us choose a nonzero element x ∈ E such that Tx ̸= 0. If STx = 0 then KerS is a closed

S -hyperinvariant subspace. Assume that STx ̸= 0 and SkT ∈ WL (E) for k = 1, 2, ... . We have SkTx ∈ Ea

for k = 1, 2, ... . Therefore, the closed subspace generated by the set
{
STx, S2Tx, ..., SkTx, ...

}
is a nontrivial

closed S -invariant subspace. 2

Note that the class of operators S covered in the above theorem is larger than WL (E), the commutant

{T}′ for T ∈ WL (E), and the algebra generated by T ∈ WL (E).

On the other hand, it is natural to ask if quasi-similarity preserves L-weakly and M -weakly compactness.

In order to answer that question we first will describe operators that are quasi-similar to a finite-rank operator.

We write f ⊗ u for the rank one operator x → f (x)u if f ∈ E∼ and u ∈ F . Every operator T : E → F of

the form T =
∑n

i=1fi ⊗ ui , where fi ∈ E∼ and ui ∈ F (i = 1, 2, ..., n) , is called a finite rank operator and

the collection of all finite rank operators from E to F will be denote by E∼ ⊗ F .

Proposition 2.2 If T ∈ F∼ ⊗ F and T is quasi-similar to S ∈ L (E) then S ∈ E∼ ⊗ E and rank (T ) =

rank (S) .

Proof Let T =
∑n

i=1fi ⊗ ui for ∃n ∈ N , fi ∈ F∼ and linear independent elements ui ∈ F (1 ≤ i ≤ n). If T

is quasi-similar to S then there exist quasi-affinities P ∈ L (E,F ) and Q ∈ L (F,E) such that TP = PS and

QT = SQ . For every x ∈ E ,

QTx = SQx =⇒
∑n

i=1fi (x)Qui = SQx.

It follows that RangeS = S
(
RangeQ

)
⊆ RangeSQ ⊆ sp {Qu1, Qu2, ..., Qun} . It means that S is a finite rank

operator. Furthermore, rank (S) ≤ n = rank (T ) holds, so by symmetry we have rank (T ) ≤ rank (S) , that

is, rank (T ) = rank (S). 2

Remark 2.3 Suppose that T = f ⊗ u ∈ L (E) for f ∈ E′ , u ∈ E and T is quasi-similar to S ∈ L (F ) . Then

there exists a quasi-affinity Q : E → F such that QT = SQ , so RangeS ⊆ sp {Qu} holds. Hence, there exists

a representation of S such that S = g ⊗Qu for g ∈ F ′ . In this case, we have Q′g = f since the equality

SQx = g (Qx)Qu = f (x)Qu = QTx

holds for x ∈ E .
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Corollary 2.4 Quasi-similarity need not preserve L-weakly compactness (hence M -weakly compactness).

Proof For the Banach lattice E , we may find quasi-affinities P : E → E and Q : E → E such that PQ = IE

and Q′P ′ = IE′ where I is identity operator. Let us choose an element u ∈ Ea such that Qu /∈ Ea . If the

operators T, S ∈ L (E) are defined by T = f ⊗ u and S = P ′f ⊗ Qu , respectively, then it is easy to see that

T is quasi-similar to S . However, T is an L-weakly compact operator while S is not. 2

3. Quasi-similarity to L-weakly compact operators

In this section, we investigate the applicability of Theorem 2.1 in the previous section for some classes of bounded

operators on a Banach space by the help of quasi-affinities.

Theorem 3.1 Let X be a Banach space, let E be a Banach lattice without order continuous norm such that

Ea ̸= {0} , and let S ∈ L (X) . Suppose that there exists T ∈ L (E) such that:

1. There exists a polynomial p such that 0 ̸= p (T ) ∈ WL (E) .

2. There exists 0 ̸= R ∈ {S}′ , which is a quasi-affine transform of T .

Then S has a nontrivial closed invariant subspace.

Proof Let us choose a nonzero operator R ∈ {S}′ , which is a quasi-affine transform of T. Then there exists

a quasi-affinity P ∈ L (X,E) such that TP = PR. Hence, p (R) is a quasi-affine transform of p (T ) such

that p (T )P = Pp (R) . Therefore, Range (Pp (R)) = Range (p (T )P ) ⊆ Range (p (T )) ⊆ Ea. This yields that

Range (p (R)) is not dense. If Range (p (R)) = {0} then p (T ) = 0 holds since P has dense range. This

contradicts the assumption p (T ) ̸= 0 . Then Range (p (R)) is a nontrivial closed hyperinvariant subspace for

p (R), so S has a nontrivial closed invariant subspace since S also commutes with p (R). 2

Theorem 3.2 Let X be a Banach space, let E be a Banach lattice such that E ̸= Ea ̸= {0} , and let U ∈ L (X) .

Suppose that there exists 0 ̸= S ∈ L (E) such that:

1. There exists 0 ̸= T ∈ L (E) such that ST ∈ WL (E) .

2. S′ is injective.

3. There exists 0 ̸= R ∈ {U}′ , which is a quasi-affine transform of T .

Then U ∈ L (X) has a nontrivial closed invariant subspace.

Proof If R ∈ {U}′ is a quasi-affine transform of T then there exists a quasi-affinity P ∈ L (X,E) such

that TP = PR and for each k = 1, 2, ..., RUk = UkR holds. Let us choose a nonzero element x ∈ E

such that Rx ̸= 0 since R ̸= 0. If there exists a k0 ∈ N − {0} such that Uk0Rx = 0 then the closure of

the subspace generated by the set
{
Rx,URx,U2Rx, ..., Uk0−1Rx

}
is a nontrivial closed U -invariant subspace.

Assume that UkRx ̸= 0 for k = 1, 2, ... . If ST ∈ WL (E) then for k = 1, 2, ... we get STPUk ∈ WL (X,E) ,

so STPUkx ∈ Ea since L -weakly compact subsets are contained in Ea. On the other hand, since E does not
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have order contiuous norm, according to seperating theorem, there exists 0 ̸= f ∈ E′ such that f is zero on

Ea . Since P ′ and S′ are injective 0 ̸= P ′S′f ∈ X ′ holds. It follows that for k = 1, 2, ...⟨
P ′S′f, UkRx

⟩
=

⟨
P ′S′f,RUkx

⟩
=

⟨
f, SPRUkx

⟩
=

⟨
f, STPUkx

⟩
= 0

holds. This equality shows that the closed U -invariant subspace generated by the set{
Rx,URx,U2Rx, ..., UkRx, ...

}
is nontrivial. 2

Theorem 3.3 Let E and F be Banach lattices such that E has not order continuous norm and Ea ̸= {0} .
For S ∈ L+ (F ) and T ∈ W+

L (E) , if there exists B ∈ L+ (F ) such that:

1. 0 ̸= B ∈ [S⟩ ,

2. There exists a positive quasi-affinity P ∈ L+ (F,E) such that TP ≥ PB,

then S has a nontrivial closed invariant ideal.

Proof We prove this using similar techniques to Theorem 10.24 in [1] . If B ∈ [S⟩ then SB ≤ BS, so

SkB ≤ BSk holds for each k ∈ N . Without loss of generality, we can assume that ∥S∥ < 1, which implies

that the series A =
∞∑

n=0
Sn converges and defines a positive operator on F , which in turn implies AB ≤ BA.

Let choose 0 ̸= x ∈ F such that Bx ̸= 0. If ABx = 0 then the closure of the principal ideal generated by

Bx is a nontrivial closed S -invariant ideal. Suppose that ABx ̸= 0. If I is the principal ideal generated by

ABx , i.e. I = {y ∈ F : there exists λ ≥ 0 such that |y| ≤ λABx} then I ̸= {0} and I is S -invariant since the

inequalities |Sy| ≤ S |y| ≤ S (λABx) = λ
∞∑

n=1
SnBx ≤ λABx hold for y ∈ I . As E does not have an order

continuous norm, we have 0 ̸= f ∈ (E′)
+

such that f is zero on Ea . Since P has dense range the adjoint

operator P ′ is injective, so P ′f ̸= 0. Since TPAx ∈ Ea for any y ∈ I

0 ≤ |P ′f (y)| ≤ P ′f |y| ≤ P ′f (λABx) = λf (PBAx) ≤ λf (TPAx) = 0

holds. It follows that I ̸= F . Note that if Ax = 0 then the principal ideal generated by x is a nontrivial closed

S -invariant ideal. 2

4. Quasi-similarity to M-weakly compact operators

If A is a subset of Banach lattice E , then its polar A◦ is defined by A◦ = {x′ ∈ E′ : |x′ (x)| ≤ 1 for every x ∈ A} .
A◦ is a convex, circled, and σ (E′, E)-closed subset. If B is a subset of the dual space E′ then

◦B = {x ∈ E : |x′ (x)| ≤ 1 for every x′ ∈ B}

is called the prepolar of B . If B ⊆ E′ is an ideal, then ◦B is an ideal, which is

◦B = {x ∈ E : x′ (x) = 0 for every x′ ∈ B} .

According to definitions we have A ⊆ ◦ (A◦) and B ⊆ (◦B)
◦
([2, Theorem 9.17]).
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There are some situations where the prepolar ◦ (E′)
a
is not equal to {0} for the Banach lattice E . If

the inclusion (E′)
a ⊆ E∼

n holds and (E′)
a
is not order dense in E∼

n , then ◦ (E′)
a ̸= {0} holds ([9, Corollary

105.12]). It is well known that if E has order continuous norm then E′ = E∼
n holds. For instance, the Banach

lattice E = L1 [0, 1] ⊕ c0 has order continuous norm. On the other hand, E′ = L∞ [0, 1] ⊕ ℓ1 does not have

order continuous norm and (E′)
a

= ℓ1 is not order dense in E′ . On the contrary, the ideal (ℓ′1)
a
= c0 is order

dense in (ℓ1)
′
= ℓ∞ .

Theorem 4.1 Let X be a Banach space and let E be a Banach lattice such that ◦ (E′)
a ̸= {0} . For 0 ̸= S ∈

L (X) , if there exists 0 ̸= T ∈ WM (E) , which is a quasi-affine transform of S , then R ∈ {S}′ has a nontrivial

closed invariant subspace.

Proof Since T is a quasi-affine transform of S there exists a quasi-affinity Q ∈ L (E,X) such that SQ = QT .

Since QT ∈ WM (E,X) we have T ′Q′ ∈ WL (X ′, E′) , so T ′Q′f ∈ (E′)
a
for any f ∈ X ′. It follows that for

0 ̸= x ∈ ◦ (E′)
a

⟨f, SQx⟩ = ⟨f,QTx⟩ = ⟨T ′Q′f, x⟩ = 0.

Since ⟨X,X ′⟩ is a dual pair we have SQx = 0 for x ∈ ◦ (E′)
a
. Since Q is injective Qx ̸= 0, so since S ̸= 0,

KerS is a nontrivial closed S -hyperinvariant subspace. Hence, 0 ̸= R ∈ {S}′ has a nontrivial closed invariant

subspace. 2

Corollary 4.2 Let X be a Banach space and let E be a Banach lattice such that ◦ (E′)
a ̸= {0} . For

0 ̸= S ∈ L (X) , if there exists 0 ̸= T ∈ WM (E) which is a quasi-affine transform of some 0 ̸= R ∈ {S}′ , then
S has a nontrivial closed invariant subspace.

Proof If 0 ̸= R ∈ {S}′ then S ∈ {R}′ holds. Thus, the corollary follows from previous theorem. 2

Corollary 4.3 Let X be a Banach space and let E be a Banach lattice such that ◦ (E′)
a ̸= {0} . If S ∈ L (X)

and T ∈ WM (E) such that T is a quasi-affine transform of S−λI for 0 ̸= λ ∈ R where I is identity operator

on X , then S has a nonzero eigenvector or S is a scalar operator.

Proof Under these assumptions, from the proof of Theorem 4.1 we see that there exist 0 ̸= x ∈ ◦ (E′)
a
and a

quasi-affinity Q ∈ L (E,X), which implies Qx ̸= 0 such that (S − λI)Qx = 0. Otherwise, if the subspace gener-

ated by the set
{
Qx : x ∈ ◦ (E′)

a}
is dense in X then S−λI = 0, so this means that S is a scalar operator. 2

Corollary 4.4 Let X be a Banach space and let E be a Banach lattice such that E′ ̸= (E′)
a ̸= {0} . Assume

that 0 ̸= S ∈ L (X) and:

1. S is weakly compact and S′′ is injective.

2. There exists T ∈ WM (E) such that T ′ is a quasi-affine transform of S′.

Then S has a nontrivial closed invariant subspace.
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Proof If T ′ is a quasi-affine transform of S′ , then there exists a nontrivial closed S′ -invariant subspace

V ⊂ X ′ by Theorem 3.1. Hence, there exist 0 ̸= x′′ ∈ X ′′ such that x′′ = 0 on V . Since S is a weakly

compact operator, S′′ (X ′′) ⊆ X holds by Gantmacher’s theorem, so x = S′′ (x′′) ∈ X. By the injectivity of

S′′ we get W = sp {Skx : k ∈ N} ̸= {0} and clearly W is a closed S -invariant subspace. For 0 ̸= g ∈ V and

for k ∈ N the equivalent

⟨
g, Skx

⟩
=

⟨
(S′)

k
g, x

⟩
=

⟨
(S′)

k
g, S′′x′′

⟩
=

⟨
(S′)

k+1
g, x′′

⟩
= 0

shows that W ̸= X. 2

Theorem 4.5 Let E and F be Banach lattices such that ◦ (E′)
a ̸= {0} . For 0 ̸= S ∈ L+ (F ) , 0 ̸= T ∈

W+
M (E) , and a positively quasi-affinity Q ∈ L+ (E,F ) , if SQ ≤ QT holds then every nonzero R ∈ [S⟩ has a

nontrivial closed invariant ideal.

Proof For 0 ̸= x ∈ ◦ (E′)
a

injectivity of Q implies Qx ̸= 0. For 0 ̸= f ∈ E′, T ′Q′ |f | ∈ (E′)
a

since

QT ∈ WM (E,F ) , so we obtain that

|⟨f, SQx⟩| ≤ ⟨|f | , QT |x|⟩ = ⟨T ′Q′ |f | , |x|⟩ = 0.

It follows that SQx = 0 for x ∈ ◦ (E′)
a
since ⟨X,X ′⟩ is a dual pair. For 0 ̸= R ∈ [S⟩ , let W be the closure

of the ideal generated by the set
{
Qx,RQx,R2Qx, ...

}
. Clearly, W ̸= {0} and clearly W is R -invariant. If

S ̸= 0 then S′ ̸= 0, so there exists 0 ̸= f ∈ X ′ such that S′f ̸= 0. Thus, since SQ |x| = 0, we get∣∣⟨S′f,RkQx
⟩∣∣ ≤ ⟨

|f | , SRkQ |x|
⟩
≤

⟨
|f | , RkSQ |x|

⟩
=

⟨
|f | , Rk0

⟩
= ⟨|f | , 0⟩ = 0

for k ∈ N. This shows that W ̸= X. 2

Corollary 4.6 Let E and F be Banach lattices such that ◦ (E′)
a ̸= {0} . For 0 ̸= S ∈ L+ (F ) , 0 ̸= T ∈

W+
M (E) , and a positively quasi-affinity Q ∈ L+ (E,F ) , if there exists 0 < R ∈ ⟨S] such that RQ ≤ QT , then

S has a nontrivial closed invariant ideal.

Proof If 0 ̸= R ∈ ⟨S] then S ∈ [R⟩ , so it follows from the previous theorem. 2
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