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3Laboratory of Functional Analysis, Sobolev Institute of Mathematics, Novosibirsk, Russia

Received: 16.12.2016 • Accepted/Published Online: 29.03.2017 • Final Version: 22.01.2018

Abstract: Nonstandard hulls of a vector lattice were introduced and studied in many papers. Recently, these notions were

extended to ordered vector spaces. In the present paper, following the construction of associated Banach–Kantorovich

space due to Emelyanov, we describe and investigate the nonstandard hull of a lattice-normed space, which is the

foregoing generalization of Luxemburg’s nonstandard hull of a normed space.
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1. Introduction

Nonstandard analysis provides a natural approach to various branches of functional analysis (see, for example,

[1,9,13–15,21–24,26]). Luxemburg’s construction of the nonstandard hull of a normed space (cf. [1,23,29]) is

one of the most important and elegant illustrations of the said approach. Recall that, given an internal normed

space (X, ∥ · ∥), an element x ∈ X is called infinitesimal if ∥x∥ ≈ 0 and finite if ∥x∥ ≤ n for some n ∈ N .

Denote the set of infinitesimal elements and the set of finite elements of X by µ(X) and fin(X), respectively.

Since µ(X) is a vector subspace of a vector space fin(X), we may define X̂ to be a quotient fin(X)/µ(X).

Note that X̂ is a real vector space and also a Banach space (cf. [23, p.33]) under the norm defined by

∥[x]∥ = st∥x∥ = inf
R
{a ∈ R : ∥x∥ ≤ a} (x ∈ fin(X)). (1)

In the case when X = ∗Y for some standard normed space Y = (Y, ∥·∥), the normed space Ŷ := ˆ∗Y = ( ˆ∗Y , ∥·∥)
is called the nonstandard hull of Y . In the present paper, we develop the notion of the nonstandard hull of a

normed space further by generalizing it to the case of a lattice-normed space (abbreviated by LNS).

In the 1990s, Luxemburg’s construction was extended to vector lattices (see [7–9]). Note that a vector

lattice E can be seen as the corresponding LNS (E, | · |, E). Lattice-normed vector lattices (abbreviated by

LNVLs) have attracted attention in [4,5,10,12,14,26,27]. The general theory of lattice-normed ordered vector

spaces (abbreviated by LNOVSs) is still under investigation. The present paper contributes to the study of

this theory by using nonstandard analysis, namely by using nonstandard hulls of LNOVSs normed by Dedekind

complete vector lattices.
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The scheme of nonstandard analysis used below has been introduced by Luxemburg and Stroyan [30].

In our paper, we deal only with nonstandard enlargements satisfying the general saturation principle (such

nonstandard enlargements are called polysaturated [1, p.47]). Since the basic methods of nonstandard analysis

are well developed and presented in many textbooks (see, for example, [1,21,23,24,27,29,32]), we refer the reader

for corresponding notions and terminology to these standard sources. We also refer to [2,3,14,26,31,33,34,36]

for theory of ordered vector spaces (abbreviated by OVSs) and [10,12,14,16,18] for nonstandard hulls of vector

latices and OVSs.

The structure of the paper is as follows. In Section 2, we include elementary theory of LNOVSs in

parallel with theory of LNVLs (see, for example, [4,5,26]). In Section 3, we introduce and investigate the

nonstandard hull of an LNS normed by a Dedekind complete vector lattice. This notion is closely related to the

construction of an associated Banach–Kantorovich space [10,12,14]. In Section 4, we investigate nonstandard

hulls of LNOVSs. The main result here is Theorem 5, that is the nonstandard hull of a p -semimonotone LNOVS

is also p -semimonotone with the same constant of semimonotonicity.

2. Preliminaries

In the present paper, all standard OVSs are assumed to be real, Archimedean, and equipped with the generating

positive cone [3]. We define and study certain necessary notions such as p -normality and op -continuity in

LNOVSs, p-Levi spaces, etc. (see also [4–6] for their lattice versions).

The following notions in lattice-normed vector spaces (abbreviated by LNSs) are motivated by their

analogies in normed spaces.

Definition 1 (see also [4]) Given an LNS (X, p,E) and A,B ⊆ X .

(a) A is said to be p-dense in B if, for any b ∈ B and for any 0 ̸= u ∈ p(X) , there is a ∈ A such that

p(a− b) ≤ u .

(b) A is said to be p -closed if, for any net aα in A such that p(aα − x) → 0 in X (abbreviated by zα
p−→ x ) ,

it holds that x ∈ A .

(c) B is said to be the p -closure of A if B is the intersection of all p-closed subsets of X containing A .

In what follows, X = (X, p,E) is an LNOVS. The next property is an analogy of the well-known property

of normed OVSs. It is a direct extension of [4, Prop.1] and it has a similar proof, which is omitted.

Proposition 1 Let the positive cone X+ in an LNOVS X = (X, p,E) be p-closed. Then any monotone

p-convergent net in X is o-convergent to its p-limit.

We continue with further basic notions in LNOVSs, which are motivated by their analogies for vector

lattices and for LNVLs (see, for example, [4–6,19,20,25–27]).

Definition 2 (a) A subset A ⊆ X is p-bounded if there exists e ∈ E such that p(a) ≤ e for all a ∈ A .

(b) X is p -semimonotone if there is M ∈ R such that 0 ≤ y ≤ x ∈ X implies p(y) ≤ Mp(x) .

(c) X is p -normal if xα ≤ yα ≤ zα in X , xα
p−→ u , and zα

p−→ u imply yα
p−→ u .

(d) X is a p -Levi-space if every p-bounded increasing net in X+ is p-convergent.

(e) X is op-continuous if xα
o−→ 0 implies that xα

p−→ 0 .

156



AYDIN et al./Turk J Math

(f) X is σ − op -continuous if xn
o−→ 0 implies that xn

p−→ 0 .

(g) A net (xα)α∈A in X is said to be p -Cauchy if (xα − xα′)(α,α′)∈A×A
p−→ 0 .

(h) X is p -complete if every p-Cauchy net in X is p-convergent.

Lemma 1 Let X be a p-semimonotone LNOVS with the semimonotonicity constant M . Then form a ≤ x ≤ b

in X follows that p(x) ≤ 2(M + 1)(p(a) ∨ p(b)) .

Proof Since a ≤ x ≤ b , then 0 ≤ x− a ≤ b− a and

p(x)− p(a) ≤ p(x− a) ≤ Mp(b− a) ≤ M(p(b) + p(a)).

Hence
p(x) ≤ M(p(b) + p(a)) + p(a) ≤ (M + 1)(p(b) + p(a)) ≤ 2(M + 1)(p(a) ∨ p(b)).

2

Lemma 2 Let X be a p-semimonotone LNOVS and ±xα ≤ yα
p−→ 0 . Then xα

p−→ 0 .

Proof By Lemma 1, −yα ≤ xα ≤ yα implies p(xα) ≤ 2(M +1)p(yα). Since yα
p−→ 0, then 2(M +1)p(yα)

o−→ 0

and hence p(xα)
o−→ 0. Thus, xα

p−→ 0. 2

Definition 2(c) is motivated by the property (cf. [3, Thm.2.23]) of normal normed OVSs. Note that,

without lost of generality, one may suppose that, in Definition 2(c), u = 0 and xα ≡ 0. Therefore, Lemma

2 ensures that any p -semimonotone LNOVS is p -normal (in particular, any LNVL is p -normal). Thus, the

p -normality coincides with the usual normality in a normed OVS (X, p,E) = (X, ∥ · ∥). In this case X is

p -normal iff it is p -semimonotone (cf. [35, Thm.IV.2.1]).

It was established in [4, Lm.2] that an LNVL (X, p,E) is op-continuous iff X ∋ wβ ↓ 0 ⇒ wβ
p−→ 0.

In order to extend this result, we need the following lemma.

Lemma 3 Let an LNOVS X = (X, p,E) be p-semimonotone and wβ be a net in X . If wβ ↓ 0 implies

wβ
p−→ 0 , then X is op-continuous.

Proof Let xα
o−→ 0. Then there are two nets yβ ↓ 0 and zγ ↓ 0 in X such that, for every β and γ , there

exists αβ,γ with

−yβ ≤ xα ≤ zγ (∀α ≥ αβ,γ).

By Lemma 1,

p(xα) ≤ 2(M + 1)(p(yβ) ∨ p(zγ)) (∀α ≥ αβ,γ). (2)

By the assumption, p(yβ)
o−→ 0 and p(zγ)

o−→ 0. Then p(yβ) ∨ p(zγ)
o−→ 0. It follows from (2) that p(xα)

o−→ 0.

Therefore, X is op -continuous. 2

Hence we have the following result.

Theorem 1 A p-semimonotone LNOVS X = (X, p,E) is op-continuous iff, for any net xα ∈ X , the condition

xα ↓ 0 implies xα
p−→ 0 .
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Clearly, the op -continuity in LNOVSs is equivalent to the order continuity in the sense of [26, 2.1.4, p.48].

For p -complete LNOVSs, we have more conditions for op -continuity (see also [4, Thm.1] for the LNVL case).

Theorem 2 Let an LNOVS X = (X, p,E) be p-complete and p-semimonotone. The following conditions are

equivalent :

(i) X is op -continuous;

(ii) if 0 ≤ xα ↑≤ x holds in X, then xα is a p-Cauchy net ;

(iii) xα ↓ 0 in X implies xα
p−→ 0 .

The proof is similar to the proof of [4, Thm.1] and we omit it.

The following two results generalize [4, Cor.1], [4, Cor.2], and [4, Prop.2] respectively.

Theorem 3 Let an LNOVS (X, p,E) be op-continuous, p-complete, and p-semimonotone. Then X is

Dedekind complete.

Proof Assume 0 ≤ xα ↑≤ u ; then, by Theorem 2(ii), xα is a p -Cauchy net and, since X is p -complete, there

exists x such that xα
p−→ x . It follows from Proposition 1 that xα ↑ x , and so X is Dedekind complete. 2

Theorem 4 Any p-semimonotone p-Levi LNOVS (X, p,E) with p-closed X+ is op-continuous.

The proof is similar to the proof of [4, Cor.2] and therefore it is omitted.

Proposition 2 Any p-semimonotone p-Levi LNOVS (X, p,E) with p-closed X+ is Dedekind complete.

Proof Let 0 ≤ xα ↑≤ z ∈ X . Then p(xα) ≤ Mp(z). Hence the net xα is p -bounded and therefore xα
p−→ x

for some x ∈ X . By Proposition 1, xα ↑ x . 2

3. Nonstandard hulls of LNSs and of dominated operators acting between them

Order- and regular-nonstandard hulls of LNSs were introduced in [10] as certain generalizations of Luxemburg’s

nonstandard hull of a normed space [29]. Here we employ a different approach for extending Luxemburg’s

construction to LNSs. In the rest of the paper, we suppose all LNSs to be normed by Dedekind complete vector

lattices. To be certain, we fix a Dedekind complete vector lattice E for the norming lattice for all LNSs in what

follows. While considering an internal LNS (X , p, E), we always assume that its norming lattice is standard,

i.e. E = ∗E .

3.1. Some external vector spaces associated with OVSs and LNSs

We begin with several basic constructions from [10, 16, 18]. Let Y be an OVS. Consider the following external

real vector subspaces of ∗Y [18].

fin(∗Y ) := {κ ∈ ∗Y : (∃y ∈ Y )− y ≤ κ ≤ y},

η(∗Y ) := {κ ∈ ∗Y : inf
Y
{y ∈ Y : −y ≤ κ ≤ y} = 0},

o-pns(∗Y ) := {κ ∈ ∗Y : inf
Y
{y′ − y : Y ∋ y ≤ κ ≤ y′ ∈ Y } = 0},

and Y := fin(∗Y )/η(∗Y ).
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Let X = (X , p, ∗E) be an internal LNS. In accordance with [10, 12], consider the following external

subspaces of X :

fin(X ) = {x ∈ X : p(x) ∈ fin(∗E)},

n(X ) = {x ∈ X : p(x) ∈ η(∗E)},

In the case of a standard LNS X = (X, p,E),

o− pns(∗X) = {κ ∈ ∗X : inf
E
{p(κ− x) : x ∈ X} = 0}.

Remark that, similarly to the case in which X = (X, p,E) is a normed space (cf. [1, Prop.2.2.2.]), it can be

easily shown that X is p-complete iff o− pns(∗X) = X + n(∗X).

3.2. Nonstandard hull of an LNS

For an internal LNS X = (X , p, ∗E), consider the quotient X := fin(X )/n(X ) and define the mapping

p : X → E by the following rule motivated by formula (1) (see also [12, Thm.2.3.5.] and [10, 3.1]):

p([x]) := inf
E
{e ∈ E : e ≥ p(x)} (x ∈ fin(X )). (1∗)

It is easy to see that this mapping is a well-defined E -valued norm on X .

Definition 3 Given an LNS (X, p,E) . The LNS (∗X, p,E) is called the nonstandard hull of (X, p,E) .

According to [10, Thm.3.5], the nonstandard hull of (X, p,E) is a Banach–Kantorovich space, when p

is decomposable. The main reason for using the term ”nonstandard hull” lies in [12, Thm.2.4.1.] (see also

[10, Thm.4.3]), saying that, in the case of decomposable LNS (X, p,E), the p -completion of (X, p,E) can be

obtained by natural embedding of (X, p,E) into (∗X, p,E), and then by just taking its p-closure there.

3.3. Nonstandard hulls of dominated operators between decomposable LNSs

Given two LNSs (X, p,E) and (Y,m,E). Let T : X → Y be a dominated operator (cf. [26, 4.4.1.]). Under

the assumption of decomposable X , T has an exact dominant |||T ||| (cf. [26, 4.4.2.]) and, in that case, the space

M(X,Y ) can be considered a decomposable LNS (M(X,Y ), ||| · |||, Lb(E)).

Denote by Mn(
∗X, ∗Y ) the set of all internal linear operators from ∗X into ∗Y that admit standard

order-continuous dominants, that is: T ∈ Mn(
∗X, ∗Y ) iff there is an operator S ∈ L(E,F ) satisfying ∗m(Tκ) <

∗S(∗p(κ)) for all κ ∈ ∗X . The following lemma was proved in [12, Lm.2.4.2.].

Lemma 4 For every operator T ∈ Mn(
∗X, ∗Y ) , T (fin(∗X)) ⊆ fin(∗Y ) and T (n(∗X)) ⊆ n(∗Y ) .

Lemma 4 ensures that, for any operator T ∈ Mn(
∗X, ∗Y ), the rule

T ([κ]) := [Tκ] (κ ∈ fin(∗X))

defines a mapping T : X → Y . By [12, Thm.2.4.3.], T is a linear dominated operator from (∗X, p,E) into

(∗Y ,m,E) with the least dominant |||T ||| satisfying

|||T ||| ≤ inf{S ∈ Ln(E) : ∗S ≥ |||T |||}, (3)

159



AYDIN et al./Turk J Math

where |||T ||| is the least internal dominant of T . The operator T is said to be the nonstandard hull of T . Since

T ∈ Mn(X,Y ) iff ∗T ∈ Mn(
∗X, ∗Y ), inequality (3) implies that |||∗T ||| = |||T ||| for any T ∈ Mn(X,Y ) (see also

[12, Thm.2.4.4.]).

4. Nonstandard hulls of LNOVSs

4.1. Nonstandard hull of an LNOVS

Let Y = (Y, p, ∗E) be an internal p -semimonotone LNOVS with a finite constant M ∈ fin(R) of the semimono-

tonicity. The key step is the following technical lemma.

Lemma 5 n(Y) is an order ideal in fin(Y) .

Proof Since n(Y) is a real vector subspace of fin(Y), it is enough to show that n(Y) is order convex. Let

ξ ≤ κ ≤ ζ with κ ∈ Y , and ξ, ζ ∈ n(Y). By Lemma 1,

p(κ) ≤ 2(M+ 1)(p(ξ) ∨ p(ζ)) ≤ 2(st(M) + 2)(p(ξ) ∨ p(ζ)) ∈ η(∗E),

and hence κ ∈ n(Y). 2

Theorem 5 Let (Y, p, ∗E) be a p-semimonotone LNOVS with a finite constant M of semimonotonicity. Then

fin(Y)/n(Y) is an OVS. Moreover, the LNOVS (Y, p, E) is p-semimonotone with a constant M = st(M) of

semimonotonicity.

Proof Y = fin(Y)/n(Y) is an OVS, by Lemma 4. Now let 0 ≤ [κ] ≤ [ξ] ∈ Y . By the definition of ordering

in the quotient space fin(Y)/n(Y) (cf. [17, p.3]), we may assume that 0 ≤ κ ≤ ξ . Hence 1
Mp(κ) ≤ p(ξ) and

then, for any n ∈ N ,

p([ξ]) = inf
E
{e ∈ E : e ≥ p(ξ)} ≥ inf

E
{e ∈ E : e ≥ M−1p(κ)} ≥

inf
E

{
e ∈ E : e ≥

( 1

M
− 1

2n

)
p(κ)} ≥ inf

E

{
e ∈ E : e ≥

( 1

M
− 1

n

)
p(κ)

}
=

( 1

M
− 1

n

)
inf
E
{e ∈ E : e ≥ p(κ)} =

( 1

M
− 1

n

)
p([κ]).

Since the inequality is true for all n ∈ N , we obtain p([ξ]) ≥ ( 1
M p([κ])) or p([κ]) ≤ Mp([ξ]) , as desired. 2

Corollary 1 Let (Y, p, E) be a p-semimonotone LNOVS. Then (∗Y , p,E) is also a p-semimonotone LNOVS

with the same constant of semimonotonicity.

Proof Let M be a semimonotonicity constant of (Y, p,E). By the transfer principle, M = M is a

semimonotonicity constant of (∗Y , p,E). Now apply Theorem 5. 2

Corollary 2 Let (Y, ∥ · ∥) be a normal OVS. Then its nonstandard hull ∗Y is a normal Banach space.

Proof Note that any OVS is normal iff it is semimonotone (cf. [35, Thm.IV.2.1.]) and apply Theorem 5. 2
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4.2. Internal LNVLs

Here we consider some properties of LNS (Y, p, E) in the case where (Y, p, ∗E) is an internal LNVL.

Theorem 6 Let (Y, p, ∗E) be an internal LNVL. Then (Y, p, E) is also an LNVL.

Proof Note that the quotient fin(Y)/n(Y) of a vector lattice fin(Y) by an order ideal n(Y) is a vector lattice.

Since (Y, p, ∗E) has a semimonotonicity constant M = 1, then, by Theorem 5, the LNOVS (Y, p, E) has a

semimonotonicity constant M = 1, which means that p([κ]) ≤ p([ξ]) for all κ, ξ with |κ| ≤ |ξ| . Therefore, p is

an E -valued lattice norm on Y and (Y, p, E) is an LNVL. 2

The following proposition generalizes [23, Prop.4.7] for LNVL.

Proposition 3 Let (Y, p, ∗E) be an internal LNVL. Then the LNVL (Y, p, E) is σ−op-continuous, and every

monotone p-bounded sequence in Y is order-bounded.

Proof First we show σ − op -continuity. Clearly, it is enough to show that Y ∋ xn ↓ 0 implies p(xn) ↓ 0.

Suppose in contrast that p(xn) ↓≥ u for all n and some 0 ̸= u ∈ E+ . The monotonicity of the lattice norm p

ensures the existence of a sequence κn ↓ in Y+ with [κn] = xn and 2p(κn) ≥ u for all n ∈ N . Consider the

sequence of nonempty internal sets

An = {χ ∈ Y : 2p(χ) ≥ u & 0 ≤ χ ≤ κn} (n ∈ N).

By saturation principle there exists χ ∈
∞∩

n=1
An . Then 0 < [χ] ≤ [κn] = xn violating xn ↓ 0. Therefore,

p(xn) ↓ 0.

For the second part, let Y ∋ xn ↓ and p(xn) ≤ u ∈ E for all n ∈ N . The monotonicity p gives a sequence

κn ↓ in Y with [κn] = xn and p(κn) ≤ 2u for all n ∈ N . By the saturation principle there is χ ∈ Y with

p(χ) ≤ 2u and χ ≤ κn ≤ κ1 for all n ∈ N . Hence xn = [κn] ∈
[
[χ], [κ1]

]
for all n ∈ N , which is required. 2

4.3. Nonstandard criterion for op-continuity

The following theorem generalizes [12, Thm.4.5.3.].

Theorem 7 An LNVL (X, p,E) is op-continuous iff η(∗X) ⊆ n(∗X) .

Proof Suppose that (X, p,E) is op -continuous and fix κ ∈ η(∗X). Then there exists a net xα ∈ ∗X such

that xα ↓ 0 and 0 ≤ κ ≤ xα . Clearly, xα
o−→ 0, and so we have xα

p−→ 0 since p is op -continuous. Since

0 ≤ p(κ) ≤ p(xα), it follows that p(κ) ∈ η(∗E) or κ ∈ n(∗X). Hence η(∗X) ⊆ n(∗X).

Now suppose η(∗X) ⊆ n(∗X) and X ∋ xα
o−→ 0. Then there are two nets yβ ↓ 0 and zγ ↓ 0 in X such

that, for every β and γ , there exists αβ,γ with

−yβ ≤ xα ≤ zγ (α ≥ αβ,γ).

Thus, xα ∈ η(∗X) for all infinitely large α . Hence, by the hypothesis, xα ∈ n(∗X) for all infinitely large α .

Therefore, p(xα) → 0 and (X, p,E) is op-continuous. 2
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We finish with a discussion of the p -Levi property. Let (X, p,E) be p -Levi and (xα)α∈A be a monotone

p -bounded net in X . Then xα
p−→x for some x ∈ X . By the transfer principle, xα ∈ fin(∗X) for all α ∈ ∗A .

Given an infinitely large ν . Since xα
p−→x , then xν ∈ x+n(∗X) ⊆ o− pns(∗X). We do not know under which

conditions on (X, p,E) the converse is also true.
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