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Abstract: In this paper, we analyze a projection-based variational multiscale (VMS) method for the optimal control

problems governed by the convection–diffusion–reaction equations. We derive the first-order optimality conditions by the

optimize-then-discretize method. After expressing the discrete optimal control problem, we obtain the stability properties

of state and adjoint variables. We also prove that the error in each variable is optimal. Through numerical examples,

we show the efficiency of the stabilization for the solutions of the control, state, and adjoint variables.
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1. Introduction

In this paper, we consider the optimal control problems of convection-dominated convection–diffusion–reaction

equations. Let Ω be a convex polygonal domain in R2 with Lipschitz boundary Σ = ∂Ω. The distributed control

problem for the steady-state convection-diffusion-reaction equations with homogeneous Dirichlet boundary

conditions can be stated as follows:

min J(y, u) =
1

2
∥y − yd∥2Ω +

α

2
∥u∥2Ω (1.1)

subject to − ϵ∆y + b⃗.∇y + ry = f + u in Ω,

y = 0 on Σ, (1.2)

where f ∈ L2(Ω) is a fixed forcing term, ϵ > 0 denotes the diffusivity, b⃗ is the fluid velocity, and r is a reaction

coefficient. α > 0 stands for the regularization parameter. Here y and u denote the state and control variables,

respectively, and yd is the desired state.

We consider the case where the diffusion coefficient ϵ is small compared to the infinite norm of the velocity

field b⃗ . In this case, obtaining the accurate solution is very difficult due to the dominance of convection. Thus,

classical numerical methods produce nonphysical oscillations since the solution contains many scales including

complex boundary and interior layers [12]. As a numerical method, the finite element method is chosen to

obtain the solution of this system in this study. However, application of the standard Galerkin finite element

method (GFEM) would not result in accurate numerical solutions due to the mentioned disadvantages for such
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kinds of problems. Thus, one has to consider a numerical stabilization scheme to avoid these difficulties. Some

of the most used numerical stabilization techniques for flow problems are streamline upwind Galerkin (SUPG)

and pressure stabilization methods, large eddy simulation (LES) methods, and variational multiscale (VMS)

methods.

Analysis of some well-known stabilization techniques applied to a convection–diffusion system was given

in [6] and a comparison of various stabilization techniques applied on an Oseen problem was studied in [3].

In [18], a discontinuous Galerkin finite element method (DG) with interior penalties for the optimal control

problem of the convection–diffusion equation was studied and in [11] an edge-stabilized Galerkin finite element

method for the same optimal control system was considered. Moreover, local error estimates for SUPG solutions

of advection-dominated elliptic linear–quadratic optimal control problems were studied in [9]. Similarly, the

local (DG) for the optimal control problem governed by convection–diffusion equations was analyzed in [19]. A

similar study concerning the pressure stabilization technique, namely the Brezzi–Pitkaranta stabilization, was

cast on a Stokes control in [5].

In this study, we solve the optimal control problem with a projection-based VMS approach similar to the

idea given in [4, 13]. Within this technique, the global stabilization was added to the overall system first and

then its effects were subtracted from the larger flow scales, which are defined explicitly through some projections.

Thus, stabilization acts only on the smallest resolved scales for both state and adjoint equations [4].

There are two different approaches for the discretization of optimal control problems: optimize-then-

discretize (OD) and discretize-then-optimize (DO). We follow here the function-based approach optimize- then-

discretize. The optimality system consists of the state and adjoint equations as coupled by an algebraic equation.

The organization of the paper is as follows. We first recall some notational issues and preliminaries in

order to define the problem and its variational form. Then we discretize the problem with the finite element

method with stabilization and give the stability property of the optimal control problem. We state the a priori

error for each variable next. Moreover, the extension to the case with pointwise control constraints is discussed

in the following section. We conclude our study with some numerical examples to verify the effectiveness of the

method.

2. Notation and preliminaries

We use the standard notations used for Sobolev and Lebesgue spaces in [1] throughout the entire study. The

Sobolev space W k,r(Ω) on a domain Ω ⊂ Rd with d = 2, 3 is given as

W k,r(Ω) = {ϕ ∈ Lr(Ω) : ∀|s| ≤ k, ∂sϕ ∈ Lr(Ω)}.

We denote usual inner product and norm in L2(Ω) by (·, ·) and ∥ · ∥ , respectively. The norm and seminorm

in a Sobolev space W k,r(Ω) are given by ∥ · ∥k,r and |·|k,r . For the special case r = 2, the norm in the space

W k,2(Ω) = Hk(Ω) is shown by ∥·∥k . The space H1(Ω) is of special interest and we use it frequently throughout

the study. The norm in H1(Ω) is given by ∥y∥1 = (∥y∥+∥∇y∥)1/2 . We would like to recall here the dual space

of H1
0 (Ω), namely the space H−1(Ω) equipped with the −1-norm

∥g∥−1 = sup
v∈Y

| < g, v > |
∥v∥1

. (2.1)
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Here < ., . > denotes the duality pairing. The following well-known functional vector spaces are considered to

define a variational formulation of (1.2).

Y := H1
0 (Ω) = {y ∈ H1(Ω) : y = 0 on Σ},

U : = L2(Ω).

We denote the state space by Y and the control space by U . Thus, one can easily obtain the variational form

of the state equation (1.2) as: Find y ∈ Y and u ∈ U satisfying

ϵ(∇y,∇v) + (⃗b · ∇y + ry, v) = (f + u, v), ∀v ∈ Y. (2.2)

We also assume the classical coercivity condition for convection-diffusion equations, which states that

there exists a constant β such that r − 1
2∇.⃗b ≥ β > 0. As done in [11], the left-hand side of (2.2) could be

expressed as a bilinear form and by using the coercivity assumption, standard optimal control theory [16] gives

that there is a unique solution of (1.1–1.2) if and only if there exists an adjoint p ∈ Y satisfying

−ϵ∆p−∇.(⃗bp) + rp = y − yd in Ω,
p = 0 on Σ,

(2.3)

and the pair (u, p) satisfies

(αu+ p, w − u) ≥ 0 ∀ w ∈ U. (2.4)

Thus, the variational problem corresponding to (2.3) reads as: find p ∈ Y satisfying

ϵ(∇p,∇w)− (∇.(⃗bp), w) + (rp, w) = (y − yd, w), ∀w ∈ Y. (2.5)

We want to note here that, throughout the entire text, C will denote a generic constant that is independent of

mesh width h unless stated otherwise.

3. Discretization with VMS finite element method

In this section, we will discretize our continuous problems with a projection-based stabilized finite element

method. We let Y h ⊂ Y and Uh ⊂ U be the finite element spaces with a conforming triangulation τH of Ω.

For H ≥ h , let τh be a refinement of τH . Let LH be a vector-valued finite element subspace of L2(Ω). We

assume that finite element spaces have the following properties. We consider Y h to be the space of continuous

piecewise polynomials of degree r . We also make the standard assumptions that the space Y h satisfies the

following approximation properties for a given integer 1 ≤ s ≤ r :

inf
yh∈Y h

{
∥(y − yh)∥+ h∥∇(y − yh)∥

}
≤ Chs+1(∥y∥s+1) (3.1)

for (y ∈ (Y ∩Hs+1(Ω)). We also assume that the control variable u satisfies

∥u− ũ∥ ≤ Chs+1∥u∥s+1 for u ∈ U ∩Hs+1(Ω), (3.2)

where ũ is the L2 projection from U to Uh . We also use the fact that L2 orthogonal projections of LH satisfy

∥G− PHG∥ ≤ CHs|G|s, 1 ≤ s ≤ r (3.3)
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for G ∈ (L2(Ω) ∩Hs(Ω)). We also use the well-known property of these operators that

∥I − PH∥ ≤ 1. (3.4)

Through our scheme, we add the global stabilization first and then we subtract its effect onto large scales only.

In this way, stabilization acts only on the smallest resolved scales. To do this, additional diffusion acts on all

discrete scales and its effects are subtracted from scales resolvable on τH . We follow similar steps as done in

[10] and [15] to obtain the discrete form of PDE’s and we obtain the optimal control problem (1.1)–(1.2) as

follows: Find yh ∈ Y h ,gH ∈ LH and uh ∈ Uh such that

min J(yh, uh) =
1

2

∥∥yh − yd
∥∥2 +

α

2

∥∥uh
∥∥2 (3.5)

subject to

ϵ(∇yh,∇vh) + (σ(∇yh − gH),∇vh) + (⃗b.∇yh, vh) + (ryh, vh)

= (f, vh) + (uh, vh), ∀vh ∈ Y h, (3.6)

(gH −∇yh, lH) = 0, ∀lh ∈ LH . (3.7)

Here σ stands for a nonnegative user selected stabilization parameter depending on the mesh width h . These

parameters can be thought of as an additional viscosity in the coarse space.

Remark 3.1 One should select the large-scale space LH explicitly in multiscale formulations as introduced

in this study. The discretization we study adds additional diffusion acting on all discrete scales and then

antidiffuses on the scales resolvable on large ones. Since each flow structure contains large and small scales

together, distinguishing these scales is of importance. Here our regular step size or mesh parameter h stands for

the small scales and H denotes the large scales used for stabilization and projection issues used within. If one

chooses zero subspace for LH , then the standard Galerkin formulation is obtained. Here we take LH = ∇Y H

choice of [15] to obtain the results in this paper. See [12] for other possible choices.

Here we note that equation (3.7) implies that gH is the L2 orthogonal projection of ∇yh . Denoting

this projection with PH , the properties of the projection operator lead us to a new variational formulation of

the problem: Find yh ∈ Y h and uh ∈ Uh such that

min J(yh, uh) =
1

2

∥∥yh − yd
∥∥2 +

α

2

∥∥uh
∥∥2 (3.8)

subject to

ϵ(∇yh,∇vh) + σ((I − PH)∇yh, (I − PH)∇vh)

+(⃗b.∇yh, vh) + (ryh, vh) = (f, vh) + (uh, vh), ∀vh ∈ Y h, (3.9)

where I stands for the identity operator.

As in the continuous case, the control problem (3.8)–(3.9) admits a unique solution (yh, uh) if and only

if there is a unique adjoint state ph satisfying the optimality conditions:
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ϵ(∇yh,∇vh) + σ((I − PH)∇yh, (I − PH)∇vh) + (⃗b.∇yh, vh) + (ryh, vh) (3.10)

= (f, vh) + (uh, vh), ∀vh ∈ Y h,

ϵ(∇ph,∇wh) + σ((I − PH)∇ph, (I − PH)∇wh)− (∇.(⃗bph), wh) + (rph, wh) (3.11)

= (yh − yd, w
h), ∀wh ∈ Y h,

(αuh + ph, wh − uh) ≥ 0, ∀wh ∈ Y h. (3.12)

The new variational form of the adjoint equation seen in (3.11) is obtained exactly the same as done for (3.10)

previously. In the next lemma, we state stability results for the state and adjoint state equations.

Lemma 3.1 Under the coercivity assumption r− 1
2∇.⃗b ≥ β > 0 , the discrete optimal control problem (3.10)–

(3.11) is stable in the sense that:

ϵ
∥∥∇yh

∥∥2 + σ
∥∥(I − PH)∇yh

∥∥2 + β

2

∥∥yh∥∥2 ≤ 2

β
(∥f∥2 +

∥∥uh
∥∥2), (3.13)

and

ϵ
∥∥∇ph

∥∥2 + σ
∥∥(I − PH)∇ph

∥∥2 + β

2

∥∥ph∥∥2 ≤ 1

β

∥∥yh − yd
∥∥2 . (3.14)

Proof To prove the state part, we put vh = yh in (3.10) to get

ϵ(∇yh,∇yh) + σ((I − PH)∇yh, (I − PH)∇yh) + (⃗b · ∇yh + ryh, yh)

= (f + uh, yh).

Making use of the integration by parts in the last terms on the left-hand side, we obtain

ϵ(∇yh,∇yh) + σ((I − PH)∇yh, (I − PH)∇yh) + ((r − 1

2
∇.⃗b)yh, yh)

≤ (f + uh, yh).

The Cauchy–Schwartz and Young’s inequalities give the desired result along with the coercivity assumption for

the state part. For the adjoint equation, we set wh = ph in (3.11) to obtain

ϵ
∥∥∇ph

∥∥2 + σ
∥∥(I − PH)∇ph

∥∥2 − (∇.(⃗bph), ph) + (rph, ph) (3.15)

= (yh − yd, p
h).

Now, making use of integration by parts for the term (∇.(⃗bph), ph) in the last equation, one has

−(∇.(⃗bph), ph) = (⃗bph,∇ph) =
1

2

∫
b⃗ · ∇(ph)2dxΩ = −1

2
((∇.⃗b)ph, ph).
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Thus, we have

−(∇.(⃗bph), ph) + (rph, ph) = ((r − 1

2
∇.⃗b)ph, ph). (3.16)

Finally, putting the above bound into the left-hand side of (3.15), and making use of Cauchy–Schwartz and

Young’s inequalities on the right-hand side would yield the desired result as in the state case. 2

4. Error estimates for the optimal control problem

In this section, we will derive the error estimate for the state, adjoint state, and control variables.

We consider the solution operator S : U 7→ H1
0 (Ω) ∩H2(Ω). Then we define the reduced cost function:

J(y, u) = J(S(u), u) := j(u), (4.1)

where S(u) solves

−ϵ∆y(u) + b⃗ · ∇y(u) + ry = u in Ω,

y(u) = 0 on Σ. (4.2)

The optimization techniques by using the Lagrange approach give the reduced gradient as:

j′(u)(ũ− u) = (p(u) + αu, ũ− u), ∀ũ ∈ U, (4.3)

with p(u) solving the following system:

−ϵ∆p(u)−∇.(⃗bp(u)) + rp = y(u)− yd in Ω,

p(u) = 0 on Σ. (4.4)

Since our cost function J and the operator e(y, u) are twice-differentiable, then we can use the second-order

sufficient optimality condition to get the positive definiteness of the reduced hessian [2]

j′′(u)(δu, δu) ≥ α ∥δu∥2 ∀δu ∈ U. (4.5)

Similar to the continuous case, we can define the discrete solution operator Sh such that Sh(u) = yh(u). Then

there holds

j′h(u)(ũ− u) = (ph(u) + αu, ũ− u), ∀ũ ∈ U, (4.6)

and

j′′h(u)(δu, δu) ≥ α ∥δu∥2L2(Ω) ∀δu ∈ U, (4.7)

where (yh(u), ph(u)) solves

ϵ(∇yh(u),∇vh) + σ1((I − PH)∇yh(u), (I − PH)∇vh) + (⃗b · ∇yh(u) + ryh(u), vh)

= (f + u, vh), ∀vh ∈ Y h, (4.8)

ϵ(∇ph(u),∇wh) + σ2((I − PH)∇ph(u), (I − PH)∇wh) + (−∇.(⃗bph(u)) + rph(u), wh)

= (yh(u)− yd, w
h), ∀wh ∈ Uh. (4.9)
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Lemma 4.1 Let y and yh(u) be solutions of (2.2) and (4.8), respectively. Then we have

ϵ∥∇(y(u)− yh(u))∥2 + σ∥((I − PH)∇(y(u)− yh(u))∥2 + β
∥∥(y(u)− yh(u))

∥∥2 ≤

C{(ϵ+ β−1)∥∇(y(u)− ỹ)∥2 + σ∥(I − PH)∇(y(u)− ỹ)∥2 + σ∥(I − PH)∇y(u)∥2},

where ỹ is the best approximation of y in Y h .

Proof We begin the analysis by constructing an error equation through subtracting (4.8) from (2.2) via the

same test function vh . Thus we get

ϵ(∇(y(u)− yh(u)),∇vh) + σ((I − PH)∇(y(u)− yh(u)), (I − PH)∇vh)

+(⃗b · ∇(y(u)− yh(u)), vh) + (r(y(u)− yh(u)), vh) (4.10)

= σ((I − PH)∇y(u), (I − PH)∇vh), ∀vh ∈ Y h.

Now we split the error term y(u) − yh(u) as y(u) − yh(u) = y(u) − ỹ − (yh(u) − ỹ) = η − ϕh , where ỹ is the

best approximation of y(u) in Y h . Hence we modify our error equation as:

ϵ(∇ϕh,∇vh) + σ((I − PH)∇ϕh, (I − PH)∇vh) + (⃗b · ∇ϕh + rϕh, vh)

= ϵ(∇η,∇vh) + σ((I − PH)∇η, (I − PH)∇vh) + (⃗b · ∇η + rη, vh) (4.11)

−σ((I − PH)∇y, (I − PH)∇vh), ∀vh ∈ Y h.

We now let vh = ϕh and rearrange (4.11) to get

ϵ∥∇ϕh∥2 + σ∥((I − PH)∇ϕh∥2 + ((r − 1

2
∇.⃗b)ϕh, ϕh)

= ϵ(∇η,∇ϕh) + σ((I − PH)∇η, (I − PH)∇ϕh) + (⃗b · ∇η + rη, ϕh)

−σ((I − PH)∇y, (I − PH)∇ϕh). (4.12)

Making use of the coercivity assumption on the left-hand side of (4.12), we have

ϵ∥∇ϕh∥2 + σ∥((I − PH)∇ϕh∥2 + β(ϕh, ϕh)

= ϵ(∇η,∇ϕh) + σ((I − PH)∇η, (I − PH)∇ϕh) + (⃗b · ∇η + rη, ϕh)

−σ((I − PH)∇y(u), (I − PH)∇ϕh). (4.13)

We will take the absolute value of the right-hand side of (4.13) and treat each term separately. The first term

is bounded as:

|ϵ(∇η,∇ϕh)| ≤ ϵ

2
∥∇η∥2 + ϵ

2
∥∇ϕh∥2,

which is obtained by applying Cauchy–Schwartz and Young’s inequalities. For the next term, we have

|σ((I − PH)∇η, (I − PH)∇ϕh)| ≤ σ∥(I − PH)∇η∥2 + σ

4
∥(I − PH)∇ϕh∥2.

For the inconsistency error term, we obtain

|σ((I − PH)∇y(u), (I − PH)∇ϕh)| ≤ σ∥(I − PH)∇y(u)∥2 + σ

4
∥(I − PH)∇ϕh∥2.
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Thus, we are left with only the (⃗b · ∇η + rη, ϕh). Making use of integration by parts, boundedness of ∇.⃗b and

Poincare Friedrich’s inequality will give:

|(⃗b · ∇η, ϕh)| = | − ((∇.⃗b)η, ϕh)| ≤ Cβ−1∥∇η∥2 + β

4
∥ϕh∥2

and

|(rη, ϕh)| ≤ ∥r∥∞ ∥η∥
∥∥ϕh

∥∥ ≤ Cβ−1∥∇η∥2 + β

4
∥ϕh∥2.

Combining all the bounds and collecting the ϕh terms on the left-hand side of (4.13) we have

ϵ

2
∥∇ϕh∥2 + σ

2
∥((I − PH)∇ϕh∥2 + β

2

∥∥ϕh
∥∥2 ≤

C{(ϵ+ β−1)∥∇(η)∥2 + σ∥(I − PH)∇(η)∥2 + σ∥(I − PH)∇y(u)∥2}. (4.14)

Multiplying both sides of (4.14) by 2 and application of the triangle inequality give the desired result now. 2

We state a similar bound for the adjoint equation in the next lemma.

Lemma 4.2 Let p and ph(u) be solutions of (2.5) and (4.9), respectively. Then we have

ϵ∥∇(p(u)− ph(u))∥2 + σ∥((I − PH)∇(p(u)− ph(u))∥2 + β
∥∥(p(u)− ph(u))

∥∥2 ≤

C{(ϵ+ β−1)(∥∇(p(u)− p̃)∥2 + β−2∥∇(y(u)− ỹ)∥2) + σ∥(I − PH)∇(p(u)− p̃)∥2

+β−2σ∥(I − PH)∇(y(u)− ỹ)∥2 + σ∥(I − PH)∇p(u)∥2 + β−2σ∥(I − PH)∇y(u)∥2},

where p̃ is the best approximation of p(u) in Y h and ỹ is the best approximation of y(u) in Y h .

Proof As in other error proofs, we begin by subtracting (4.9) from (2.5) and split the error p(u) − ph(u) =

p(u)− p̃− (ph(u)− p̃) = η−ϕh with p̃ being the best approximation of p(u) in Y h . Now, with the test function

choice of ϕh , our error equation takes the form

ϵ∥∇ϕh∥2 + σ∥(I − PH)∇ϕh∥2 − (∇.(⃗bϕh), ϕh) + (rϕh, ϕh)

= ϵ(∇η,∇ϕh) + σ((I − PH)∇η, (I − PH)∇ϕh)− (∇.(⃗bη), ϕh) + (rη, ϕh)

−σ((I − PH)∇p(u), (I − PH)∇ϕh)− (y(u)− yh(u), ϕh).

We can easily obtain the bounds of the terms on the right-hand side of (4.15). To list them:

|ϵ(∇η,∇ϕh) + σ((I − PH)∇η, (I − PH)∇ϕh)| ≤ ϵ∥∇η∥2 + ϵ

4
∥∇ϕh∥2 + σ∥(I − PH)∇η∥2

+
σ

4
∥(I − PH)∇ϕh∥2

|σ((I − PH)∇p(u), (I − PH)∇ϕh)| ≤ σ∥(I − PH)∇p(u)∥2 + σ

4
∥(I − PH)∇ϕh∥2.

|(y(u)− yh(u), ϕh)| ≤ Cβ−1∥y(u)− yh(u)∥2 + β

6
∥ϕh∥2
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The bound for the term β−1∥y − yh(u)∥2 is obtained by using the previous lemma. To proceed, we have

| − (∇.(⃗bη), ϕh)| ≤ C{β−1 ∥∇η∥2 + β

6
∥ϕh∥2}

due to the boundedness of the terms ∇.⃗b . Similar to the previous proof, we have

|(rη, ϕh)| ≤ ∥r∥∞ ∥η∥
∥∥ϕh

∥∥ ≤ Cβ−1∥∇η∥2 + β

6
∥ϕh∥2.

Rearranging the left-hand side of (4.15) by using the coercivity assumption, combining all obtained bounds and

the triangle inequality yield the desired result. 2

In the following two lemmas, we obtain estimates between the discrete and auxiliary state and adjoint variables.

Lemma 4.3 Let yh and yh(u) be solutions of (3.10) and (4.8), respectively. Then there holds

ϵ
∥∥∇(yh − yh(u))

∥∥2 + σ
∥∥(I − PH)∇(yh − yh(u))

∥∥2 ≤ 1

2β

∥∥u− uh
∥∥2 (4.15)

Proof We subtract (4.8) from (3.10) to get

ϵ(∇(yh − yh(u)),∇vh) + σ((I − PH)∇(yh − yh(u)), (I − PH)∇vh)

+(⃗b · ∇(yh − yh(u)), vh) + (r(yh − yh(u)), vh) = (uh − u, vh), ∀vh ∈ Y h.

Now we choose vh = yh − yh(u) and use integration by parts and the coercivity assumption to get

ϵ
∥∥∇(yh − yh(u))

∥∥2 + σ
∥∥(I − PH)∇(yh − yh(u))

∥∥2 + β
∥∥yh − yh(u)

∥∥2
≤ (uh − u, yh − yh(u)).

Then we use Young’s inequality for the right-hand-side term:

ϵ
∥∥∇(yh − yh(u))

∥∥2 + σ
∥∥(I − PH)∇(yh − yh(u))

∥∥2 + β

2

∥∥yh − yh(u)
∥∥2

≤ 1

2β

∥∥uh − u
∥∥2 .

2

Lemma 4.4 Let ph and ph(u) be solutions of (3.11) and (4.9), respectively. Then there holds

ϵ
∥∥∇(ph − ph(u))

∥∥2 + σ
∥∥(I − PH)∇(ph − ph(u))

∥∥2 ≤ 1

4β2

∥∥u− uh
∥∥2 . (4.16)

Proof We follow the same procedure as in Lemma 4.3. Firstly, we subtract (4.9) from (3.11) to get

ϵ(∇(ph − ph(u)),∇wh) + σ((I − PH)∇(ph − ph(u)), (I − PH)∇wh)

−(∇.(⃗b(ph − ph(u))), wh) + (r(ph − ph(u)), wh)

= (yh − yh(u), wh), ∀wh ∈ Y h,
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Now we choose wh = ph − ph(u) and use integration by parts, equation (3.16), and the coercivity assumption

to get

ϵ
∥∥∇(ph − ph(u))

∥∥2 + σ
∥∥(I − PH)∇(ph − ph(u))

∥∥2 + β

2

∥∥ph − ph(u)
∥∥2

≤ (yh − yh(u), ph − ph(u)).

Then Young’s inequality implies that

ϵ
∥∥∇(ph − ph(u))

∥∥2 + σ
∥∥(I − PH)∇(ph − ph(u))

∥∥2 + β
∥∥ph − ph(u)

∥∥2
≤ 1

2β

∥∥yh − yh(u)
∥∥2 .

Now we make use of Lemma 4.3 to get the desired result. 2

We need the following result concerning the derivative of the reduced cost function (4.1).

Lemma 4.5 The first derivative of the reduced cost function for the continuous and the discrete cases satisfies

∥j′(u)(δ)− j′h(u)(δ)∥ ≤
∥∥p(u)− ph(u)

∥∥ ∥δ∥ ∀u, δ ∈ U. (4.17)

Proof The result is obtained by using Eqs. (4.3) and (4.6) directly. 2

The following lemma gives the error estimate for the control variable u .

Lemma 4.6 Let (u, y) and (uh, yh) be solutions to (1.1–1.2) and (3.8–3.9), respectively. Then we have

∥∥u− uh
∥∥ ≤ ∥u− ũ∥+ 1

α

∥∥p(u)− ph(u)
∥∥ , ũ ∈ U. (4.18)

Proof Let u and uh be solutions to continuous and discrete control problems, respectively. We choose an

arbitrary ũ from U . We write

u− uh = u− ũ+ ũ− uh. (4.19)

From Eq. (4.7), we have

α
∥∥ũ− uh

∥∥2 ≤ j′′h(ũ)(ũ− uh, ũ− uh)

= j′h(u)(ũ− uh)− j′h(u
h)(ũ− uh).

Since u and uh are optimal solutions, then

j′h(u
h)(ũ− uh) = 0 = j′(u)(ũ− uh).

Then

α
∥∥ũ− uh

∥∥2 ≤ j′h(u)(ũ− uh)− j′(u)(ũ− uh)

≤
∥∥p(u)− ph(u)

∥∥ ∥∥ũ− uh
∥∥ . (4.20)
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Finally,

∥∥ũ− uh
∥∥ ≤ 1

α

∥∥p(u)− ph(u)
∥∥ . (4.21)

2

Corollary 4.1 The error in state variable y satisfies:

ϵ∥∇(y − yh)∥2 + σ∥(I − PH)∇(y − yh)∥2 ≤

Cϵ inf
ỹ∈Y

{∥∇(y − ỹ)∥2 + σ∥(I − PH)∇(y − ỹ)∥2 + σ∥(I − PH)∇y∥2

+
∥∥u− uh

∥∥2}. (4.22)

Proof The corollary is the combination of Lemma (4.1) and Lemma (4.3). 2

Corollary 4.2 The error in adjoint state variable p satisfies:

ϵ∥∇(p− ph)∥2 + σ∥(I − PH)∇(p− ph)∥2 ≤

Cϵ inf
ỹ,p̃∈Y

{∥∇(p− p̃)∥2 + σ∥(I − PH)∇(p− p̃)∥2

+∥∇(y − ỹ)∥2 + σ∥(I − PH)∇(y − ỹ)∥2 + σ∥(I − PH)∇y∥2 (4.23)

+σ∥(I − PH)∇p∥2 +
∥∥u− uh

∥∥2}.
Proof The proof is just a combination of the results of Lemma (4.2) and Lemma (4.4). 2

Remark 4.1 In order to define the error orders in terms of mesh width h , we will define approximation spaces.

We make a choice for stabilization parameter σ and construct a relation between σ,H , and h . Here we are

given the fine scale mesh h and by equilibrating the orders of convergence, appropriate values for the mesh scale

H and parameter σ are chosen. That is, the error is optimal for σH2s = h2s . For instance, let us consider the

case for s = 1 and use finite element pairs, which are given below explicitly along with the choice of LH = ∇Y H :

Y h = {yh ∈ Y : yh|∆ ∈ P1(∆), ∀∆ ∈ τh} and

Uh = {yh ∈ U : yh|∆ ∈ P1(∆), ∀∆ ∈ τh}.

For details of these choices, we refer to [15].

We are now in a position to state approximation results. We give corollaries for each variable. We first assume

that y, u, p are sufficiently smooth, before stating the approximation results.

Corollary 4.3 The control variable u satisfies

∥u− uh∥ ∼= O(h).
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Proof Making use of approximation assumptions (3.1),(3.2), and (3.3) in Lemma 4.6 and considering Remark

4.1 along with property (3.4), we get

∥u− uh∥ ≤ C(u)h2 + C(α−1, y, p)
√
ϵ(h2 + σh2 + σH2). (4.24)

According to Remark 4.1, we can choose (σ,H) = (h, h1/2). Putting these selections into (4.24) completes the

proof. 2

Corollary 4.4 The adjoint state variable p satisfies

ϵ∥∇(p− ph)∥2 + σ∥(I − PH)∇((p− ph))∥2 ∼= O(h2).

Proof The proof is similar to the previous case, which is stated for u . 2

Corollary 4.5 The state variable y satisfies

ϵ∥∇(y − yh)∥2 + σ∥(I − PH)∇(y − yh)∥2 ∼= O(h2).

Proof The proof is similar to the previous cases, which are stated for u and p . 2

As seen through these corollaries, the error in each case is optimal.

Remark 4.2 We note that discretize-then-optimize and optimize-then-discretize approaches commute. If we

apply the discretize-then-optimize approach we get the commutativity of (OD) and (DO). Indeed, we can define

the discrete Lagrangian as:

Lh(yh, uh, ph) :=
1

2
(yh − yd, y

h − yd) +
α

2
(uh, uh)− ϵ(∇yh,∇ph) (4.25)

−σ((I − PH)∇yh, (I − PH)∇ph)− (⃗b · ∇yh + ryh, ph) + (f + uh, ph).

We let ∇yhLh = 0 and ∇uhLh = 0 to get the first-order discrete optimality conditions. By standard theory and

integration by parts, one can obtain the same discrete adjoint scheme as:

ϵ(∇ph,∇wh) + σ((I − PH)∇ph, (I − PH)∇wh)− (⃗b · ∇ph + (∇.⃗b)ph, wh) + (rph, wh)

= (yh − yd, w
h), ∀wh ∈ Y h.

We note that the stabilization term does not break the commutativity of (OD) and (DO).

5. Pointwise control constraints

In this section, we consider some pointwise constraints on the control variable. If we impose some conditions

on the control u as:
a ≤ u ≤ b,

then we say that a box constraint holds on the control variable. In this case, the control variable u is searched

for in an admissible set Qad ⊆ L2(Ω) such as

Qad := {u ∈ L2(Ω)| a ≤ u ≤ b a.e. in Ω},
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where a and b are real numbers. The inequality (2.4) is written as

(αu+ p, w − u) ≥ 0 ∀ w ∈ Qad. (5.1)

This inequality can be equivalently formulated [17] as

u = Π[a,b](−
1

α
p), (5.2)

where the projection Π is defined as

Π[a,b](f(x)) := max(a,min(b, f(x))). (5.3)

This projection also satisfies the Lipschitz continuity property:∥∥∥∥Π[a,b](
1

α
p)−Π[a,b](

1

α
p̄)

∥∥∥∥ ≤ 1

α
∥p− p̄∥ . (5.4)

Theorem 5.1 Let (u, y) and (uh, yh) be solutions to (1.1–1.2) and (3.8–3.9), respectively. Then

∥∥u− uh
∥∥ ≤ 1

α

∥∥p− ph
∥∥ . (5.5)

Proof Since u = Π[a,b](− 1
αp) and uh = Π[a,b](− 1

αp
h) then we use the Lipschitz continuity property of the

projection Π to get ∥∥u− uh
∥∥ =

∥∥∥∥Π[a,b](−
1

α
p)−Π[a,b](−

1

α
ph)

∥∥∥∥ ≤ 1

α

∥∥p− ph
∥∥ .

2

Thus, by a similar argument as in the unconstraint case, the error in the optimal control is obtained.

6. Numerical applications

In this section, we perform some numerical tests showing the efficiency of the VMS method. We use a gradient

descent-type algorithm to solve the optimization problem. We also proved in the numerical convergence test

that the stabilization does not degenerate the order of the error. All computations are carried out with the

finite element software package Freefem++ [8].

6.1. Numerical example for smaller ϵ

As a first numerical application, we study in the domain (0, 1)2 with a mesh resolution of 32× 32. We choose

the parameters as ϵ = 10−6, α = 0.001, b⃗ = (1, 0)T , and r = 0 [7]. We let yd = sin(πx1) sin(πx2) and f = 0.

Furthermore, we choose the stabilization parameter σ and coarse mesh size H as explained in Remark 4.1.

In Figures 1 and 2, we compare the optimal control and optimal state solutions for both stabilized and

unstabilized cases. One can easily see the efficiency of the stabilization through comparison of these figures

for both control and state solutions. As the stabilized solutions are observed to be smooth and acceptable,

unstabilized solutions blow up and oscillations are easily determined by a rough look. The effect of the

stabilization on optimal control problem is trivial through this simple test case even for a relatively fine mesh

of resolution 32× 32. We do not include the results for coarser meshes since the unstabilized solutions are very

hard to obtain.
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IsoValue
-0.0311099
-0.0279
-0.02576
-0.0236201
-0.0214801
-0.0193402
-0.0172003
-0.0150603
-0.0129204
-0.0107805
-0.00864053
-0.0065006
-0.00436066
-0.00222073
-8.07923e-005
0.00205914
0.00419908
0.00633901
0.00847895
0.0138288

IsoValue
-741.931
370.966
1112.9
1854.83
2596.76
3338.69
4080.62
4822.55
5564.48
6306.41
7048.35
7790.28
8532.21
9274.14
10016.1
10758
11499.9
12241.9
12983.8
14838.6

Figure 1. Comparison of optimal control solutions (first numerical test): stabilized (up) and unstabilized (down).

IsoValue
-0.0407646
0.0203823
0.0611469
0.101912
0.142676
0.183441
0.224205
0.26497
0.305735
0.346499
0.387264
0.428028
0.468793
0.509558
0.550322
0.591087
0.631851
0.672616
0.713381
0.815292

IsoValue
-2.5371e+006
106180
1.86836e+006
3.63055e+006
5.39273e+006
7.15491e+006
8.9171e+006
1.06793e+007
1.24415e+007
1.42036e+007
1.59658e+007
1.7728e+007
1.94902e+007
2.12524e+007
2.30146e+007
2.47767e+007
2.65389e+007
2.83011e+007
3.00633e+007
3.44688e+007

Figure 2. Comparison of optimal state solutions (first numerical test): stabilized(up) and unstabilized(down)

6.2. Solution with parabolic and exponential boundary layers

In this numerical example, we again study in the domain (0, 1)2 this time with a mesh resolution of 64×64. We

choose the parameters as ϵ = 10−8, α = 0.001, b⃗ = (1, 0)T and r = 0 [14]. We let yd = sin(πx1) sin(πx2) and

f = 0. Dirichlet boundary data are taken to be 0 in this case. Again, we choose the stabilization parameter σ

and coarse mesh size H as explained in Remark 4.1. We first carry out the test with standard Galerkin FEM

and also apply the method in order the compare the effect. The solution of this problem is known to have
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parabolic boundary layers at y = 0 and y = 1 and an exponential boundary layer at x = 1. The solutions of

state and adjoint state variables for stabilized and stabilized methods can be seen in the figures below.

IsoValue
-2.5371e+006
106180
1.86836e+006
3.63055e+006
5.39273e+006
7.15491e+006
8.9171e+006
1.06793e+007
1.24415e+007
1.42036e+007
1.59658e+007
1.7728e+007
1.94902e+007
2.12524e+007
2.30146e+007
2.47767e+007
2.65389e+007
2.83011e+007
3.00633e+007
3.44688e+007

IsoValue
-0.0407646
0.0203823
0.0611469
0.101912
0.142676
0.183441
0.224205
0.26497
0.305735
0.346499
0.387264
0.428028
0.468793
0.509558
0.550322
0.591087
0.631851
0.672616
0.713381
0.815292

Figure 3. Comparison of optimal state solutions (second numerical test): unstabilized (up) and stabilized (down).

IsoValue
-2.01146e+006
-1.8606e+006
-1.76003e+006
-1.65946e+006
-1.55888e+006
-1.45831e+006
-1.35774e+006
-1.25716e+006
-1.15659e+006
-1.05602e+006
-955445
-854872
-754299
-653725
-553152
-452579
-352006
-251433
-150860
100573

IsoValue
-0.0689026
-0.0527008
-0.0418996
-0.0310984
-0.0202972
-0.00949602
0.00130518
0.0121064
0.0229076
0.0337088
0.04451
0.0553112
0.0661124
0.0769136
0.0877148
0.098516
0.109317
0.120118
0.13092
0.157923

Figure 4. Comparison of optimal adjoint state solutions (second numerical test): unstabilized (up) and stabilized

(down).

As could be directly deduced from the Figures 3 and 4, both state and adjoint state solutions blow up for

the unstabilized case. When the stabilization applies, both variables could be captured in solutions. However,

there are still strong oscillations at the parabolic layer and a more suitable stabilization technique might be

applied in order to capture better solution data such as SOLD methods [14]. Still, this numerical example

shows the promise of the stabilization we apply by revealing the layers that naturally should occur due to the

problem’s nature.
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6.3. Numerical convergence study

In this subsection, we show that the theoretical orders of the errors are also obtained through a numerical

simulation. We prove that the addition of the extra stabilization term in means of (VMS) does not degenerate

order. We again study in the domain (0, 1)2 with different mesh resolutions. The problem parameters are

chosen as b⃗ = (1, 0)T and r = 1. We study for two different ϵ and give the results of both. The following

smooth solution is used to compute the orders of convergence:

y = exp(−0.5) sin(2πx1) sin(2πx2)

p =
1

2
exp(−0.5) sin(2πx1) sin(2πx2)

u =
1

α
p

The corresponding source functions yd and f are chosen so that the given solutions satisfy the equations

(2.2)–(2.3).

Furthermore, the stabilization parameter σ and coarse mesh size H are chosen to satisfy the relation

given in Remark 4.1. We pick (σ,H) = (h, h1/2) here.

In order to show that stabilization term does not degenerate the order of convergence, we first take the

parameter ϵ = 1. In Table 1, we present the orders of convergence for both the control and state variables.

The numerical results confirm the theoretical expectations given in the previous section. The expected order of

convergence is 1 for the L2 norm of the control variable and for the H1 norm of the state variable. Moreover,

the computed cost function value is given with respect to different mesh sizes.

Table 1. Errors and rates of convergence for ϵ = 1 (second numerical test).

h ∥u− uh∥ Rate ∥y − yh∥1 Rate ∥J(uh, yh)∥
2−4 2.69e-2 6.57e-1 74.60

2−5 1.31e-2 1.03 3.42e-1 0.94 74.28

2−6 6.51e-3 1.01 1.70e-1 1.00 74.12

2−7 3.21e-3 1.02 8.50e-2 1.03 74.04

2−8 1.60e-3 1.00 4.20e-2 1.02 74.00

In Table 2, we present the orders of convergence for both the control and state variables with ϵ = 0.1.

The expected order 1 is obtained a little bit later and for finer meshes. This situation occurs since the physical

oscillations in the solutions begins to take place as ϵ gets smaller and becomes more dominant.

Table 2. Errors and rates of convergence for ϵ = 0.1 (second numerical test).

h ∥u− uh∥ Rate ∥y − yh∥1 Rate ∥J(uh, yh)∥
2−4 8.90e-2 1.96e-0 1.66

2−5 5.90e-2 0.60 1.21e-0 0.69 1.57

2−6 3.50e-2 0.75 7.50e-1 0.70 1.50

2−7 2.00e-2 0.81 4.10e-1 0.87 1.44

2−8 1.01e-2 1.00 2.00e-1 1.03 1.41
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7. Conclusion and outlook

In this work, we have studied the variational multiscale method for the optimal control problems governed by

convection diffusion reaction equations. We have obtained the stability results for both the state and adjoint

state variables. We have derived a priori error bounds for each variable and proved that the error is optimal in

each one. In the numerical examples, we have shown the efficiency of the stabilization in the solutions of control

and state variables. In future studies, we will consider the optimal control of time dependent and nonlinear flow

problems.
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