
Turk J Math

(2018) 42: 181 – 189

c⃝ TÜBİTAK
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Abstract: By the well-known result of Yood, every strictly transitive algebra of operators on a Banach space is WOT-

dense. This motivated us to investigate the relationships between SOT and WOT largeness of sets of operators and

the transitivity behavior of them. We show that, to obtain Yood’s result, strict transitivity may not be replaced by

the weaker condition of hypertransitivity. We prove that, for a wide class of topological vector spaces, every SOT-dense

set of operators is hypertransitive. The general form of SOT-dense sets that are not strictly transitive is presented.

We also describe the form of WOT-dense sets that are not hypertransitive. It is shown that a set is hypertransitive

if and only its SOT-closure is hypertransitive. We introduce strong topological transitivity and we show that every

separable infinite-dimensional Hilbert space supports an invertible topologically transitive operator that is not strongly

topologically transitive.
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1. Introduction

Let X be a topological vector space over the field of complex numbers C . By X∗ we mean the space of all

continuous linear functionals on X . Denote by L(X) the algebra of all continuous linear operators on X . By

an operator, we always mean a continuous linear operator. We write A ⊂ B to say that A is a subset of B that

may equal B . If A is a proper subset of B then we write A ⫋ B . We say that a set Γ ⊂ L(X) is hypercyclic

if there exists some x ∈ X for which

orb(Γ, x) = {Tx : T ∈ Γ},

the orbit of x under Γ, is a dense subset of X . An operator T ∈ L(X) is called hypercyclic if Γ = {Tn : n ∈ N0}
is hypercyclic, where N0 = {0, 1, 2, 3, · · · } and T 0 = I , the identity operator on X . In this case, we

write orb(T, x) instead of orb(Γ, x). The set of hypercyclic vectors for Γ is denoted by HC(Γ) and when

Γ = {Tn : n ∈ N0} we write HC(T ) for HC(Γ). A set Γ ⊂ L(X) is called topologically transitive if for each

pair of nonempty open sets U, V ⊂ X there exists some T ∈ Γ such that T (U) ∩ V ̸= ∅ . An operator T is

called topologically transitive if {Tn : n ∈ N0} is topologically transitive.

Definition 1 A set Γ ⊂ L(X) is said to be hypertransitive if HC(Γ) = X\{0} . Γ is called strictly transitive

if for each pair of nonzero elements x , y in X , there exists some T ∈ Γ such that Tx = y .
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An operator T ∈ L(X) is hypertransitive if {Tn : n ∈ N0} is hypertransitive. An example of a hypertransitive

operator is the Read operator [6]. If Γ is a strictly transitive set then X\{0} ⊂ orb(Γ, x) for each nonzero

x ∈ X . This shows that orb(Γ, x) = X and that Γ is uncountable. Hence, HC(Γ) = X\{0} and we conclude

that every strictly transitive set of operators is hypertransitive but the converse is not true. Meanwhile, it is

easy to see that hypertransitivity implies topological transitivity. The operator T = 2B , twice the backward

shift on ℓ2(N), is topologically transitive [7], but not hypertransitive since ker(T ) ̸= (0) (it is easy to see that

every hypertransitive operator is injective).

Recall that for a topological vector space X , the strong operator topology (SOT) on L(X) is the

topology with respect to which any T ∈ L(X) has a neighborhood basis consisting of sets of the form

Ω = {S ∈ L(X) : Sei − Tei ∈ U, i = 1, 2, · · · , k}, where k ∈ N , e1, e2, · · · , ek ∈ X are linearly independent

and U is a neighborhood of zero in X .

The weak operator topology (WOT) on L(X) is the topology in which Tn → T if and only if f(Tnx) →
f(Tx) for all x ∈ X and every bounded linear functional f on X .

In Section 2, we give the general form of SOT-dense subsets of L(X) that are not strictly transitive.

It is proved that on every locally convex Hausdorff space X , the semigroup of rank-one operators on X is

strictly transitive but not WOT-dense. We show that for every topological vector space X , if Γ ⊂ L(X)

then HC(Γ) = HC(Γ), where Γ stands for the SOT-closure of Γ. Thus, if L(X) is hypertransitive then the

SOT-density of Γ ⊂ L(X) implies that it is hypertransitive. This condition holds for every locally convex space

and, more generally, for every topological vector space X such that X∗ separates the points of X . This class

of spaces includes the set of all locally convex spaces as a proper subset. For every space X in the mentioned

class, we show that there are hypertransitive subsets of L(X) that are not WOT-dense. We also describe the

form of WOT-dense sets that are not hypertransitive.

In Section 3, the notion of strong topological transitivity is introduced and the relationships between

it and topological transitivity, hypercyclicity, hypertransitivity, and strict transitivity are investigated. We see

that strong topological transitivity is strictly stronger than topological transitivity.

2. Density and transitivity

In the following theorem, the proof is also true for norm-density if X is assumed to be a normed linear space.

Theorem 1 Let X be a topological vector space. Then for each pair of nonzero vectors x, y ∈ X there exists

a SOT-dense set Γxy ⊂ L(X) that is not strictly transitive. Furthermore, Γ ⊂ L(X) is a dense nonstrictly

transitive set if and only if Γ is a dense subset of Γxy for some x, y ∈ X .

Proof Fix nonzero vectors x, y ∈ X and put Γxy = {T ∈ L(X) : Tx ̸= y} . It is clear that Γxy is not strictly

transitive. Let Ω be a nonempty open set in L(X) and S ∈ Ω. If Sx ̸= y then S ∈ Ω ∩ Γxy . Otherwise,

putting Sn = S + 1
nI we see that Sk ∈ Ω for some k , but Skx ̸= y . Hence, Ω ∩ Γxy ̸= ∅ and the proof is

completed.

We prove the second assertion of the theorem. Suppose that Γ is a dense subset of L(X) that is not

strictly transitive. Then there are nonzero vectors x, y ∈ X such that Tx ̸= y for all T ∈ Γ and hence Γ ⊂ Γxy .

To show that Γ is dense in Γxy , assume that Ω0 is an open subset of Γxy . Thus, Ω0 = Γxy ∩Ω for some open

set Ω in L(X). Then Γ ∩ Ω0 = Γ ∩ Ω ̸= ∅ .
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For the converse, let Γ be a dense subset of Γxy for some x, y ∈ X . Then Γ is not strictly transi-

tive. Also, since Γxy is a dense open subset of L(X), we conclude that Γ is also dense in L(X). Indeed,

if Ω is any open set in L(X) then Ω ∩ Γxy ̸= ∅ since Γxy is dense in L(X). On the other hand, Ω ∩ Γxy

is open in Γxy and so it must intersect Γ since Γ is dense in Γxy . Thus, Ω∩Γ ̸= ∅ and so Γ is dense in L(X). 2

Corollary 1 Let X be a topological vector space and Γ be a dense subset of L(X) . Then there is a subset Γ1

of Γ such that Γ1 = L(X) and Γ1 is not strictly transitive.

Proof For nonzero vectors x, y put Γ1 = Γ ∩ Γxy . 2

Recall that for a topological vector space X , a set M ⊂ X is said to be balanced if DM ⊂ M where

D = {z ∈ C : |z| ≤ 1} . It is known that there always exists a base at zero consisting of balanced sets [9,

Theorem 3.3-E]. M is called bounded if for every open set W containing zero there is some ϵ > 0 such that

ϵM ⊂ W . It is easy to see that if M is bounded, (xj)j is a net in M , and (aj)j is a net of scalars such that

aj → 0, then ajxj → 0 in X . A topological vector space X is said to be locally bounded if X has a bounded

neighborhood of zero.

Let X be a topological vector space for which X∗ = (0). Then there is no rank-one operator on X . In

fact, every rank-one operator T on X is of the form Tz = f(z)x (z ∈ X), for some nonzero x ∈ X and nonzero

f ∈ X∗ . To prove this, let RanT = Cx . Then, for every z ∈ X , there is a scalar az such that Tz = azx .

Define f : X → C by f(z) = az . Then z = y implies azx = Tz = Ty = ayx and so f(z) = az = ay = f(y),

which says that f is well defined. Also, f(z+ y)x = T (z+ y) = Tz+Ty = f(z)x+ f(y)x = (f(z)+ f(y))x and

hence f(z+y) = f(z)+f(y). Finally, let (zj)j be a net in X such that zj → 0. Then Tzj → 0 or f(zj)x → 0.

Now, if f(zj) ↛ 0, then for some ϵ > 0 and a subnet (zji)i we have |f(zji)| ≥ ϵ . Then 1
f(zji )

is bounded and

hence x = 1
f(zji )

(f(zji)x) → 0, which is not true. Thus, f(zj) → 0 and we conclude that f is continuous.

The proof of the following proposition is much easier when we work with a normed linear space. We

prove it for almost arbitrary topological vector spaces.

Proposition 1 Let X be a locally bounded Hausdorff topological vector space with X∗ ̸= (0) and Γ be the set

of all rank-one operators on X . Then, with the SOT-topology on L(X) , we have Γ = Γ ∪ {0} .

Proof Let (aj)j be a net of scalars such that aj → 0. For a nonzero x ∈ X and a nonzero f ∈ X∗ , if

Tjz = ajf(z)x (z ∈ X ), then Tj
SOT−→ 0 and so 0 ∈ Γ. Now, let T ∈ L(X) be a nonzero operator and (Tj)j

be a net in Γ such that Tj
SOT−→ T . For each j let Tj(X) = Cxj where xj ∈ X\{0} . If U is a bounded

neighborhood of zero, we claim that there is a balanced neighborhood V of zero such that for every j there is

some rj > 0 for which rjxj ∈ U\V .

Since X is a regular space [9, Theorem 3.3-G], there is an open set W containing zero such that W ⊂ U .

Let V be a balanced neighborhood of zero such that V ⊂ W . For a fixed j since 1
nxj → 0 there is some k ∈ N

for which 1
kxj ∈ V . If we put B = R+xj then we have B ∩ V ̸= ∅ . On the other hand, since U is bounded we

have B ∩ U c ̸= ∅ (B ⊂ U implies that (nxj)n is a sequence in U and so xj = 1
n (nxj) → 0, a contradiction).

We claim that B ∩ (U\V ) ̸= ∅ . Indeed, if B ⊂ V ∪ U c since V ∩ U c = ∅ the connectedness of B implies that
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B ⊂ V or B ⊂ U c , which is not true. Thus, there is some rj > 0 such that yj = rjxj ∈ U\V . It is clear that

Tj(X) = Cyj .

Now, fix some x ∈ X\kerT and let y ∈ X be arbitrary. Then Tjx = ajyj → Tx and Tjy = bjyj → Ty .

We show that Ty = λTx for some λ ∈ C , which gives rank(T )=1. We claim that the nets (aj)j , (bj)j are

bounded. Otherwise, there is a subnet (aji)i such that |aji | → ∞ . Thus, 1
|aji

| (ajiyji − Tx) → 0 since V is

bounded (since ajiyji − Tx → 0, there is some i0 such that i ≥ i0 implies ajiyji − Tx ∈ V ). This implies

that
aji

|aji
|yji → 0, which is impossible since V is balanced and yji /∈ V for all i (the proof for (bj)j is similar).

Hence, passing through subnets, we have aj → a and bj → b for some scalars a, b ∈ C . Then it is easy to see

that ayj → Tx and byj → Ty , which gives Ty = b
aTx . 2

By a result due to Yood [10], for a Banach space X every strictly transitive subalgebra of L(X) is WOT-dense.

The following theorem shows that strictly transitive semigroups need not be WOT-dense.

Theorem 2 For every locally convex Hausdorff space X there is a strictly transitive semigroup Γ ⊂ L(X) that

is not WOT-dense.

Proof Let Γ = {T ∈ L(X) : rank(T ) = 1} ∪ {0} . For a pair of nonzero vectors x, y ∈ X define T ∈ L(X) by

Tz = f(z)y (z ∈ X) for some f ∈ X∗ satisfying f(x) = 1. Then Tx = y and hence Γ is strictly transitive.

If dimX < ∞ then the SOT and WOT topologies agree on L(X). Thus, by the above proposition, we

conclude that Γ is not WOT-dense in L(X). Now, suppose that dimX = ∞ . Let M be a finite-dimensional

subspace of X with dimM ≥ 2. Since dimM < ∞ , by [1, Lemma 2.21] there is a closed subspace Z of X such

that X = M ⊕ Z . Assume that ΓM is the set of all rank-one operators on M and let T ∈ L(M)\(ΓM ∪ {0}).

Define T̂ ∈ L(X) by T̂ x = Tm where x = m + z , m ∈ M and z ∈ Z . We claim that T̂ /∈ Γ (WOT).

Let (T̂j)j be an arbitrary net in Γ and P ∈ L(X) be the projection onto M . Then (PT̂j |M )j is a net in

ΓM ∪ {0} and since by Proposition 1 (remember that dimM < ∞ and so M is locally bounded, and mean-

while, the SOT and WOT topologies agree on L(M)), ΓM = ΓM ∪ {0} (WOT), we conclude that PT̂j |M ↛ T

(WOT). Hence, there is some f ∈ M∗ and some m ∈ M such that f(PT̂j |Mm) ↛ f(Tm) = f(PT̂m). Thus,

f ◦ P (T̂j |Mm) ↛ f ◦ P (T̂m), but f ◦ P ∈ X∗ and we conclude that T̂j ↛ T̂ (WOT). 2

Assume that X is a topological vector space and Γ ⊂ L(X). The following result shows that the SOT-closure

of Γ is not large enough to have more hypercyclic vectors than Γ.

Proposition 2 Let X be a topological vector space and Γ ⊂ L(X) . If Γ stands for the SOT-closure of Γ then

HC(Γ) = HC(Γ) .

Proof We only need to prove that HC(Γ) ⊂ HC(Γ). Fix x ∈ HC(Γ) and let U be an arbitrary open subset of

X . Then there is some T ∈ Γ such that Tx ∈ U . The set Ω = {S ∈ L(X) : Sx ∈ U} is a SOT-neighborhood

of T and so it must intersect Γ. Therefore, there is some S ∈ Γ such that Sx ∈ U and this shows that

x ∈ HC(Γ). 2
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Corollary 2 Let X be a topological vector space and Γ ⊂ L(X) . Then Γ is hypertransitive if and only if Γ is

hypertransitive.

Corollary 3 Let X be a topological vector space for which L(X) is hypertransitive. If Γ ⊂ L(X) is SOT-dense

then it is hypertransitive.

Let S be the class of all topological vector spaces X such that X∗ , the dual space of X , separates the points of

X . If LCS denotes the class of all locally convex spaces then LCS ⊂ S . Meanwhile, since ℓp (0 < p < 1) is not

a locally convex space but it belongs to S [5], we see that LCS is a proper subset of S . The first paragraph of

the proof of Theorem 2 shows that for every X ∈ S , L(X) is strictly transitive and hence it is hypertransitive.

Then we have the following result.

Corollary 4 Let X ∈ S and Γ ⊂ L(X) . If Γ is SOT-dense in L(X) then Γ is hypertransitive.

Example 1 shows that we can not reduce the condition of strict transitivity to hypertransitivity in Yood’s result.

Before it, we give the following lemmas. Recall that for an operator T , the commutant of T , which is denoted

by {T}′
, is the set of all operators that commute with T . In fact, {T}′

is a subalgebra of L(X).

Lemma 1 Let X ∈ S and T ∈ L(X) . Then {T}′ is WOT-closed subalgebra of L(X) .

Proof Let (Tj)j be a net in {T}′ and Tj → S (WOT). We show that S ∈ {T}′ . If TS ̸= ST then there

is some x ∈ X such that TSx ̸= STx . Thus, there is a functional f ∈ X∗ such that f(TSx − STx) ̸= 0

or f(TSx) ̸= f(STx). Since Tj → S (WOT) we have f(TjTx) → f(STx) and hence f(TjTx) ↛ f(TSx).

However, TjTx = TTjx and therefore f(TTjx) ↛ f(TSx). Thus, if we put g = f ◦ T then g(Tjx) ↛ g(Sx),

which contradicts Tj → S (WOT). Therefore, we must have TS = ST and so {T}′ is WOT-closed in L(X). 2

Lemma 2 Let X ∈ S and T ∈ L(X) . Then {T}′
= L(X) if and only if T = λI for some λ ∈ C .

Proof It is clear that {λI}′
= L(X) for each λ ∈ C . For the converse, suppose that {T}′

= L(X). For every

nonzero vector x ∈ X , choose a functional f ∈ X∗ satisfying f(x) = 1. Let Tx be the rank-one operator on

X defined by Txz = f(z)x (z ∈ X). Then Tx = TTxx = TxTx = λxx for some λx ∈ C (in fact, λx = f(Tx)).

We show that λx = λy for all nonzero vectors x, y ∈ X to conclude that T = λI for some λ ∈ C . Let x, y ̸= 0

and y = ax for some a ∈ C . Then aλyx = Tax = aTx = aλxx and hence λy = λx . Now, suppose that x, y

are linearly independent. Then λx+y(x+ y) = T (x+ y) = Tx+ Ty = λxx+ λyy , which gives λx = λy . Thus,

T = λI for some λ ∈ C . 2

Example 1 Let T be the Read operator on X = ℓ1 . Then {T}′
is a proper WOT-closed subalgebra of L(X)

by the above lemmas. Hence, it may not be strictly transitive by Yood’s result, but it is hypertransitive since

{Tn : n ∈ N0} ⊂ {T}′
.

In the next theorem, for every X ∈ S we give a hypertransitive set of operators which is not WOT-dense. Note

that Theorem 2 gives such a set for every X ∈ LCS .
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Theorem 3 Suppose that X ∈ S . For all linearly independent vectors y1, y2 ∈ X there is a hypertransitive set

Γy1y2 ⊂ L(X) that is not WOT-dense.

Proof For y ∈ X\{0} and f ∈ X∗\{0} let Γy = {T ∈ L(X) : |f(Ty)| ≥ 1} . To show that Γy ̸= ∅ , let x ∈ X

satisfy f(x) = 1 and T ∈ L(X) be so that Ty = x . Then |f(Ty)| = 1 and so T ∈ Γy .

The set Γy is not WOT-dense since it is a WOT-closed proper subset of L(X). Now we prove that

HC(Γy) = X\Cy . Fix a vector z ∈ X , which is linearly independent to y , and let w ∈ X be arbitrary. Let

U be a neighborhood base at w . For each U ∈ U choose wU ∈ U\kerf . Then we have a net (wU )U such

that wU → w . For each U ∈ U find gU ∈ X∗ such that gU (z) = gU (f(wU )y) = 1 and define TU ∈ L(X) by

TUx = gU (x)wU . Then TUz = wU → w and since |f(TUy)| = |gU (y)f(wU )| = 1, we have TU ∈ Γy for all

U ∈ U . Thus, w ∈ orb(Γy, z) and we conclude that z ∈ HC(Γy). The proof will be completed if we show that

y /∈ HC(Γy). Indeed, if w ∈ X be so that |f(w)| < 1 then it is easy to verify that w /∈ orb(Γy, y).

Now suppose that y1, y2 are linearly independent vectors in X . Then C∗y1 ⊂ HC(Γy2
) and C∗y2 ⊂

HC(Γy1) where C∗ = C\{0} . Thus, the set Γy1y2 = Γy1 ∪ Γy2 is hypertransitive, but Γy1y2 is also a WOT-

closed proper subset of L(X). 2

Let X be any topological vector space. The following proposition describes WOT-dense subsets of L(X) that

are not hypertransitive. We use it in Theorem 4 to construct such a subset on infinite-dimensional normed

linear spaces.

Proposition 3 Let X be a topological vector space. For a nonzero vector x ∈ X and a nonempty open set

U ⊂ X let Γx,U = {T ∈ L(X) : Tx /∈ U} . Then:

(i) Γ ⊂ L(X) is not hypertransitive if and only if Γ ⊂ Γx,U for some pair (x,U) ;

(ii) If there is a net (xj)j such that xj → 0 weakly, xj + U ⊂ U c for all j , and there is some f ∈ X∗ such

that f(x) = 1 , then Γx,U is WOT-dense in L(X) ;

(iii) If Γx,U is WOT-dense in L(X) then for every T ∈ L(X)\Γx,U there is a net (xj)j such that xj → 0

weakly and xj + Tx ∈ U c for every j .

Proof

(i) Since x is not a hypercyclic vector for Γx,U no subset of it is hypertransitive. For the converse, suppose

that Γ is not hypertransitive. Thus, there is a nonzero x ∈ X such that orb(Γ, x) ̸= X and so there exists

a nonempty open set U ⊂ X such that orb(Γ, x) ∩ U = ∅ . Hence, Γ ⊂ Γx,U .

(ii) For T ∈ L(X)\Γx,U define the net (Tj)j in L(X) by Tjz = Tz+f(z)xj where f ∈ X∗ satisfies f(x) = 1.

Then Tj
WOT−→ T and Tjx = Tx + xj ∈ xj + U ⊂ U c , which gives Tj ∈ Γx,U for all j . Hence, Γx,U is

WOT-dense in L(X).

(iii) For T ∈ L(X)\Γx,U let (Tj)j be a net in Γx,U such that Tj
WOT−→ T . If we put xj = Tjx− Tx then (xj)j

is the desired net.

2
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Theorem 4 Let X be an infinite-dimensional normed linear space. Then for each nonzero vector x ∈ X there

exists a WOT-dense set Γx ⊂ L(X) that is not hypertransitive.

Proof Let U = {y ∈ X : ∥y∥ < 1
2} and x ∈ X\{0} be arbitrary. If (xj)j is a net of unit vectors in X that

converges weakly to zero then Γx = Γx,U is the desired set by part (ii) of the above proposition. 2

Corollary 5 Let X be an infinite-dimensional normed linear space and Γ be a WOT-dense open subset of

L(X) . Then there is a WOT-dense subset of Γ that is not hypertransitive.

Proof Let x be a nonzero vector in X and U = {y ∈ X : ∥y∥ < 1
2} . Then Γ1 = Γ ∩ Γx,U is the desired

set. 2

Recall from Proposition 2 that for every topological vector space X and any Γ ⊂ L(X), the sets of hypercyclic

vectors for Γ and Γ (SOT) are the same. Theorem 4 shows that this may not hold for WOT-closure. In fact,

for the set Γx obtained in that theorem, we have HC(Γx) ⫋ X\{0} = HC(L(X)) = HC(Γx) (WOT).

3. Strong topological transitivity

It is easy to see that a set Γ ⊂ L(X) is topologically transitive if and only if for every nonempty open set

U ⊂ X we have
∪

T∈Γ

T (U) = X . Now we introduce another notion of transitivity and we will see that it is

strictly stronger than topological transitivity.

Definition 2 Let X be a topological vector space. A set Γ ⊂ L(X) is called strongly topologically transitive if

for each nonempty open set U ⊂ X , X\{0} ⊂
∪

T∈Γ

T (U) .

An operator T is called strongly topologically transitive if Γ = {Tn : n ∈ N0} is strongly topologically transitive.

Strong topological transitivity implies topological transitivity, but it does not imply hypercyclicity (see Example

2 below). If X is a second countable Baire topological vector space then strong topological transitivity implies

hypercyclicity since, in this case, topological transitivity and hypercyclicity are equivalent [2]. It is easy to see

that strict transitivity implies strong topological transitivity.

Example 2 Let X = C00(N) , the space of all finitely supported sequences in C , and T = 2B , twice the

backward shift on X . Then T is not hypercyclic since orb(T, x) is a finite set for all x ∈ X . To show that T

is strongly topologically transitive, let U be an open subset of X and x = (b1, b2, · · · , bm, 0, 0, · · · ) be a nonzero

vector in X . Let y = (a1, a2, · · · , ak, 0, 0, · · · ) ∈ U , and let ϵ > 0 satisfy D(y; ϵ) = {z : ∥z − y∥ < ϵ} ⊂ U .

Choose n > k large enough such that 2−n∥x∥ < ϵ . If we set

z = (a1, a2, · · · , ak, 0, 0, · · · , 2−nb1, 2
−nb2, · · · , 2−nbm, 0, 0, · · · ),

where 2−nb1 is in the (n + 1)th position, it can be easily seen that z ∈ U and Tnz = x . Thus, X\{0} ⊂∪
n∈N0

Tn(U) .
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Proposition 4 Let X be a topological vector space with nontrivial topology. If T ∈ L(X) is strongly topologi-

cally transitive then T is surjective.

Proof Let U ̸= ∅ be a proper open subset of X . Since X is a regular space there is an open set W such

that W ⊂ U and hence W ̸= X . Fix a nonzero vector x ∈ X . Since X\{0} ⊂
∪

n∈N0

Tn(W ), if x /∈ W then

x ∈ T (X). On the other hand, if x ∈ W then x /∈ V = X\W and hence the equation X\{0} ⊂
∪

n∈N0

Tn(V )

shows that x ∈ T (X). 2

The Read operator is not surjective [6] and hence it is not strongly topologically transitive by the above

proposition. Thus, hypertransitivity does not imply strong topological transitivity.

In the following example we show that strong topological transitivity is strictly stronger than topological

transitivity. Let D be the open unit disk in the complex plane. Recall that a nonconstant map ϕ : D → D is

called a linear fractional map if it is of the form ϕ(z) = az+b
cz+d where a, b, c, d ∈ C . Such a map can be considered

as the restriction to D of an automorphism of the Riemann sphere Ĉ = C∪ {∞} (still denoted by ϕ) mapping

D into itself. A linear fractional map that has two fixed points, one in ∂D and the other in Ĉ\D , is called

hyperbolic.

Example 3 Let ϕ : D → D be defined by ϕ(z) = z+1
2 and Cϕ be the composition operator on the Hardy

space H2 defined by Cϕ(f) = f ◦ ϕ (f ∈ H2 ). Clearly, ϕ is a hyperbolic linear fractional map and so Cϕ

is topologically transitive [3]. The operator Cϕ is one-to-one since ϕ is nonconstant, but Cϕ is not surjective

since Cϕ is invertible if and only if ϕ is a disk automorphism, i.e. ϕ is a linear fractional map carrying D
onto itself [8]. Thus, Proposition 4 shows that Cϕ is not strongly topologically transitive.

The following proposition gives an equivalent definition for hypertransitivity, which makes it easy to

investigate the relationships between hypertransitivity and strong topological transitivity. The proof is easy

and so it is omitted.

Proposition 5 A set Γ ⊂ L(X) is hypertransitive if and only if for every nonempty open set U ⊂ X ,

X\{0} ⊂
∪

T∈Γ

T−1(U) .

Thus, an operator T is hypertransitive if and only if for every nonempty open set U ⊂ X , X\{0} ⊂∪
n∈N0

T−n(U). Note that T−n(U) is simply written for (Tn)−1(U). If T is an invertible operator then

T−n(U) = (T−1)n(U) and so we have:

Proposition 6 An invertible operator T is strongly topologically transitive if and only if T−1 is hypertransitive.

Let ϕ : D → C be a bounded analytic function and Mϕ be the multiplication operator on H2 , defined by

Mϕf = ϕf . It is known that Mϕ is never hypercyclic but M∗
ϕ , the adjoint of Mϕ , is hypercyclic if and only if

ϕ is nonconstant and ϕ(D) ∩ ∂D ̸= ∅ [4].

Recall that the a set M ⊂ X is called an invariant subset for T ∈ L(X) (or a T -invariant subset) if

T (M) ⊂ M . It is clear that T is hypertransitive if and only if T has no closed nontrivial invariant subsets.

188



ANSARI et al./Turk J Math

We finish this paper by giving the following result to show that there are surjective (in fact invertible)

topologically transitive, or equivalently hypercyclic, operators on separable infinite-dimensional Hilbert spaces

that are not strongly topologically transitive.

Theorem 5 Let H be a separable infinite-dimensional Hilbert space and T ∈ B(H) be invertible. Then:

(i) T is strongly topologically transitive if and only if T ∗ is strongly topologically transitive;

(ii) H supports an invertible hypercyclic operator that is not strongly topologically transitive.

Proof

(i) It is easy to verify that M is a T -invariant closed set if and only if M⊥ is a T ∗ -invariant closed set. Thus,

T is hypertransitive if and only if T ∗ is hypertransitive and so the equation (T ∗)−1 = (T−1)∗ together

with Proposition 6 will complete the proof.

(ii) Let ϕ : D → C be defined by ϕ(z) = ez . Then ϕ and 1
ϕ are nonconstant bounded analytic functions

on D whose images intersect the boundary of D . Hence, M∗
ϕ and M∗

1
ϕ

are hypercyclic on H2 , but

M∗
1
ϕ

= (M∗
ϕ)

−1 and so M∗
ϕ is an invertible hypercyclic operator whose adjoint is not hypercyclic. Thus,

M∗
ϕ is not strongly topologically transitive by (i).

Now let H be any separable infinite-dimensional Hilbert space and U : H2 → H be an isometric isomor-

phism. If we put T = UM∗
ϕU

−1 then T is an invertible hypercyclic operator. If T is strongly topologically

transitive, by (i) so is T ∗ and hence T ∗ is hypercyclic. However, T ∗ = (U∗)−1MϕU
∗ and the hypercyclicity of

T ∗ implies the hypercyclicity of Mϕ , which is a contradiction. 2
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