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Abstract: We study the oscillatory behavior of solutions for integro-differential equations of the form

x′(t) = e(t)−
∫ t

0

(t− s)α−1k(t, s)f(s, x(s)) ds, t ≥ 0,

where 0 < α < 1. Our method is based on the use of the beta function and asymptotic behavior of nonoscillatory

solutions. An example is given to illustrate the main result. Equations of this form include Caputo type fractional

differential equations, so the results are applicable to some fractional type differential equations as well.
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1. Introduction

We investigate the oscillatory behavior of solutions of the integro-differential equation

x′(t) = e(t)−
∫ t

0

(t− s)α−1k(t, s)f(s, x(s)) ds, t ≥ 0, (1)

where 0 < α < 1 is a real number and the functions e , k , and f are continuous in their domain of definitions.

We assume that there exist continuous functions a, h,m : [0,∞) → [0,∞) and real numbers γ > 0 and

0 < λ < 1 such that

0 ≤ k(t, s) ≤ a(t)h(s) for all t ≥ s ≥ 0 (2)

and

0 < xf(t, x) ≤ tγ−1m(t)|x|λ+1 for all x ̸= 0 and t ≥ 0. (3)

Furthermore, there exist real numbers M1 > 0 and M2 such that

|a(t)| ≤ M1 (4)

and for every T ≥ 0,

−M2 ≤ lim inf
t→∞

1

t

∫ t

T

e(s) ds ≤ lim sup
t→∞

1

t

∫ t

T

e(s) ds ≤ M2. (5)
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By an oscillatory solution of (1) we mean a function x(t) having arbitrarily large zeros. That is, there is

a sequence {tn} of real numbers such that tn → ∞ as n → ∞ and x(tn) = 0. Therefore, in the present work

we only consider those solutions of equations (1) that are nontrivial in the neighborhood of the infinity, and for

existence and uniqueness of such solutions we refer to [10]. As usual, the equation is called oscillatory if all its

solutions are oscillatory. If a solution is not oscillatory it is said to be nonoscillatory. Clearly, a nonoscillatory

solution is either eventually positive or eventually negative.

Our motivation in the present work stems from the fact that equations of type (1) arise in many problems

of science and engineering such as mathematical models in ecology [12], spread of epidemics [5, 13], electric-circuit

analysis [2, 19], finance [3], mechanics [4], and plasma physics [8]. Therefore, information on the qualitative

behavior of the solutions of (1) is crucial in order to better understand the underlying structure. To this

end, the oscillation of solutions for such equations seems to be highly important. However, the research

on oscillation theory for integro-differential equations is its early stages due to difficulties encountered in

adapting the techniques from differential equations. For some limited results we refer the reader in particular

to [6, 7, 11, 14–16, 18].

It should also be mentioned that there is a connection with fractional differential equations. Indeed, by

setting

k(t, s) =
1

Γ(α)
, e(t) = x0 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s) ds,

we may write from (1) that

x′(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1[g(s)− f(s, x(s))] ds, 0 < α < 1. (6)

Now it is not difficult to see that Eq. (6) is equivalent to the fractional differential equation of the Caputo type

CDα+1x(t) + f(t, x(t)) = g(t), x0 = x′(0) (7)

under some mild conditions on f(t, x) and g(t); see [9, 17]. Therefore, one can easily rewrite the results of this

paper for the fractional differential equation (7). Note that if g is a bounded integrable function on an interval,

then e(t) becomes continuous there.

In the present work we establish two theorems. Theorem 1 deals with the asymptotic behavior of

nonoscillatory solutions, whereas Theorem 2 provides sufficient conditions for oscillation of all solutions of

Eq. (1). The novelty of the oscillation theorem lies in the use of Theorem 1.

The following inequality is essentially the Young inequality [1].

Lemma 1 If X and Y are nonnegative real numbers, then we have

Xβ − (1− β)Y β − βXY β−1 ≤ 0 for 0 < β < 1 ,

where the equality holds if and only if X = Y .

We will also make use of the simple identity∫ t

0

sa−1(t− s)b−1 ds = ta+b+1B(a, b), (8)
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where

B(a, b) =

∫ 1

0

ta−1(1− t)b−1 dt

is the well-known beta function.

2. The main results

For a given continuous function η : [0,∞) → (0,∞), we define

C(t, η) = η
λ

1−λ (t)m
1

1−λ (t)h
1

1−λ (t), t ≥ 0, (1)

where λ , m , and h are as in the previous section.

We first show that every nonoscillatory solution of Eq. (1) satisfies

x(t) = O(t), t → ∞

under some very mild conditions.

Theorem 1 Let q be a conjugate number of p > 1 , i.e. q = p/(p − 1) . Suppose that p < 1/(1 − α) , and the

conditions (2)–(5) hold with γ = 1− α+ 1/q .

If there exists continuous function η : [0,∞) → [0,∞) for which tη(t), C(t, η(t)) ∈ Lq[0,∞) , then every

nonoscillatory solution x(t) of Eq. (1) satisfies

lim sup
t→∞

|x(t)|
t

< ∞. (2)

Proof Let x(t) be a nonoscillatory solution, say x(t) > 0, for all t ≥ t1 for some t1 ≥ 1. Put

k1 := max{|f(t, x(t))| : t ∈ [0, t1]} ≥ 0 and k2 := k1

∫ t1

0

(t1 − s)α−1h(s) ds ≥ 0. (3)

In view of (2), (3), and (3), we may write from Eq. (1) that

x′(t) = e(t)−
∫ t1

0

(t− s)α−1k(t, s)f(s, x(s)) ds−
∫ t

t1

(t− s)α−1k(t, s)f(s, x(s)) ds

≤ e(t) +

∫ t1

0

(t1 − s)α−1k(t, s)|f(s, x(s))| ds +
∫ t

t1

(t− s)α−1k(t, s)f(s, x(s)) ds

≤ e(t) + k1a(t)

∫ t1

0

(t1 − s)α−1h(s) ds + a(t)

∫ t

t1

(t− s)α−1sγ−1h(s)m(s)xλ(s) ds

≤ e(t) + k2a(t) + a(t)

∫ t

t1

(t− s)α−1sγ−1
(
h(s)m(s)xλ(s)− η(s)x(s)

)
ds

+a(t)

∫ t

t1

(t− s)α−1sγ−1η(s)x(s) ds, t ≥ t1. (4)

By Lemma 1 with the choices

X = (hm)1/λx, Y = (η(hm)−1/λλ−1)1/(λ−1), β = λ,
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we see that

h(s)m(s)xλ(s)− η(s)x(s) ≤ λ0 C(s, η(s)), s ≥ t1,

where λ0 = (1− λ)λλ/(1−λ) and C(t, η) is defined in (1). Therefore, inequality (4) gives

x′(t) ≤ e(t) + k2a(t) + λ0 a(t)

∫ t

t1

(t− s)α−1sγ−1C(s, η(s)) ds

+a(t)

∫ t

t1

(t− s)α−1sγ−1η(s)x(s) ds, t ≥ t1,

and hence by (4),

x′(t) ≤ e(t) + k2M1 + λ0 M1

∫ t

t1

(t− s)α−1sγ−1C(s, η(s)) ds

+M1

∫ t

t1

(t− s)α−1sγ−1η(s)x(s) ds, t ≥ t1. (5)

Integrating (5) over [t1, t] and then changing the order of integration, we have

x(t) ≤ x(t1) + k2M1t+

∫ t

t1

e(s) ds+
λ0M1t

α

∫ t

0

(t− s)α−1sγ−1C(s, η(s)) ds

+
M1t

α

∫ t

t1

(t− s)α−1sγ−1η(s)x(s) ds, t ≥ t1. (6)

By using the Hölder inequality and the identity (8), we see that∫ t

0

(t− s)α−1sγ−1C(s, η(s)) ds ≤
(∫ t

0

(t− s)p(α−1)sp(γ−1) ds

)1/p (∫ t

0

Cq(s, η(s) ds

)1/q

≤ tθ/p B1/p(p(γ − 1) + 1, p(α− 1) + 1)

(∫ t

0

Cq(s, η(s) ds

)1/q

≤ b1

(∫ ∞

0

Cq(s, η(s)) ds

)1/q

= b1 ||C||q (7)

where b1 = B1/p(p(γ − 1) + 1, p(α − 1) + 1), and by the definition of γ , θ = p(α + γ − 2) + 1 = 0. Similarly,

we estimate the second integral as

∫ t

t1

(t− s)α−1sγ−1η(s)x(s) ds ≤
(∫ t

0

(t− s)p(α−1)sp(γ−1) ds

)1/p (∫ t

t1

ηq(s)xq(s) ds

)1/q

≤ b1

(∫ t

t1

ηq(s)xq(s) ds

)1/q

. (8)

In view of (7) and (8), from (6) we get

x(t)

t
≤ λ1 + λ2

(∫ t

t1

ηq(s)xq(s) ds

)1/q

, t ≥ t1, (9)
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where

λ1 =
x(t1)

t1
++k2 M1 +M2 +

λ0b1M1

α
||C||q, λ2 =

b1M1

α
.

Now we employ the elementary inequality (a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0 in (9) to arrive at

w(t) ≤ 2q−1λq
1 + 2q−1λq

2

∫ t

t1

sqηq(s)w(s) ds, t ≥ t1, (10)

where w(t) = xq(t)/tq . Finally, if we apply the Gronwall-Bellman inequality in (10) and then use the assumption

that tη(t) ∈ Lq[0,∞), we obtain

lim sup
t→∞

x(t)

t
< ∞ (11)

as desired.

If x(t) is eventually negative, we can set y = −x to see that y satisfies Eq. (1) with e(t) replaced by

−e(t) and f(t, x) by −f(t,−y). It follows in a similar manner that

lim sup
t→∞

−x(t)

t
< ∞. (12)

2

Now we give our oscillation theorem.

Theorem 2 In addition to the hypothesis of Theorem 1, suppose that

lim
t→∞

a(t) = 0. (13)

If for every µ ∈ (0, 1) we have

lim inf
t→∞

[
µ t+

∫ t

0

e(s) ds

]
= −∞, lim sup

t→∞

[
µ t−

∫ t

0

e(s) ds

]
= ∞, (14)

then Eq. (1) is oscillatory.

Proof Suppose on the contrary that there is a nonoscillatory solution x(t) of Eq. (1). We may assume that

x(t) is eventually positive, i.e. there exists a sufficiently large t1 > 1 such that x(t) > 0 for all t ≥ t1 .

Proceeding as in the proof of Theorem 1 we arrive at (6), so

x(t) ≤ x(t1) + k2 M1t+

∫ t

t1

e(s) ds + t
λ0M1b1||C||q

α
+ t

M1b1
α

(∫ t

t1

ηq(s)xq(s) ds

)1/q

. (15)

In view of tη(t) ∈ Lq[0,∞) and (2) we see that the last integral in (15) is bounded, and because of (13) we can

make M1 as small as we please by increasing the size of t1 if necessary. Therefore, it follows from (15) that

x(t) ≤ x(t1)−
∫ t1

0

e(s) ds +

∫ t

0

e(s) ds + t/2, t ≥ t2 (16)
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for some t2 ≥ t1 . Taking liminf as t → ∞ in (16) and using (14) results in a contradiction with the fact that

x(t) is eventually positive.

The proof when x(t) is eventually negative is similar. 2

Example 1 Consider the integro-differential equation

x′(t) = t sin t−
∫ t

0

(t− s)−1/3 s

t+ s+ 1
x1/3(s) ds, t ≥ 0. (17)

Comparing with (1) we may write that

e(t) = t sin t, α = 2/3,

f(t, x) = x1/3 = t−1/3t1/3x1/3, λ = 1/3,

k(t, s) =
s

t+ s+ 1
≤ s

t+ 1
.

Letting q = 3 and taking a(t) = 1/(t+ 1), h(t) = t , m(t) = t1/3 , and η(t) = 1/(t+ 1)6 , we calculate that

p = 3/2, γ = 2/3, C(t, η) =
t2

(t+ 1)3
.

Clearly, p < 1/(1− α), (2)-(5) hold, tη(t), C(t, η(t)) ∈ L3 , limt→∞ a(t) = 0, and, in view of

∫ t

t1

e(s) ds = sin t− t cos t− sin t1 + t1 cos t1,

the conditions (5) and (14) are satisfied. Since all the conditions of Theorem 2 are satisfied, we may conclude

that Eq. (17) is oscillatory. We should note that to the best of our knowledge none of the results in the literature

are applicable to Eq. (17).
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