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3Institute of Applied Mathematics, Óbuda University, Budapest, Hungary

4Department of Mathematics, Atatürk University, Erzurum, Turkey

Received: 11.10.2016 • Accepted/Published Online: 14.04.2017 • Final Version: 22.01.2018

Abstract: In this paper we consider some normalized Bessel, Struve, and Lommel functions of the first kind and, by

using the Euler–Rayleigh inequalities for the first positive zeros of a combination of special functions, we obtain tight

lower and upper bounds for the radii of starlikeness of these functions. By considering two different normalizations of

Bessel and Struve functions we give some inequalities for the radii of convexity of the same functions. On the other

hand, we show that the radii of univalence of some normalized Struve and Lommel functions are exactly the radii of

starlikeness of the same functions. In addition, by using some ideas of Ismail and Muldoon we present some new lower

and upper bounds for the zeros of derivatives of some normalized Struve and Lommel functions. The Laguerre–Pólya

class of real entire functions plays an important role in our study.

Key words: Lommel, Struve, and Bessel functions, univalent, starlike, and convex functions, radius of univalence,

starlikeness, and convexity, zeros of Lommel, Struve, and Bessel functions, Mittag–Leffler expansions, Laguerre–Pólya

class of entire functions

1. Introduction

It is known that special functions, like Bessel, Struve, and Lommel functions of the first kind, have some beautiful

geometric properties. Recently, the geometric properties of the above special functions were investigated,

motivated by some earlier results. In the 1960s Brown, Kreyszig and Todd, and Wilf (see [13–15, 18, 22])

considered the univalence and starlikeness of Bessel functions of the first kind, while in recent years the radii

of univalence, starlikeness, and convexity for the normalized forms of Bessel, Struve, and Lommel functions of

the first kind were obtained; see the papers [1–3, 7–12, 19, 20] and the references therein. In these papers it

was shown that the radii of univalence, starlikeness, and convexity are actually solutions of some transcendental

equations. On the other hand, it was shown that the obtained radii satisfy some interesting inequalities. In

addition, it was proved that the radii of univalence of some normalized Bessel and Struve functions correspond to

the radii of starlikeness of the same functions. In the above works the authors intensively used some properties

of the positive zeros of Bessel, Struve, and Lommel functions of the first kind under some conditions. They also

utilized the Laguerre–Pólya class LP of real entire functions. Motivated by the above developments in this

topic, in this paper our aim is to give some new results for the radii of univalence, starlikeness, and convexity of
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AKTAŞ et al./Turk J Math

the normalized Bessel, Struve, and Lommel functions of the first kind. This paper is a direct continuation of the

paper [1] and it is organized as follows: Section 1 contains some basic concepts, while in Section 2 we focus on

a linear combination of the Struve function and its derivative and the derivative of the Lommel function. Here
we give some lower and upper bounds for the smallest positive zeros of these functions. To prove our results we

use some ideas from [17]. We also consider two normalized forms of Struve and Lommel functions, respectively.

For these functions, we show that the radii of univalence and starlikeness coincide. At the end of this section we

obtain some new lower and upper bounds concerning the radii of convexity of four different normalized forms

of Bessel and Struve functions of the first kind. The bounds deduced for the radii of convexity are in fact

particular cases of some Euler–Rayleigh inequalities and it is possible to show that the lower bounds increase

and the upper bounds decrease to the corresponding radii of convexity, and thus the inequalities presented

in this paper can be improved by using higher order Euler–Rayleigh inequalities. We restricted ourselves to

the third Euler–Rayleigh inequalities since these are already complicated. For more details on Euler–Rayleigh

inequalities for zeros of Bessel functions we refer to [17] and to [21, p. 501].

Now we would like to present some basic concepts regarding geometric function theory. Let Dr = {z ∈
C : |z| < r} be the open disk, where r > 0. Also, let f : Dr → C be the function defined by

f(z) = z +
∑
n≥2

anz
n. (1.1)

The function f , defined by (1.1), is called starlike in the disk Dr if f is univalent in Dr , and f(Dr) is

a starlike domain in C with respect to the origin. Analytically, the function f is starlike in Dr if and only if

Re

(
zf ′(z)

f(z)

)
> 0 for all z ∈ Dr.

The real number

r∗(f) = sup

{
r > 0

∣∣∣∣Re(zf ′(z)f(z)

)
> 0 for all z ∈ Dr

}
is called the radius of starlikeness of the function f .

The function f, defined by (1.1), is convex in the disk Dr if f is univalent in Dr , and f(Dr) is a convex

domain in C. Analytically, the function f is convex in Dr if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr.

The radius of convexity of the function f is defined by the real number

rc(f) = sup

{
r > 0

∣∣∣∣Re(1 + zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

Finally, we recall that the radius of univalence of the analytic function f in the form of (1.1) is the largest

radius r such that f maps Dr univalently into f(Dr).

2. Bounds for the zeros of some special functions

In this paper we consider three classical special functions, the Bessel function of the first kind Jν , the Struve

function of the first kind Hν , and the Lommel function of the first kind sµ,ν . It is known that the Bessel
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function has the infinite series representation [4, p.8]

Jν(z) =
∑
n≥0

(−1)n

n!Γ(n+ ν + 1)

(z
2

)2n+ν

,

where z, ν ∈ C such that ν ̸= −1,−2, . . .. Also, the Struve and Lommel functions can be represented as the

infinite series

Hν(z) =
∑
n≥0

(−1)n

Γ
(
n+ 3

2

)
Γ
(
n+ ν + 3

2

) (z
2

)2n+ν+1

,−ν − 3

2
/∈ N,

and

sµ,ν =
(z)µ+1

(µ− ν + 1)(µ+ ν + 1)

∑
n≥0

(−1)n

(µ−ν+3
2 )n(

µ+ν+3
2 )n

(z
2

)2n

,
1

2
(−µ± ν − 3) /∈ N,

where z, µ, ν ∈ C . In addition, we know that the Bessel function is a solution of the homogeneous Bessel

differential equation

zw′′(z) + zw′(z) + (z2 − ν2)w(z) = 0,

while the Struve and Lommel functions are solutions of the inhomogeneous Bessel differential equations

zw′′(z) + zw′(z) + (z2 − ν2)w(z) =
4
(
z
2

)ν+1

√
πΓ

(
ν + 1

2

)
and

zw′′(z) + zw′(z) + (z2 − ν2)w(z) = zµ+1,

respectively. We refer to Watson’s treatise [21] for comprehensive information about these functions. On the

other hand, the Laguerre–Pólya class LP of real entire functions plays an important role in our proofs. Recall

that a real entire function Ψ belongs to the Laguerre–Pólya class LP if it can be represented in the form

Ψ(x) = cxme−ax2+bx
∏
n≥1

(
1 +

x

xn

)
e−

x
xn ,

with c, b, xn ∈ R, a ≥ 0,m ∈ N0 , and
∑

1/xn
2 <∞.

We note that the class LP consists of entire functions, which are uniform limits on the compact sets of

the complex plane of polynomials with only real zeros. For more details on the class LP we refer to [16, p.

703] and to the references therein.

2.1. Zeros of linear combination of Struve function and its derivative

In this subsection by considering the Struve function Hν and its derivative H′
ν we define the function Hν as

follows:

Hν(z) = αHν(z) + zH′
ν(z).

The function Hν can be written as

Hν(z) =
∑
n≥0

(−1)n(2n+ ν + α+ 1)

Γ(n+ 3
2 )Γ(ν + n+ 3

2 )

(z
2

)2n+ν+1

.

213
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Let α+ ν ̸= −1. Here we focus on the following normalized form:

hν(z) = (α+ ν + 1)−1Γ

(
3

2

)
Γ

(
ν +

3

2

)
z−

ν+1
2 2ν+1Hν(

√
z) =

∑
n≥0

(−1)n(2n+ ν + α+ 1)

22n(ν + α+ 1)( 32 )n(ν +
3
2 )n

zn.

Our first main result is related to the function Hν .

Theorem 1 Let α + ν > −1, |ν| < 1
2 and let ζν,1 be the smallest positive zero of the function Hν . Then we

have the lower bounds

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1)

α+ ν + 3
,

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1)

√
5(2ν + 5)

√
κ1

,

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1) 3

√
35(2ν + 5)(2ν + 7)

3
√
κ2

and the upper bounds

ζ2ν,1 <
15(2ν + 3)(2ν + 5)(α+ ν + 1)(α+ ν + 3)

κ1
,

ζ2ν,1 <
21(2ν + 3)(2ν + 7)(α+ ν + 1)κ1

κ2
,

where κ1 = −2α2ν + 7α2 − 4αν2 + 2αν + 42α − 2ν3 − 5ν2 + 72ν + 135 and κ2 = −4α3ν2 − 96α3ν + 145α3 −
12α2ν3 − 324α2ν2 − 429α2ν+1305α2 − 12αν4 − 360αν3 − 1689αν2 +1170αν+6291α− 4ν5 − 132ν4 − 1115ν3 +

621ν2 + 12339ν + 14931.

Proof It is known (see [5]) that the zeros of the function

hν(z) =
∑
n≥0

(−1)n(2n+ ν + α+ 1)

22n(ν + α+ 1)( 32 )n(ν +
3
2 )n

zn

all are real when α + ν > −1 and |ν| < 1
2 . As a result of this we can say that the function hν belongs to the

Laguerre–Pólya class LP of real entire functions, which are uniform limits of real polynomials whose all zeros

are real. Thus, the function z 7→ hν(z) has only real zeros and having growth order 1
2 it can be written as the

product

hν(z) =
∏
n≥1

(
1− z

ζ2ν,n

)
,

where ζν,n > 0 for each n ∈ N. By considering the Euler–Rayleigh sum δk =
∑

n≥1 ζ
−2k
ν,n and the infinite sum

representation of the Struve function Hν we have

h′ν(z)

hν(z)
=

∑
n≥1

1

z − ζ2ν,n
= −

∑
k≥0

∑
n≥1

1

(ζ2ν,n)
k+1

 zk = −
∑
k≥0

δk+1z
k, |z| < ζ2ν,1, (2.1)
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AKTAŞ et al./Turk J Math

h′ν(z)

hν(z)
=

∑
n≥0

θnz
n

/∑
n≥0

γnz
n, (2.2)

where

θn =
(−1)n+1(2n+ ν + α+ 3)(n+ 1)

22n+2(ν + α+ 1)( 32 )n+1(ν +
3
2 )n+1

and γn =
(−1)n(2n+ ν + α+ 1)

22n(ν + α+ 1)( 32 )n(ν +
3
2 )n

.

By comparing the coefficients of (2.1) and (2.2) we have the following:

δ1 =
(α+ ν + 3)

3(2ν + 3)(α+ ν + 1)
, δ2 =

κ1
45(2ν + 3)2(2ν + 5)(α+ ν + 1)2

,

δ3 =
κ2

945(2ν + 3)3(4ν2 + 24ν + 35)(α+ ν + 1)2
,

where

κ1 = −2α2ν + 7α2 − 4αν2 + 2αν + 42α− 2ν3 − 5ν2 + 72ν + 135

and

κ2 = −4α3ν2 − 96α3ν + 145α3 − 12α2ν3 − 324α2ν2 − 429α2ν + 1305α2 − 12αν4 − 360αν3

− 1689αν2 + 1170αν + 6291α− 4ν5 − 132ν4 − 1115ν3 + 621ν2 + 12339ν + 14931.

Now, by using the Euler–Rayleigh inequalities δk
− 1

k < ζ2ν,1 <
δk

δk+1 for α + ν > −1, |ν| < 1
2 and k ∈ {1, 2, 3} ,

we get the following lower bounds:

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1)

α+ ν + 3
,

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1)

√
5(2ν + 5)

√
κ1

,

ζ2ν,1 >
3(2ν + 3)(α+ ν + 1) 3

√
35(2ν + 5)(2ν + 7)

3
√
κ2

and the upper bounds

ζ2ν,1 <
15(2ν + 3)(2ν + 5)(α+ ν + 1)(α+ ν + 3)

κ1
,

ζ2ν,1 <
21(2ν + 3)(2ν + 7)(α+ ν + 1)κ1

κ2
.

2

In particular, when α = 0, Theorem 1 reduces to the following:

Theorem 2 Let |ν| < 1
2 and let h′ν,1 be the smallest positive root of H′

ν . Then we have the lower bounds

(h′ν,1)
2 >

3(2ν + 3)(ν + 1)

ν + 3
,
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AKTAŞ et al./Turk J Math

(h′ν,1)
2 >

3(2ν + 3)(ν + 1)
√
5(2ν + 5)√

−2ν3 − 5ν2 + 72ν + 135
,

(h′ν,1)
2 >

3(2ν + 3)(ν + 1) 3
√
35(2ν + 5)(2ν + 7)

3
√
−4ν5 − 132ν4 − 1115ν3 + 621ν2 + 12339ν + 14931

and the upper bounds

(h′ν,1)
2 <

15(2ν + 3)(2ν + 5)(ν + 1)(ν + 3)

−2ν3 − 5ν2 + 72ν + 135
,

(h′ν,1)
2 <

21(2ν + 3)(2ν + 7)(ν + 1)(−2ν3 − 5ν2 + 72ν + 135)

−4ν5 − 132ν4 − 1115ν3 + 621ν2 + 12339ν + 14931
.

Here it is worth mentioning that Theorem 2 reobtains and improves some results of [6] regarding the first

positive zeros of the derivative of the Struve function. We mention that our approach is a little bit different

than the approach in [6].

2.2. Bounds for the zeros of derivative of Lommel functions

We consider the function

Lµ(z) = zs′µ− 1
2 ,

1
2
(z) =

∑
n≥0

(−1)n(2n+ µ+ 1
2 )

4nµ(µ+ 1)(µ+2
2 )n(

µ+3
2 )n

z2n+µ+ 1
2 ,

where s′
µ− 1

2 ,
1
2

(z) stands for the derivative of Lommel function. Let µ ∈ (−1, 1), µ ̸= 0 and µ ̸= −1
2 . Now we

define the following normalized form of the function Lµ . Let

lµ(z) =
2µ(µ+ 1)

(2µ+ 1)
z−

2µ+1
4 Lµ(

√
z).

Clearly, the function lµ can be written as

lµ(z) = 1 +
∑
n≥1

(−1)n(2n+ µ+ 1
2 )

22n(µ+ 1
2 )(

µ+2
2 )n(

µ+3
2 )n

zn.

Theorem 3 Let µ ∈ (−1, 1), µ ̸= 0, µ ̸= − 1
2 and let τµ,1 be the smallest positive zero of the function Lµ . Then

we have the lower bounds

(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1)

2µ+ 5
,

(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1)
√
(µ+ 4)(µ+ 5)√

−4µ4 − 24µ3 + 19µ2 + 295µ+ 392
,

(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1) 3
√

(µ+ 4)(µ+ 5)(µ+ 6)(µ+ 7)
3
√
8µ7 + 44µ6 − 554µ5 − 4731µ4 − 7672µ3 + 23551µ2 + 85834µ+ 72384
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and the upper bounds

(τµ,1)
2 <

(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(2µ+ 1)(2µ+ 5)

−4µ4 − 24µ3 + 19µ2 + 295µ+ 392
,

(τµ,1)
2 <

(µ+ 2)(µ+ 3)(µ+ 6)(µ+ 7)(2µ+ 1)(−4µ4 − 24µ3 + 19µ2 + 295µ+ 392)

8µ7 + 44µ6 − 554µ5 − 4731µ4 − 7672µ3 + 23551µ2 + 85834µ+ 72384
.

Proof The normalized Lommel function

lµ(z) =
2µ(µ+ 1)

(2µ+ 1)
z−

2µ+1
4 Lµ(

√
z)

has only real zeros for µ ∈ (−1, 1), µ ̸= 0 and µ ̸= − 1
2 (see [12]). Consequently, the function lµ belongs to the

Laguerre–Pólya class LP of real entire functions. Thus, lµ(z) can be written as the product

∏
n≥1

(
1− z

τ2µ,n

)

where τµ,n > 0 for each n ∈ N. Now by using the Euler–Rayleigh sum ηk =
∑

n≥1 τ
−2k
µ,n and the infinite sum

representation of the Lommel function sµ− 1
2 ,

1
2
we get

lµ
′(z)

lµ(z)
=

∑
n≥1

1

z − τ2µ,n
= −

∑
n≥1

∑
k≥0

1

(τ2µ,n)
k+1

zk = −
∑
k≥0

ηk+1z
k, |z| < τ2µ,1, (2.3)

lµ
′(z)

lµ(z)
=

∑
n≥0

ρnz
n

/∑
n≥0

σnz
n, (2.4)

where

ρn =
(−1)n+1(n+ 1)(2n+ µ+ 5

2 )

22n+2(µ+ 1
2 )(

µ+2
2 )n+1(

µ+3
2 )n+1

and σn =
(−1)n(2n+ µ+ 1

2 )

22n(µ+ 1
2 )(

µ+2
2 )n(

µ+3
2 )n

.

By equating the coefficients of (2.3) and (2.4) we obtain

η1 =
2µ+ 5

2µ3 + 11µ2 + 17µ+ 6
, η2 =

−4µ4 − 24µ3 + 19µ2 + 295µ+ 392

(µ+ 2)2(µ+ 3)2(µ+ 4)(µ+ 5)(2µ+ 1)2

and

η3 =
8µ7 + 44µ6 − 554µ5 − 4731µ4 − 7672µ3 + 23551µ2 + 85834µ+ 72384

(µ+ 2)3(µ+ 3)3(µ+ 4)(µ+ 5)(µ+ 6)(µ+ 7)(2µ+ 1)3
.

Now by considering Euler–Rayleigh inequalities ηk
− 1

k < τ2µ,1 < ηk

ηk+1
for µ ∈ (−1, 1), µ ̸= 0, µ ̸= − 1

2 and

k ∈ {1, 2, 3} we obtain the lower bounds

(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1)

2µ+ 5
,

(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1)
√
(µ+ 4)(µ+ 5)√

−4µ4 − 24µ3 + 19µ2 + 295µ+ 392
,
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(τµ,1)
2 >

(µ+ 2)(µ+ 3)(2µ+ 1) 3
√

(µ+ 4)(µ+ 5)(µ+ 6)(µ+ 7)
3
√
8µ7 + 44µ6 − 554µ5 − 4731µ4 − 7672µ3 + 23551µ2 + 85834µ+ 72384

and the upper bounds

(τµ,1)
2 <

(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(2µ+ 1)(2µ+ 5)

−4µ4 − 24µ3 + 19µ2 + 295µ+ 392
,

(τµ,1)
2 <

(µ+ 2)(µ+ 3)(µ+ 6)(µ+ 7)(2µ+ 1)(−4µ4 − 24µ3 + 19µ2 + 295µ+ 392)

8µ7 + 44µ6 − 554µ5 − 4731µ4 − 7672µ3 + 23551µ2 + 85834µ+ 72384
.

2

2.3. Radii of univalence (and starlikeness) of Struve functions

Here our aim is to show that the radii of univalence of the Struve function uν correspond to the radii of

starlikeness.

Theorem 4 Let ν ∈ [−1
2 ,

1
2 ] . The radius of univalence r∗(uν) of the normalized Struve function

z 7→ uν(z) =

(√
π2νΓ

(
ν +

3

2

)
Hν(z)

) 1
ν+1

corresponds to its radius of starlikeness and it is the smallest positive root h′ν,1 of H′
ν .

Proof If we consider the Maclaurin series expansion of the function

z 7→ uν(z) =

(√
π2νΓ

(
ν +

3

2

)
Hν(z)

) 1
ν+1

we obtain

u(z) = z − 1

3(ν + 1)(2ν + 3)
z3 +

1

90(ν + 1)2(2ν + 3)2(2ν + 5)
z5 − . . .. (2.5)

Therefore, the function uν has real coefficients. Also, we know that if the function z 7→ z + α2z
2 + . . . has

real coefficients, then its radius of starlikeness is less than or equal to its radius of univalence; see [22]. Now we

should show that the radii of univalence are less than or equal to the corresponding radii of starlikeness. From

the definition of uν(z) we can write that

zu′ν(z)

uν(z)
=

1

ν + 1

zH′
ν(z)

Hν(z)
= 1− 2

ν + 1

∑
n≥1

z2

h2ν,n − z2
. (2.6)

Thus, for ν ∈ [− 1
2 ,

1
2 ], we obtain that

Re

(
zu′ν(z)

uν(z)

)
= 1− 2

ν + 1

∑
n≥1

Re

(
z2

h2ν,n − z2

)
≥ 1− 2

ν + 1

∑
n≥1

|z|2

h2ν,n − |z|2
=

|z|u′ν(|z|)
uν(|z|)

.

That is,

Re

(
zu′ν(z)

uν(z)

)
≥ ru′ν(r)

uν(r)
, (2.7)

where r = |z| . The quantity on the right-hand side of the inequality (2.7) remains positive until the first

positive zero of u′ν . These show that indeed the radius of univalence corresponds to the radius of starlikeness

of the function uν . 2
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AKTAŞ et al./Turk J Math

2.4. Radii of univalence (and starlikeness) of Lommel functions

In this subsection our aim is to show that the radii of univalence of the Lommel function fµ correspond to the

radii of starlikeness.

Theorem 5 Let µ ∈ (−1
2 , 1), µ ̸= 0. The radius of univalence r∗(fµ) of the normalized Lommel function

z 7→ fµ(z) = fµ− 1
2 ,

1
2
(z) =

(
µ(µ+ 1)sµ− 1

2 ,
1
2
(z)

) 1

µ+1
2

corresponds to its radius of starlikeness and it is the smallest positive root of s′
µ− 1

2 ,
1
2

.

Proof If we consider the Maclaurin series expansion of the function

z 7→ fµ(z) = fµ− 1
2 ,

1
2
(z) =

(
µ(µ+ 1)sµ− 1

2 ,
1
2
(z)

) 1

µ+1
2

we obtain

fµ(z) = z − 2

(µ+ 2)(µ+ 3)(2µ+ 1)
z3 +

2µ3 + 16µ2 + 39µ− 16

2(µ+ 2)(µ+ 3)(µ+ 4)(µ+ 5)(2µ+ 1)2
z5 − . . ..

Therefore, the radius of starlikeness of the function fµ is less than or equal to its radius of univalence; see [22].

On the other hand, from the definition of fµ we can write that

zf ′µ(z)

fµ(z)
=

1

1 + µ
2

zs′
µ− 1

2 ,
1
2

(z)

sµ− 1
2 ,

1
2
(z)

= 1− 2

1 + µ
2

∑
n≥1

z2

l2µ,n − z2
. (2.8)

Thus, for µ ∈ (−1
2 , 1), µ ̸= 0 we obtain that

Re

(
zf ′µ(z)

fµ(z)

)
= 1− 2

1 + µ
2

∑
n≥1

Re

(
z2

l2µ,n − z2

)
≥ 1− 2

1 + µ
2

∑
n≥1

|z|2

l2µ,n − |z|2
=

|z|f ′µ(|z|)
fµ(|z|)

.

That is,

Re

(
zf ′µ(z)

fµ(z)

)
≥
rf ′µ(r)

fµ(r)
, (2.9)

where r = |z| . The quantity on the right-hand side of the inequality (2.9) remains positive until the first

positive zero of f ′µ is reached. These show that indeed the radius of univalence corresponds to the radius of

starlikeness of the function fµ . 2

2.5. Radii of convexity of Bessel functions

In this subsection we consider two different normalized forms of the Bessel functions of the first kind. Here
we show that the radii of convexity of these functions are the smallest positive roots of some transcendental

equations. Moreover, we will present some inequalities for the radii of convexity of the same functions.
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Theorem 6 Let ν > −1. Then the radius of convexity rc(gν) of the function

z 7→ gν(z) = 2νΓ(ν + 1)z1−νJν(z)

is the smallest positive root of the equation (zg′ν(z))
′
= 0 and satisfies the following inequalities:

2
√
ν + 1

3
< rc(gν) < 6

√
(ν + 1)(ν + 2)

56ν + 137
,

2
4

√
(ν + 1)2(ν + 2)

56ν + 137
< rc(gν) <

√
2(56ν + 137)(ν + 1)(ν + 3)

208ν2 + 1172ν + 1693
,

6

√
32(ν + 1)3(ν + 2)(ν + 3)

208ν2 + 1172ν + 1693
< rc(gν) < 2

√
2(ν + 1)(ν + 2)(ν + 4)(208ν2 + 1172ν + 1693)

3104ν4 + 36768ν3 + 161424ν2 + 312197ν + 223803
.

Proof By using the Alexander duality theorem for starlike and convex functions we can say that the function

gν is convex if and only if z 7→ zg′ν(z) is starlike. However, the smallest positive zero of z 7→ (zg′ν(z))
′
is

actually the radius of starlikeness of z 7→ zg′ν(z), according to [7, 8]. Therefore, the radius of convexity rc(gν)

is the smallest positive root of the equation (zg′ν(z))
′
= 0. See also [10] for more details. Now, by considering

the Bessel differential equation

z2J ′′
ν (z) + zJ ′

ν(z) + (z2 − ν2)Jν(z) = 0 (2.10)

and the infinite series representations of the Bessel function and its derivative

Jν(z) =
∑
n≥0

(−1)nz2n+ν

22n+νn!Γ(n+ ν + 1)
, (2.11)

J ′
ν(z) =

∑
n≥0

(−1)n(2n+ ν)z2n+ν−1

22n+νn!Γ(n+ ν + 1)
, (2.12)

respectively, we obtain

∆ν(z) = (zg′ν(z))
′
= 1 +

∑
n≥1

(−1)n(2n+ 1)2z2n

22nn!(ν + 1)n
. (2.13)

Since the function gν belongs to the Laguerre–Pólya class of entire functions and LP is closed under differen-

tiation, we can say that the function ∆ν belongs also to the Laguerre–Pólya class. Therefore, the zeros of the

function ∆ν are all real. Suppose that βν,n s are the zeros of the function ∆ν . Then the function ∆ν has the

infinite product representation as follows:

∆ν(z) =
∏
n≥1

(
1− z2

β2
ν,n

)
. (2.14)

By taking the logarithmic derivative of (2.14) we get

∆′
ν(z)

∆ν(z)
= −2

∑
k≥0

ρk+1z
2k+1, |z| < β2

ν,1, (2.15)
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where ρk =
∑

n≥1 β
−2k
ν,n . On the other hand, by considering the infinite sum representation of ∆ν(z) we obtain

∆
′

ν(z)

∆ν(z)
=

∑
n≥0

ξnz
2n+1

/∑
n≥0

κnz
2n, (2.16)

where

ξn =
(−1)n+12(2n+ 3)2

22n+2n!(ν + 1)n+1
and κn =

(−1)n(2n+ 1)2

22nn!(ν + 1)n
.

By comparing the coefficients of (2.15) and (2.16) we obtain

ρ1 =
9

4(ν + 1)
, ρ2 =

56ν + 137

16(ν + 1)2(ν + 2)
, ρ3 =

208ν2 + 1172ν + 1693

32(ν + 1)3(ν + 2)(ν + 3)

and

ρ4 =
3104ν4 + 36768ν3 + 161424ν2 + 312197ν + 223803

216(ν + 1)4(ν + 2)2(ν + 3)(ν + 4)
.

Now by considering the Euler–Rayleigh inequalities ρk
− 1

k < β2
ν,1 <

ρk

ρk+1
for ν > −1 and k ∈ {1, 2, 3} , we

obtain the following inequalities:

2
√
ν + 1

3
< rc(gν) < 6

√
(ν + 1)(ν + 2)

56ν + 137
,

2
4

√
(ν + 1)2(ν + 2)

56ν + 137
< rc(gν) <

√
2(56ν + 137)(ν + 1)(ν + 3)

208ν2 + 1172ν + 1693
,

6

√
32(ν + 1)3(ν + 2)(ν + 3)

208ν2 + 1172ν + 1693
< rc(gν) < 2

√
2(ν + 1)(ν + 2)(ν + 4)(208ν2 + 1172ν + 1693)

3104ν4 + 36768ν3 + 161424ν2 + 312197ν + 223803
.

2

Theorem 7 Let ν > −1. Then the radius of convexity rc(hν) of the function

z 7→ hν(z) = 2νΓ(ν + 1)z1−
ν
2 Jν(

√
z)

is the smallest positive root of the equation (zh′ν(z))
′
= 0 and satisfies the following inequalities:

ν + 1 < rc(hν) <
16(ν + 1)(ν + 2)

7ν + 23
,

√
16(ν + 1)2(ν + 2)

7ν + 23
< rc(hν) <

2(ν + 1)(ν + 3)(7ν + 23)

9ν2 + 60ν + 115
,

3

√
32(ν + 1)3(ν + 2)(ν + 3)

9ν2 + 60ν + 115
< rc(hν) <

8(ν + 1)(ν + 2)(ν + 4)(9ν2 + 60ν + 115)

47ν4 + 621ν3 + 3136ν2 + 7221ν + 6195
.
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Proof By using the same procedure as in the previous proof we can say that the radius of convexity rc(hν)

is the smallest positive root of the equation (zh′ν(z))
′
= 0. See also [10] for more details. Now, by setting

√
z

instead of z in (2.10), (2.11), and (2.12), respectively, we obtain

θν(z) = (zh′ν(z))
′
= 1 +

∑
n≥1

(−1)n(n+ 1)2zn

22nn!(ν + 1)n
. (2.17)

In addition, we know that hν belongs to the Laguerre–Pólya class of entire functions LP . Since LP is closed

under differentiation, we can say that the function θν belongs also to the Laguerre–Pólya class. That is, the

zeros of the function θν are all real. Suppose that γν,n s are the zeros of the function θν . Then the function θν

has the infinite product representation as follows:

θν(z) =
∏
n≥1

(
1− z

γν,n

)
. (2.18)

By logarithmic derivation of (2.18) we get

θ′ν(z)

θν(z)
= −

∑
k≥0

ϱk+1z
k, |z| < γν,1, (2.19)

where ϱk =
∑

n≥1 γ
−k
ν,n. Also, by using the derivative of infinite sum representation of θν(z) we get

θ′ν(z)

θν(z)
=

∑
n≥0

mnz
n

/∑
n≥0

snz
n, (2.20)

where

mn =
(−1)n+1(n+ 2)2

22(n+1)n!(ν + 1)n+1
and sn =

(−1)n(n+ 1)2

22nn!(ν + 1)n
.

By comparing the coefficients of (2.19) and (2.20) we have

ϱ1 =
1

ν + 1
, ϱ2 =

7ν + 23

16(ν + 1)2(ν + 2)
, ϱ3 =

9ν2 + 60ν + 115

32(ν + 1)3(ν + 2)(ν + 3)

and

ϱ4 =
47ν4 + 621ν3 + 3136ν2 + 7221ν + 6195

256(ν + 1)4(ν + 2)2(ν + 3)(ν + 4)
.

By applying the Euler–Rayleigh inequalities ϱk
− 1

k < γν,1 <
ϱk

ϱk+1
for ν > −1 and k ∈ {1, 2, 3} we have

ν + 1 < rc(hν) <
16(ν + 1)(ν + 2)

7ν + 23
,

√
16(ν + 1)2(ν + 2)

7ν + 23
< rc(hν) <

2(ν + 1)(ν + 3)(7ν + 23)

9ν2 + 60ν + 115
,

3

√
32(ν + 1)3(ν + 2)(ν + 3)

9ν2 + 60ν + 115
< rc(hν) <

8(ν + 1)(ν + 2)(ν + 4)(9ν2 + 60ν + 115)

47ν4 + 621ν3 + 3136ν2 + 7221ν + 6195
.

2
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2.6. Radii of convexity of Struve functions

In this subsection we consider two different normalized Struve functions of the first kind. Here we show that
the radii of convexity of these functions are the smallest positive roots of some transcendental equations. We

also give some lower and upper bounds for the radii of convexity of these functions.

Theorem 8 Let |ν| ≤ 1
2 . Then the radius of convexity rc(uν) of the function

z 7→ uν(z) =
√
π2νz−νΓ

(
ν +

3

2

)
Hν(z)

is the smallest positive root of the equation (zu′ν(z))
′
= 0 and satisfies the following inequalities:√

2ν + 3

3
< rc(uν) <

√
36ν2 + 144ν + 135

34ν + 105
,

4

√
3(2ν + 3)2(2ν + 5)

34ν + 105
< rc(uν) <

√
5(2ν + 3)(2ν + 7)(34ν + 105)

3(268ν2 + 1824ν + 3213)
,

6

√
5(2ν + 3)3(2ν + 5)(2ν + 7)

268ν2 + 1824ν + 3213
< rc(uν) < 3

√
7(2ν + 3)(2ν + 5)(2ν + 9)(268ν2 + 1824ν + 3213)

ν∗
,

where ν∗ = 160336ν4 + 2256464ν3 + 11855904ν2 + 27626796ν + 24017715 .

Proof Similarly as in the proof of Theorem 6 we observe that the radius of convexity rc(uν) is the smallest

positive root of the equation (zu′ν(z))
′
= 0. See also [12] for more details. Now, by considering the Struve

differential equation

z2H′′
ν(z) + zH′

ν(z) + (z2 − ν2)Hν(z) =
4( z2 )

ν+1

√
πΓ

(
ν + 1

2

) (2.21)

and the infinite series representations of the Struve function and its derivative

Hν(z) =
∑
n≥0

(−1)n

Γ
(
n+ 3

2

)
Γ
(
ν + n+ 3

2

) (z
2

)2n+ν+1

, (2.22)

H′
ν(z) =

∑
n≥0

(−1)n(2n+ ν + 1)

2Γ
(
n+ 3

2

)
Γ
(
ν + n+ 3

2

) (z
2

)2n+ν

, (2.23)

respectively, we get

Ων(z) = (zu′ν(z))
′
= 1 +

∑
n≥1

(−1)n(2n+ 1)

22n( 12 )n(ν +
3
2 )n

z2n. (2.24)

Since the function uν belongs to the Laguerre–Pólya class of entire functions LP and this class is closed under

differentiation we obtain that the function Ων belongs also to the Laguerre–Pólya class. Therefore, the zeros of

the function Ων are all real. Suppose that ϑν,n s are the zeros of the function Ων . Then the function Ων has

infinite product representation as follows:

Ων(z) =
∏
n≥1

(
1− z2

ϑ2ν,n

)
. (2.25)
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By taking the logarithmic derivative of (2.25) we have

Ω′
ν(z)

Ων(z)
= −2

∑
k≥0

χk+1z
2k+1, |z| < ϑ2ν,1, (2.26)

where χk =
∑

n≥1 ϑ
−2k
ν,n . On the other hand, by considering infinite sum representation of Ων(z) we get

Ω′
ν(z)

Ων(z)
=

∑
n≥0

τnz
2n+1

/∑
n≥0

ςnz
2n, (2.27)

where

τn =
(−1)n+1(2n+ 3)(n+ 1)

22n+1( 12 )n+1(ν +
3
2 )n+1

and ςn =
(−1)n(2n+ 1)

22n( 12 )n(ν +
3
2 )n

.

Now, by comparing the coefficients of (2.26) and (2.27), we obtain

χ1 =
3

2ν + 3
, χ2 =

34ν + 105

3(2ν + 3)2(2ν + 5)
, χ3 =

268ν2 + 1824ν + 3213

5(2ν + 3)3(2ν + 5)(2ν + 7)

and

χ4 =
160336ν4 + 2256464ν3 + 11855904ν2 + 27626796ν + 24017715

315(2ν + 3)4(2ν + 5)2(2ν + 7)(2ν + 9)
.

By using the Euler–Rayleigh inequalities χk
− 1

k < ϑ2ν,1 <
χk

χk+1 for |ν| ≤ 1
2 and k ∈ {1, 2, 3} we obtain

√
2ν + 3

3
< rc(uν) <

√
36ν2 + 144ν + 135

34ν + 105
,

4

√
3(2ν + 3)2(2ν + 5)

34ν + 105
< rc(uν) <

√
5(2ν + 3)(2ν + 7)(34ν + 105)

3(268ν2 + 1824ν + 3213)
,

6

√
5(2ν + 3)3(2ν + 5)(2ν + 7)

268ν2 + 1824ν + 3213
< rc(uν) < 3

√
7(2ν + 3)(2ν + 5)(2ν + 9)(268ν2 + 1824ν + 3213)

ν∗
,

where ν∗ = 160336ν4 + 2256464ν3 + 11855904ν2 + 27626796ν + 24017715. 2

Theorem 9 Let |ν| ≤ 1
2 . Then the radius of convexity rc(wν) of the function

z 7→ wν(z) =
√
π2νz

1−ν
2 Γ

(
ν +

3

2

)
Hν(

√
z)

is the smallest positive root of the equation (zw′
ν(z))

′
= 0 and satisfies the following inequalities:

3(2ν + 3)

4
< rc(wν) <

30(2ν + 3)(2ν + 5)

26ν + 119
,

√
45(2ν + 3)2(2ν + 5)

2(26ν + 119)
< rc(wν) <

21(2ν + 3)(2ν + 7)(26ν + 119)

2(404ν2 + 3396ν + 8665)
,
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3

√
945(2ν + 3)3(2ν + 5)(2ν + 7)

4(404ν2 + 3396ν + 8665)
< rc(wν) <

30(2ν + 3)(2ν + 5)(2ν + 9)(404ν2 + 3396ν + 8665)

ν∗∗
,

where ν∗∗ = 36368ν4 + 588848ν3 + 3695776ν2 + 10793332ν + 11828151 .

Proof By using the same idea as in the proof of Theorem 6 we have that the radius of convexity rc(wν) is the

smallest positive root of the equation (zw′
ν(z))

′
= 0. See also [12] for more details. Now, if we put

√
z instead

of z in (2.21), (2.22), and (2.23), respectively, after some calculations we obtain

ψν(z) = (zw′
ν(z))

′
= 1 +

∑
n≥1

(−1)n(n+ 1)2

22n(2n+ 1)( 12 )n(ν +
3
2 )n

zn. (2.28)

On the other hand, we know that the function wν belongs to the Laguerre–Pólya class of entire functions LP
and the Laguerre–Pólya class of entire functions is closed under differentiation. Therefore, we get that the

function ψν belongs also to the Laguerre–Pólya class. Hence, the zeros of the function ψν are all real. Suppose

that ϵν,n s are the zeros of the function ψν . Then the function ψν has the infinite product representation as

follows:

ψν(z) =
∏
n≥1

(
1− z

ϵν,n

)
. (2.29)

If we take the derivative of (2.29) logarithmically, then we get

ψ′
ν(z)

ψν(z)
= −

∑
k≥0

φk+1z
k, |z| < ϵν,1, (2.30)

where φk =
∑

n≥1 ϵ
−k
ν,n . Also, by taking the derivative of (2.28), we have

ψ′
ν(z)

ψν(z)
=

∑
n≥0

tnz
n

/∑
n≥0

rnz
n, (2.31)

where

tn =
(−1)n+1(n+ 2)2(n+ 1)

22n+2(2n+ 3)( 12 )n+1(ν +
3
2 )n+1

and rn =
(−1)n(n+ 1)2

22n(2n+ 1)( 12 )n(ν +
3
2 )n

.

Now, by comparing the coefficients of (2.30) and (2.31) we get

φ1 =
4

3(2ν + 3)
, φ2 =

2(26ν + 119)

45(2ν + 3)2(2ν + 5)
, φ3 =

4(404ν2 + 3396ν + 8665)

945(2ν + 3)3(2ν + 5)(2ν + 7)

and

φ4 =
2(36368ν4 + 588848ν3 + 3695776ν2 + 10793332ν + 11828151)

14175(2ν + 3)4(2ν + 5)2(2ν + 7)(2ν + 9)
.

When we use the Euler–Rayleigh inequalities φk
− 1

k < ϵν,1 <
φk

φk+1
for |ν| ≤ 1

2 and k ∈ {1, 2, 3} we obtain the

following inequalities:

3(2ν + 3)

4
< rc(wν) <

30(2ν + 3)(2ν + 5)

26ν + 119
,
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√
45(2ν + 3)2(2ν + 5)

2(26ν + 119)
< rc(wν) <

21(2ν + 3)(2ν + 7)(26ν + 119)

2(404ν2 + 3396ν + 8665)
,

3

√
945(2ν + 3)3(2ν + 5)(2ν + 7)

4(404ν2 + 3396ν + 8665)
< rc(wν) <

30(2ν + 3)(2ν + 5)(2ν + 9)(404ν2 + 3396ν + 8665)

ν∗∗
,

where ν∗∗ = 36368ν4 + 588848ν3 + 3695776ν2 + 10793332ν + 11828151. 2

References
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