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Abstract: The reducing subspaces of Toeplitz operators TzN1
(or TzN2

), TzN1 zN2
, and TzN1 zM2

on Dirichlet type spaces of

the bidisk Dα(D2) are described, which extends the results for the corresponding operators on the Bergman space of the

bidisk.
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1. Introduction

Let D denote the open unit disk of complex plane C and R denote the set of real numbers. D2 = {(z1, z2); z1 ∈
D, z2 ∈ D} is called the bidisk. We say that a function f : D2 → C is holomorphic if it is holomorphic in each

variable separately. Each holomorphic function f on the bidisk can be represented as

f(z, w) =
∑
i,j∈N

ai,jz
i
1z

j
2,

with (z, w) ∈ D2 and ai,j ∈ C . Let α = (α1, α2) ∈ R2 ; the Dirichlet type space of the bidisk Dα(D2) consists

of all holomorphic functions f on the bidisk satisfying

∥f∥Dα(D2) =
∑
i,j∈N

|ai,j |2(1 + i)α1(1 + j)α2 < ∞.

Dα(D2) is a Hilbert space with the inner product

⟨f, g⟩ =
∑
i,j∈N

ai,jbi,j(1 + i)α1(1 + j)α2 ,

where f =
∑

i,j∈N ai,jz
i
1z

j
2 and g =

∑
i,j∈N bi,jz

i
1z

j
2 . Given z = (z1, z2) ∈ D2 , each point evaluation λα

z (f) =

f(z) is a bounded linear functional on Dα(D2). Hence, for each z ∈ D2 , there exists a unique reproducing

kernel Kz(w) ∈ Dα(D2) with w = (w1, w2) ∈ D2 such that

f(z) = ⟨f(w),Kz(w)⟩, ∀f ∈ Dα(D2).
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Actually, it can be calculated that Kz(w) =
∑

i,j≥0
wi

1w
j
2z̄

i
1z̄

j
2

(i+1)α1 (j+1)α2
. One can see [1] for more details about

Dirichlet type space Dα(D2). Throughout this paper, we denote γα
i,j = ∥zi1z

j
2∥Dα(D2) =

√
(i+ 1)α1(j + 1)α2 .

For simplicity, we denote ∥zi1z
j
2∥Dα(D2) by ∥zi1z

j
2∥ .

It is easy to see that D(0,0)(D2) is the Hardy space over the bidisk H2(D2) and D(−1,−1)(D2) is the

Bergman space over the bidisk B2(D2). In this paper, we only deal with Dα(D2) satisfying α1 · α2 ̸= 0.

Given holomorphic function f on the bidisk D2 , if hf ∈ Dα(D2) for any h ∈ Dα(D2), we define

Tf : Dα(D2) → Dα(D2) by

Tf (h) = fh, ∀ h ∈ Dα(D2).

If N,M are integers larger than 1 with N ̸= M , it is easy to check that TzN
1

(or TzN
2
) is a bounded linear

operator on Dα(D2). Note that

∥TzN
1 zN

2
∥ = ∥TzN

1
TzN

2
∥ ≤ ∥TzN

1
∥∥TzN

2
∥, ∥TzN

1 zM
2
∥ = ∥TzN

1
TzM

2
∥ ≤ ∥TzN

1
∥∥TzM

2
∥;

both TzN
1 zN

2
and TzN

1 zM
2

are bounded linear operators on Dα(D2).

Suppose that M is a closed subspace of Hilbert space H . Recall that M is a reducing subspace of the

operator T if T (M) ⊆ M and T ∗(M) ⊆ M . A reducing subspace M is said to be minimal if there are no

nontrivial reducing subspaces of T contained in M .

Stessin and Zhu [6] completely characterized the reducing subspaces of weighted unilaterial shift operators

of finite multiplicity. As a consequence, they gave the description of the reducing subspaces of TzN on the

Bergman space and Dirichlet space of the unit disk. For more general symbols, the reducing subspaces of the

Toeplitz operators with finite Blaschke product were well studied (see [2, 3, 8] for example). Recently, Lu et al.

extended the result in [6] to Bergman space with several variables. They completely characterized the reducing

subspaces of TzN
1

and TzN
1 zN

2
in [4] on the weighted Bergman space of the bidisk and on the weighted Bergman

space over polydisk in [7], respectively. Moreover, they [5] solved the problems of TzN
1 zM

2
with N ̸= M on both

settings.

Motivated by the above work, we will investigate the reducing subspaces of Toeplitz operators TzN
1
(or

TzN
2
), TzN

1 zN
2
, and TzN

1 zM
2

on Dirichlet type spaces of the bidisk. The paper is organized as follows. In section

2, we give the description of the reducing subspace of Toeplitz operators TzN
1
(or TzN

2
). We characterize the

reducing subspaces of TzN
1 zN

2
in section 3 and the case of TzN

1 zM
2

is discussed in section 4.

2. The reducing subspace of TzN
1

on Dirichlet type spaces Dα(D2)

In this section, we will characterize the reducing subspace of TzN
1
(or TzN

2
) on Dirichlet type spaces Dα(D2).

We observe that each f(z1, z2) =
∑

i,j∈N ai,jz
i
1z

j
2 ∈ Dα(D2) has the decomposition

f =

∞∑
i=0

zi1fi(z2), (2.1)

where fi(z2) =
∑∞

j=0 ai,jz
j
2 ∈ Dα2(D) for each i .
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If we denote γa
i =

√
(1 + i)a for i ∈ N and a ∈ R , it is easy to get the relationship between γα

i,j and

γα1
i or γα2

j , where α = (α1, α2). Direct computation shows the following lemma.

Lemma 2.1 Suppose i, j, k are nonnegative integers; then
γα
i,j

γα
k,j

=
γ
α1
i

γ
α1
k

,
γα
i,j

γα
i,k

=
γ
α2
j

γ
α2
k

.

Lemma 2.2 Suppose i, n are nonnegative integers; then

γα1

i+hN

γα1
i

=
γα1

n+hN

γα1
n

, ∀h ∈ N,

holds if and only if i = n .

Proof We only need to prove the necessity. By the assumption,

γα1

i+hN

γα1

n+hN

=
γα1
i

γα1
n

, ∀h ∈ N.

Taking h → ∞ in the above equation,

lim
h→∞

γα1

i+hN

γα1

n+hN

= 1,

which implies that

γα1

i+hN

γα1

n+hN

= 1, ∀h ∈ N.

By the definition of γα1
i , it is equivalent to

(i+ hN + 1)α1 = (n+ hN + 1)α1 , ∀h ∈ N. (2.2)

Since α1 ̸= 0, then i = n . 2

Lemma 2.3 Suppose M is a reducing subspace of TzN
1

on Dα(D2) . Then the following statements hold:

(1) If f =
∑

n≥0 z
n
1 fn(z2) ∈ M with fn(z2) ̸= 0 , then zn1 fn(z2) ∈ M ;

(2) If g =
∑

n≥0 z
n
2 gn(z1) ∈ M⊥ with gn(z1) ̸= 0 , then zn2 gn(z1) ∈ M⊥ .

Proof First assume f = zp1fp(z2). Let zp1fp(z2) = u(z1, z2) + v(z1, z2) be the orthogonal decomposition on

M , where u(z1, z2) =
∑∞

k=0 z
k
1uk(z2) ∈ M and v(z1, z2) ∈ M⊥ .

For nonnegative integer h , note that T ∗
zhN
1

TzhN
1

zk1z
j
2 =

(γ
α1
k+hN )2

(γ
α1
k )2

zk1z
j
2 . By Lemma 2.1, we calculate

T ∗
zhN
1

TzhN
1

PM(zp1fp(z2)) = T ∗
zhN
1

TzhN
1

PM(u+ v)

= T ∗
zhN
1

TzhN
1

u

= T ∗
zhN
1

TzhN
1

∞∑
k=0

zk1uk(z2)

=
∞∑
k=0

(γα1

k+hN )2

(γα1

k )2
zk1uk(z2).
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On the other hand, direct computation shows that

PMT ∗
zhN
1

TzhN
1

(zp1fp(z2)) = PM(
(γα1

p+hN )2

(γα1
p )2

zp1fp(z2))

=
(γα1

p+hN )2

(γα1
p )2

u

=
∞∑
k=0

(γα1

p+hN )2

(γα1
p )2

zk1uk(z2).

Since TzhN
1

and T ∗
zhN
1

commute with PM , it follows that, if uk(z2) ̸= 0, then for each positive integer h

γα1

k+hN

γα1

k

=
γα1

p+hN

γα1
p

,

which is equivalent to

γ2
k+hN

γ2
p+hN

=
γ2
k

γ2
p

.

Since α1 ̸= 0, Lemma 2.2 implies that

k = p.

Therefore, PM(zp1fp(z2)) = u = zp1up(z2) ∈ M .

Now assume f =
∑

n≥0 z
n
1 fn(z2) ∈ M and PMzn1 fn(z2) = zn1 un(z2). By the above discussion,

PMf = PM

∑
n≥0

zn1 fn(z2) =
∑
n≥0

zn1 un(z2).

Note that PMf = f . Comparing the expressions, it follows that

fn(z2) = un(z2).

That is
PMzn1 fn(z2) = zn1 fn(z2),

which means that zn1 fn(z2) ∈ M . Thus statement (1) is obtained.

Note that if M is a reducing subspace of TzN
1
, so is M⊥ . By the symmetry, statement (2) is desired. 2

Let M(1)
n1 = span{zn1+hN

1 : h ∈ N} . The next theorem characterizes the reducing subspaces of TzN
1

on

Dirichlet type space Dα(D2).

Theorem 2.4 Suppose n1 is an integer with 0 ≤ n1 ≤ N − 1 . The reducing subspaces

f(z2)M(1)
n1

= span{f(z2)zn1+hN
1 : h ∈ N}, where f(z2) ∈ Dα(D)

are the only minimal reducing subspaces of TzN
1

on Dirichlet type space Dα(D2) . Each reducing subspace M

contains some minimal reducing subspace as above.
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Proof For each h ∈ N , we calculate

TzN
1
f(z2)z

n1+hN
1 = f(z2)z

n1+(h+1)N
1 ∈ f(z2)M(1)

n1

and

T ∗
zN
1
f(z2)z

n1+hN
1 =


(γ

α1
n1+hN )2

(γ
α1
n1+(h−1)N

)2
f(z2)z

n1+(h−1)N
1 ∈ f(z2)M(1)

n1 , h ≥ 1

0, h = 0
,

which means f(z2)M(1)
n1 is the reducing subspace of TzN

1
. Next we will show that such type of reducing subspace

is minimal.

If M ⊆ Dα(D2) is the reducing subspace of TzN
1
, since M is nonempty, there is nonzero f =∑

n≥0 z
n
1 fn(z2) ∈ M . By Lemma 2.3, there exists some n0 ∈ N such that zn0

1 fn0
(z2) ∈ M and fn0

(z2) ̸= 0.

Let n1 = n0 mod N ; then fn0(z2)M
(1)
n1 ⊆ M is the minimal reducing subspace.

Furthermore, if M is minimal, then fn0(z2)M
(1)
n1 = M . The result is desired. 2

Theorem 2.5 Suppose n2 is an integer with 0 ≤ n2 ≤ N − 1 . The reducing subspaces

g(z1)M(2)
n2

= span{g(z1)zn2+kN
2 }, where g(z1) ∈ Dα(D)

are the only minimal reducing subspaces of TzN
2

on Dα(D2) . Each reducing subspace M contains some minimal

reducing subspace as above.

Proof The result is immediately followed by Theorem 2.4. 2

Theorem 2.6 Suppose N1, N2 are positive integers larger than 1 and M is a closed subspace of Dα(D2) . If

M is the reducing subspaces of both T
z
N1
1

and T
z
N2
2

on Dα(D2) , then there exist M(1)
n1 and M(2)

n2 such that

M(1)
n1

⊗M(2)
n2

:= span{zn1+hN1
1 zn2+kN2

2 : h, k ∈ N} ⊆ M,

where n1 and n2 are integers with 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1 . In particular, M is the minimal

reducing subspace if and only if M(1)
n1 ⊗M(2)

n2 = M . There are totally N1N2 such minimal reducing subspaces

on Dα(D2) .

Proof Since M is the reducing subspaces of T
z
N1
1

, then by Theorem 2.4 there exists

f(z2)z
n1
1 ∈ M,

where nonzero function f(z2) =
∑∞

i=1 aiz
i
2 ∈ Dα(D) and n1 ∈ N with 0 ≤ n1 ≤ N1 − 1. Note that

f(z2)z
n1
1 = (

∑∞
i=1 aiz

i
2)z

n1
1 =

∑∞
i=1 z

i
2aiz

n1
1 ∈ M . Since M is also the reducing subspaces of T

z
N2
2

, by Lemma

2.3, there exist i0 ∈ N such that zi02 zn1
1 ∈ M . Let n2 = i0 mod N2 , and it follows that

M(1)
n1

⊗M(2)
n2

⊆ M

is the reducing subspace of both T
z
N1
1

and T
z
N2
2

.
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If reducing subspace M is minimal, it certainly follows that M = M(1)
n1 ⊗M(2)

n2 .

Examining the proof above, it is easy to see that all the minimal reducing subspaces of both T
z
N1
1

and

T
z
N2
2

can be expressed as M(1)
n1 ⊗M(2)

n2 . The total number of the minimal reducing subspaces is N1N2 since

there are N1 different spaces M(1)
n1 and N2 different spaces M(2)

n2 . This completes the proof. 2

Corollary 2.7 Suppose N is a positive integer larger than 1 and M is a closed subspace of Dα(D2) . If M is

the reducing subspaces of both TzN
1

and TzN
2

on Dα(D2) , then there exist M(1)
n1 and M(2)

n2 such that

M(1)
n1

⊗M(2)
n2

⊆ M,

where n1 and n2 are integers with 0 ≤ n1 ≤ N − 1, 0 ≤ n2 ≤ N − 1 . In particular, M is the minimal reducing

subspace if and only if M(1)
n1 ⊗M(2)

n2 = M . There are totally N2 such minimal reducing subspaces on Dα(D2) .

Proof It follows from Theorem 2.6. 2

Zhou and Lu [4] describe all the reducing subspaces of TzN
1

(or TzN
2
) on the Bergman space of the

bidisk. Observe that D(−1,−1)(D2) is the common Bergman space of the bidisk, and we extend the result in

[4]. Comparing with the results in [4], Theorem 2.4 and Theorem 2.5 imply that TzN
1

(or TzN
2
) shares the same

structure of reducing subspaces on each Dirichlet type space Dα(D2). In other words, if α ̸= 0, the structure

of reducing subspaces of TzN
1

(or TzN
2
) on Dα(D2) is independent of the weight α whenever α1α2 ̸= 0.

3. The reducing subspace of TzN
1 zN

2
on Dirichlet type spaces Dα(D2)

In this section, we will study reducing subspace of TzN
1 zN

2
on Dirichlet type spaces Dα(D2). It shows that the

structure of reducing subspaces of TzN
1 zN

2
on Dα(D2) is dependent on α .

Firstly we make further study of γα
i,j .

Lemma 3.1 Suppose k,m, i, j,N are nonnegative integers and α = (α1, α2) ∈ R2 . If

(γα
i+hN,j+hN )2

(γα
i,j)

2
=

(γα
k+m+hN,m+hN )2

(γα
k+m,m)2

, ∀h ∈ N,

then the following statements hold:

(1) If α1 = α2 , then (i, j) = (k +m,m) or (i, j) = (m, k +m) .

(2) If α1 = −α2 , then (i, j) = (k +m,m) or m
k+m = j

i = 1 .

(3) If |α1| ̸= |α2| , then (i, j) = (k +m,m) .

Proof By the assumption,

(γα
i+hN,j+hN )2

(γα
k+m+hN,m+hN )2

=
(γα

i,j)
2

(γα
k+m,m)2

, ∀h ∈ N,
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Taking h → ∞ in the above equation, it follows that for any positive integer h

(γα
i+hN,j+hN )2

(γα
k+m+hN,m+hN )2

= 1.

By definition of γα
i,j , it turns into

(i+ hN + 1)α1(j + hN + 1)α2 = (k +m+ hN + 1)α1(m+ hN + 1)α2 . (3.1)

If α1 = α2 ̸= 0, the above equation is equivalent to

(i+ hN + 1)(j + hN + 1) = (k +m+ hN + 1)(m+ hN + 1),

which implies statement (1).

If α1 = −α2 ̸= 0, (3.1) is equivalent to

(i+ hN + 1)(m+ hN + 1) = (k +m+ hN + 1)(j + hN + 1),

which implies statement (2).

Now suppose |α1| ̸= |α2| . Without loss of generality, we may assume α1 > 0 and α2 > 0. If λ = hN ,

(3.1) is equivalent to

(i+ λ+ 1)α1(j + λ+ 1)α2 = (k +m+ λ+ 1)α1(m+ λ+ 1)α2 , ∀λ ∈ C.

Note that α1 ̸= α2 ; by comparing the multiplicity of zeros on both sides of the equation, statement (3) follows. 2

Next we describe the projection of monomial on reducing subspace M .

Theorem 3.2 Suppose that M is a reducing subspace of TzN
1 zN

2
on Dirichlet type space Dα(D2) and PM is

the projection onto M . Then the following statements hold:

(1) If α1 = α2 , then

PM(zk1 (z1z2)
m) = (azk1 + bzk2 )(z1z2)

m, (a− |a|2)∥zk1 (z1z2)m∥2 = |b|2∥zk2 (z1z2)m∥2.

(2) If α1 = −α2 , then

PM(zk1 (z1z2)
m) = azk1 (z1z2)

m, a = |a|2, for k > 0;

PM((z1z2)
m) =

∞∑
i=0

ai(z1z2)
i, am =

∞∑
i=0

|ai|2, for k = 0.

(3) If |α1| ̸= |α2| , then

PM(zk1 (z1z2)
m) = azk1 (z1z2)

m, a = |a|2.

Proof Let zk1 (z1z2)
m = f(z1, z2) + g(z1, z2) be the orthogonal decomposition on M , where f(z1, z2) =∑∞

i,j=0 fi,jz
i
1z

j
2 ∈ M and g(z1, z2) =

∑∞
i,j=0 gi,jz

i
1z

j
2 ∈ M⊥ .
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For nonnegative integer h , we calculate

T ∗
zhN
1 zhN

2
TzhN

1 zhN
2

PM(zk1 (z1z2)
m) = T ∗

zhN
1 zhN

2
TzhN

1 zhN
2

PM(f + g)

= T ∗
zhN
1 zhN

2
TzhN

1 zhN
2

f

= T ∗
zhN
1 zhN

2

∞∑
i,j=0

fi,jz
i+hN
1 zj+hN

2

=
∞∑

i,j=0

fi,j
(γα

i+hN,j+hN )2

(γα
i,j)

2
zi1z

j
2.

On the other hand, a direct computation shows that

PMT ∗
zhN
1 zhN

2
TzhN

1 zhN
2

(zk1 (z1z2)
m) = PMT ∗

zhN
1 zhN

2
(zk1 (z1z2)

m+hN )

= PM((
γα
k+m+hN,m+hN )2

(γα
k+m,m)2

zk1 (z1z2)
m)

=
∞∑

i,j=0

fi,j
(γα

k+m+hN,m+hN )2

(γα
k+m,m)2

zi1z
j
2.

Since TzhN
1 zhN

2
and T ∗

zhN
1 zhN

2
commute with PM , if fi,j ̸= 0, it follows that

(γα
i+hN,j+hN )2

(γα
i,j)

2
=

(γα
k+m+hN,m+hN )2

(γα
k+m,m)2

, ∀ h ∈ N.

If α1 = α2 , by Lemma 3.1, (i, j) = (m+ k,m) or (i, j) = (m,m+ k), which implies that

PM(zk1 (z1z2)
m) = (azk1 + bzk2 )(z1z2)

m, for constants a, b.

Since ⟨zk1 (z1z2)m − PM(zk1 (z1z2)
m), PM(zk1 (z1z2)

m)⟩ = 0, it follows that

⟨zk1 (z1z2)m, PM(zk1 (z1z2)
m)⟩ = ∥PM(zk1 (z1z2)

m)∥2. (3.2)

A direct computation shows that a∥zk1 (z1z2)m∥2 = |a|2∥zk1 (z1z2)m∥2 + |b|2∥zk2 (z1z2)m∥2 . Thus statement (1)

holds.

If α1 = −α2 , by Lemma 3.1, (i, j) = (m+ k,m) or m
k+m = j

i = 1, which implies that for k > 0

PM(zk1 (z1z2)
m) = azk1 (z1z2)

m, for constant a,

and for k = 0

PM((z1z2)
m) =

∞∑
i=0

ai(z1z2)
i, for constants ai.

Observe that (3.2) holds for any α , and statement (2) follows from the direct computation with (3.2).

If |α1| ̸= |α2| , by Lemma 3.1, (i, j) = (m+k,m), which together with (3.2) implies statement (3) holds. 2
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Lemma 3.3 Let Λ be an index set and let H be a Hilbert space. Suppose that H is the direct sum of its closed

subspace Xi (i ∈ Λ), that is H =
⊕

i∈Λ Xi , M is a reducing subspace of bounded linear operator T on H and

PMXi ⊆ Xi . If f =
∑

i∈Λ fi ∈ M with fi ∈ Xi , then fi ∈ M for each i ∈ Λ .

Proof Note that ∑
i∈Λ

fi = f = PMf =
∑
i∈Λ

PMfi.

The result follows from fi = PMfi since fi ∈ Xi and PMfi ∈ Xi . 2

Theorem 3.4 Suppose that M is a nontrivial reducing subspace of TzN
1 zN

2
in Dα(D2) and f =

∑∞
i,j=0 fi,jz

i
1z

j
2 ∈

M . Then the following statements hold:

(1) If α1 = α2 , then fi,iz
i
1z

i
2 ∈ M and fi,jz

i
1z

j
2 + fj,iz

j
1z

i
2 ∈ M with i ̸= j .

(2) If α1 = −α2 , then
∑∞

i=0 fi,iz
i
1z

i
2 ∈ M and fi,jz

i
1z

j
2 ∈ M with i ̸= j .

(3) If |α1| ̸= |α2| , then zi1z
j
2 ∈ M .

Proof If α1 = α2 , rewrite f =
∑

i≥0 fi,iz
i
1z

i
2 +

∑
i>j fi,jz

i
1z

j
2 + fj,iz

j
1z

i
2. Theorem 3.2 implies that

PMzi1z
i
2 ⊆ span{zi1zi2} and PMspan{zi1z

j
2, z

j
1z

i
2} ⊆ span{zi1z

j
2, z

j
1z

i
2}.

By Lemma 3.3, it follows that

fi,iz
i
1z

i
2 ∈ M and fi,jz

i
1z

j
2 + fj,iz

j
1z

i
2 ∈ M.

Thus statement (1) holds.

If α1 = −α2 , rewrite f =
∑

i≥0 fi,iz
i
1z

i
2 +

∑
i̸=j fi,jz

i
1z

j
2. Theorem 3.2 implies that

PMspan{zi1zi2; i ∈ N} ⊆ span{zi1zi2; i ∈ N} and PMzi1z
j
2 ⊆ span{zi1z

j
2}.

By Lemma 3.3, it follows that ∑
i≥0

fi,iz
i
1z

i
2 ∈ M and fi,jz

i
1z

j
2 ∈ M.

Thus statement (2) holds.

If |α1| ≠ |α2| , Theorem 3.2 implies that PM(zi1z
j
2) ⊆ span{zi1z

j
2} . Statement (3) is also achieved from

Lemma 3.3 . 2

Theorem 3.5 Suppose that M is the minimal reducing subspaces of TzN
1 zN

2
on Dα(D2) . Then the following

statements hold:

(1) If α1 = α2 , then

M = span{(azk1 + bzk2 )(z
m+lN
1 zm+lN

2 ) : l ∈ N}, a, b ∈ C,m, k ∈ N, 0 ≤ m ≤ N − 1.
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(2) If α1 = −α2 , then

M = span{(
∞∑
i=1

aiz
i
1z

i
2)(z

lN
1 zlN2 ) : l ∈ N}, ai ∈ C,m ∈ N

or M = span{azk1 (zm+lN
1 zm+lN

2 ) : l ∈ N}, a ∈ C,m, k ∈ N, 0 ≤ m ≤ N − 1,

or M = span{bzk2 (zm+lN
1 zm+lN

2 ) : l ∈ N}, b ∈ C,m, k ∈ N, 0 ≤ m ≤ N − 1.

(3) If |α1| ̸= |α2| , then

M = span{azk1 (zm+lN
1 zm+lN

2 ) : l ∈ N}, a ∈ C,m, k ∈ N, 0 ≤ m ≤ N − 1,

or M = span{bzk2 (zm+lN
1 zm+lN

2 ) : l ∈ N}, b ∈ C,m, k ∈ N, 0 ≤ m ≤ N − 1.

Proof Suppose that M is a nontrivial reducing subspace. Then there exists nonzero function

f =
∑

i,j≥0 fi,jz
i
1z

j
2 ∈ M .

For α1 = α2 . We consider the following two cases. If fi,i ̸= 0 for some i , by Theorem 3.4, zi1z
i
2 ∈ M . Note

that if M is a reducing subspace of TzN
1 zN

2
, then TzlN

1 zlN
2
M ⊆ M and T ∗

zlN
1 zlN

2
M ⊆ M . Let a+b = 1, k = 0,m = i

mod N ; then M ⊆ M is a reducing subspace of TzN
1 zN

2
.

If fi,j ̸= 0 for some multi-index (i, j) with i > j , by Theorem 3.4, fi,jz
i
1z

j
2 + fj,iz

j
1z

i
2 ∈ M . Let

a = fi,j , b = fj,i, k = i− j and m = j mod N ; then M ⊆ M is a reducing subspace of TzN
1 zN

2
.

For α1 = −α2 . If
∑∞

i=1 fi,iz
i
1z

i
2 ̸= 0, by Theorem 3.4,

∑∞
i=1 fi,iz

i
1z

i
2 ∈ M . Therefore, M =

span{(
∑∞

i=1 fi,iz
i
1z

i
2)(z

lN
1 zlN2 ) : h ∈ N} ⊆ M is a reducing subspace of TzN

1 zN
2
.

If fi,j ̸= 0 for some multi-index (i, j) with i ̸= j , without loss of generality we assume i > j . By Theorem

3.4, zi1z
j
2 ∈ M . Let a = fi,j , k = i − j and m = j mod N ; then M = span{azk1 (zm+lN

1 zm+lN
2 ) : h ∈ N} ⊆ M

is a reducing subspace of TzN
1 zN

2
.

A similar discussion implies the case of |α1| ̸= |α2| .
From the above proof, we deduce that each reducing subspace M contains a reducing subspace M , which

means that M consists of all the minimal reducing subspaces.

Therefore, if M is a minimal reducing subspace then M = M .

This complete the proof. 2

Theorem 2.5 in [4] showed that if M is a reducing subspace of TzN
1 zN

2
on the Bergman space over the

bidisk, then there exist nonnegative integers a, b, k,m with 0 ≤ m ≤ N − 1 and a, b ∈ C (Carefully examining

the original proof, we find that it should be a, b ∈ C instead of b ∈ {0, 1} in [4] Theorem 2.5.) such that

span{(azk1 + bzk2 )(z
m+lN
1 zm+lN

2 ) : l ∈ N} ⊆ M. (3.3)

In particular, M is minimal if and only if M = span{(azk1 + bzk2 )(z
m+lN
1 zm+lN

2 ) : l ∈ N} . Note that since

D(−1,−1)(D2) is the bidisk Bergman space, Theorem 3.5 extends the result of Theorem 2.5 in [4] to more general

spaces.
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4. The reducing subspace of TzN
1 zM

2
on Dirichlet type spaces Dα(D2)

In this section, we will study reducing subspaces of TzN
1 zM

2
on Dirichlet type spaces Dα(D2) with α ̸= 0. The

result shows that the structure of reducing subspaces of TzN
1 zM

2
on Dα(D2) is dependent on α . Here we define

ρ1(n) =
M(n+1)

N − 1 and ρ2(m) = N(m+1)
M − 1.

Lemma 4.1 Suppose n,m, i, j,N are nonnegative integers. If

γα
i+hN,j+hM

γα
i,j

=
γα
n+hN,m+hM

γα
n,m

, ∀h ∈ N,

holds, then the following statements hold.

(1) If α1 = α2 , then (i, j) = (n,m) or (i, j) = (ρ2(m), ρ1(n)) if ρ2(m), ρ1(n) ∈ N .

(2) If α1 = −α2 , then (i, j) = (n,m) or i+1
j+1 = n+1

m+1 = N
M .

(3) If |α1| ̸= |α2| , then (i, j) = (n,m) .

Proof By the assumption,

γα
i+hN,j+hM

γα
n+hN,m+hM

=
γα
i,j

γα
n,m

, ∀h ∈ N,

Taking h → ∞ in the above equation, it follows that for any h ∈ N

γα
i+hN,j+hM

γα
n+hN,m+hM

= 1,

By the definition of γα
i,j , it converts to

(i+ hN + 1)α1(j + hM + 1)α2 = (n+ hN + 1)α1(m+ hM + 1)α2 . (4.1)

If α1 = α2 , then (4.1) is equivalent to

(i+ hN + 1)(j + hM + 1) = (n+ hN + 1)(m+ hM + 1).

It is easy to see

i+ 1

N
=

n+ 1

N
,
j + 1

M
=

m+ 1

M

or

i+ 1

N
=

m+ 1

M
,
j + 1

M
=

n+ 1

N
,

which implies statement (1).

If α1 = −α2 , then (4.1) is equivalent to

(i+ hN + 1)(m+ hM + 1) = (n+ hN + 1)(j + hM + 1).
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It is easy to see

i+ 1

N
=

n+ 1

N
,

m+ 1

M
=

j + 1

M

or
i+ 1

N
=

j + 1

M
,

m+ 1

M
=

n+ 1

N
,

which implies statement (2).

If |α1| ̸= |α2| . Firstly, we consider the case of α1 ·α2 > 0. Without loss of generality, we assume α1 > 0

and α2 > 0. Observe that the left of (4.1) has zeros − i+1
N , − j+1

M with order α1 , α2 , respectively, while the

right of (4.1) has zeros −n+1
N , −m+1

M with order α1 , α2 , respectively. For − i+1
N ̸= − j+1

M , note that α1 ̸= α2 ,

and it follows that

− i+ 1

N
= −n+ 1

N
, −j + 1

M
= −m+ 1

M
.

Thus statement (3) holds.

For − i+1
N = − j+1

M , it follows that

− i+ 1

N
= −n+ 1

N
= −j + 1

M
= −m+ 1

M
,

which also implies statement (3).

Secondly, as to the case of α1 · α2 < 0, without loss of generality, we assume α1 > 0 and α2 < 0.

Therefore, (4.1) turns into

(i+ hN + 1)α1(m+ hM + 1)−α2 = (n+ hN + 1)α1(j + hM + 1)−α2 .

A similar discussion shows that i = n and m = j . This complete the proof. 2

Next we describe the projection of monomial on reducing subspace of TzN
1 zM

2
.

Theorem 4.2 Suppose that M is a reducing subspace of TzN
1 zM

2
on Dirichlet type space Dα(D2) and PM is

the projection onto M . Then the following statements hold:

(1) If α1 = α2 , then

PM(zn1 z
m
2 ) = azn1 z

m
2 + bδn,mz

ρ2(m)
1 z

ρ1(n)
2 ,

where a = |a|2 + |bδn,m|2 and δn,m =

{
1 , if ρ2(m), ρ1(n) ∈ N
0 , if others

.

(2) If α1 = −α2 , let SN,M,n,m = {(i, j); i+1
j+1 = n+1

m+1 = N
M , i ∈ N, j ∈ N} , S′

N,M,n,m = SN,M,n,m− (n,m) ,

then

PM(zn1 z
m
2 ) = azn1 z

m
2 +

∑
(i,j)∈S′

N,M,n,m

ai,jz
i
1z

j
2, a = |a|2 +

∑
(i,j)∈S′

N,M,n,m

|ai,j |2.

(3) If |α1| ̸= |α2| , then

PM(zk1 (z1z2)
m) = azk1 (z1z2)

m, a = |a|2.
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Proof

Let zn1 z
m
2 = f(z1, z2)+g(z1, z2) be the orthogonal decomposition on M , where f(z1, z2) =

∑∞
i,j=0 fi,jz

i
1z

j
2 ∈

M and g(z1, z2) =
∑∞

i,j=0 gi,jz
i
1z

j
2 ∈ M⊥ .

For nonnegative integer h , we calculate

T ∗
zhN
1 zhM

2
TzhN

1 zhM
2

PM(zn1 z
m
2 ) = T ∗

zhN
1 zhM

2
TzhN

1 zhM
2

PM(f + g)

= T ∗
zhN
1 zhM

2
TzhN

1 zhM
2

f

= T ∗
zhN
1 zhM

2

∞∑
i,j=0

fi,jz
i+hN
1 zj+hM

2

=
∞∑

i,j=0

fi,j
(γα

i+hN,j+hM )2

(γα
i,j)

2
zi1z

j
2.

On the other hand, direct computation shows that

PMT ∗
zhN
1 zhM

2
TzhN

1 zhM
2

(zn1 z
m
2 ) = PMT ∗

zhN
1 zhM

2
(zn+hN

1 zm+hM
2 )

= PM(
(γα

n+hN,m+hM )2

(γα
n,m)2

zn1 z
m
2 )

=
∞∑

i,j=0

fi,j
(γα

n+hN,m+hM )2

(γα
n,m)2

zi1z
j
2.

Since TzhN
1 zhM

2
and T ∗

zhN
1 zhM

2
commute with PM , if fi,j ̸= 0, it follows that

γα
i+hN,j+hM

γα
i,j

=
γα
n+hN,m+hM

γα
n,m

, ∀h ∈ N.

If α1 = α2 , Lemma 4.1 indicates that (i, j) = (n,m) or (i, j) = (ρ2(m), ρ1(n)) if ρ2(m), ρ1(n) ∈ N ,

which implies for constants a, b

PM(zn1 z
m
2 ) = azn1 z

m
2 + bδn,mz

ρ2(m)
1 z

ρ1(n)
2 .

Note that

∥PM(zn1 z
m
2 )∥2Dα(D2) = ⟨PM(zn1 z

m
2 ), zn1 z

m
2 ⟩ (4.2)

and

∥zn1 zm2 ∥2 = ∥zρ2(m)
1 z

ρ1(n)
2 ∥2,

direct computation shows that |a|2 + |bδn,m|2 = a .

If α1 = −α2 , Lemma 4.1 indicates that (i, j) = (n,m) or i+1
j+1 = n+1

m+1 = N
M . It follows that

PM(zn1 z
m
2 ) = bzn1 z

m
2 +

∑
(i,j)∈SN,M,n,m

ai,jz
i
1z

j
2 . Combining like terms, we can write PM(zn1 z

m
2 ) = azn1 z

m
2 +∑

(i,j)∈S′
N,M,n,m

ai,jz
i
1z

j
2 . By (4.2) and the fact that ∥zi1z

j
2∥2 = ∥zn1 zm2 ∥2 whenever (i, j) ∈ S′

N,M,n,m , direct

computation shows that a = |a|2 +
∑

(i,j)∈S′
N,M,n,m

|ai,j |2 .
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If |α1| ̸= |α2| , Lemma 4.1 indicates that (i, j) = (n,m). It follows that PM(zn1 z
m
2 ) = azn1 z

m
2 . By (4.2),

direct computation shows that a = |a|2 . 2

Note that if n+1
m+1 ̸= N

M , then SN,M,n,m = ∅ . Consequently, S′
N,M,n,m = ∅ for most of (n,m) ∈ N2 . That

is, PM(zn1 z
m
2 ) always equals azn1 z

m
2 in statement (2) of Theorem 4.2.

Theorem 4.3 Suppose M is a nontrivial reducing subspace of TzN
1 zM

2
in Dα(D2) and f =

∑∞
i,j=0 fi,jz

i
1z

j
2 ∈ M .

Then the following statements hold:

(1) If α1 = α2 , then

fn,mzn1 z
m
2 + fρ2(m),ρ1(n)δn,mz

ρ2(m)
1 z

ρ1(n)
2 ∈ M.

(2) If α1 = −α2 , then

fn,mzn1 z
m
2 +

∑
(i,j)∈S′

N,M,n,m

fi,jz
i
1z

j
2 ∈ M.

(3) If |α1| ̸= |α2| , then
fn,mzn1 z

m
2 ∈ M.

Proof For α1 = α2 , if ρ2(m), ρ1(n) ∈ N , then δn,m = 1. Note that ρ2(ρ1(n)) = n , ρ1(ρ2(m)) = m ; by

Theorem 4.2 it follows that

PMspan{zn1 zm2 , δn,mz
ρ2(m)
1 z

ρ1(n)
2 } ⊆ span{zn1 zm2 , δn,mz

ρ2(m)
1 z

ρ1(n)
2 }. (4.3)

If ρ2(m)) /∈ N or ρ1(n) /∈ N , then δn,m = 0. It is easy to see that (4.3) holds either. That is, (4.3) holds for

any (n,m). Using Lemma 3.3, statement (1) holds.

For α1 = −α2 , if
n+1
m+1 ̸= N

M , then S′
N,M,n,m = ∅ . By Theorem 4.2, it is easy to see

PMspan{zh1 zk2 ; (h, k) ∈ (n,m)
∪

S′
N,M,n,m} ⊆ span{zh1 zk2 ; (h, k) ∈ (n,m)

∪
S′
N,M,n,m}. (4.4)

If n+1
m+1 = N

M , note that SN,M,i,j = SN,M,n,m if (i, j) ∈ SN,M,n,m ; then

PM(zi1z
j
2) ∈ span{zh1 zk2 ; (h, k) ∈ (i, j)

∪
S′
N,M,i,j} = span{zh1 zk2 ; (h, k) ∈ SN,M,n,m}.

Thus (4.4) holds either. Therefore, (4.4) holds for any (n,m). Statement (2) follows from Lemma 3.3.

By Theorem 4.2 and Lemma 3.3, a similar discussion comes to statement (3). The proof is complete. 2

Theorem 4.4 Suppose that M is the minimal reducing subspaces of TzN
1 zM

2
on Dα(D2) . Then the following

statements hold:

(1) If α1 = α2 , then

M = span{(azn1 zm2 + bδn,mz
ρ2(m)
1 z

ρ1(n)
2 )zhN1 zhM2 : h ∈ N}.

where a, b ∈ C and m,n ∈ N such that 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1 .
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(2) If α1 = −α2 , then

M = span{azn1 zm2 (zhN1 zhM2 ) : h ∈ N}, (4.5)

where a ∈ C and m,n ∈ N such that 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1 , or

M = span{z(h+1)N−1
1 z

(h+1)M−1
2 : h ∈ N}. (4.6)

(3) If |α1| ̸= |α2| , then

M = span{azn1 zm2 (zhN1 zhM2 ) : h ∈ N},

where a ∈ C and m,n ∈ N such that 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1 .

Proof Suppose that M is a nontrivial reducing subspace. Then there exists nonzero f =
∑

i,j≥0 fi,jz
i
1z

j
2 ∈ M .

If α1 = α2 , then by Theorem 4.3

gk,l ≜ azk1z
l
2 + bδk,lz

ρ2(l)
1 z

ρ1(k)
2 ∈ M for any (k, l),

where a = fk,l and b = fρ2(l),ρ1(k) . Note that there exists h0 ∈ N such that (T ∗
zN
1 zM

2
)h0gk,l ̸= 0 and

(T ∗
zN
1 zM

2
)h0+1gk,l = 0. Let n = k − h0N , m = l − h0M ; then 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1.

Since M is the reducing subspace of TzN
1 zM

2
and δk,l = δn,m , then azn1 z

m
2 + bδn,mz

ρ2(m)
1 z

ρ1(n)
2 ∈ M . Thus

statement (1) holds.

If |α1| ̸= |α2| , then by Theorem 4.3

rk,l ≜ azk1z
l
2 ∈ M for any (k, l),

where a = fk,l . Note that there exists h0 ∈ N such that (T ∗
zN
1 zM

2
)h0rk,l ̸= 0 and (T ∗

zN
1 zM

2
)h0+1rk,l = 0. Let

n = k − h0N , m = l − h0M ; then 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1. Since M is the reducing subspace of

TzN
1 zM

2
, then azn1 z

m
2 ∈ M . Thus statement (3) holds.

If α1 = −α2 , then by Theorem 4.3

qk,l ≜ azk1z
l
2 +

∑
(i,j)∈S′

N,M,k,l

bi,jz
i
1z

j
2 ∈ M for any (k, l),

where a = fk,l and bi,j = fi,j .

If k+1
l+1 ̸= N

M , then S′
N,M,k,l = ∅ . Therefore, qk,l = azk1z

l
2 ∈ M . A similar discussion as the case of

|α1| ̸= |α2| shows M has a reducing subspace as (4.5).

If k+1
l+1 = N

M , then (k, l) ∈ SN,M,k,l . Therefore

qk,l =
∑

(i,j)∈SN,M,k,l

bi,jz
i
1z

j
2 ∈ M.

Since (i, j) ∈ SN,M,k,l , then i = (h+ 1)N − 1 and j = (h + 1)M − 1 for some h ∈ N . Let h0 = min{h ∈ N :

bi,j ̸= 0} and write

qk,l = bi0,j0z
i0
1 zj02 + q′k,l
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where (i0, j0) = ((h0 + 1)N − 1, (h0 + 1)M − 1), and q′k,l = qk,l − bi0,j0z
i0
1 zj02 . Note that

T
z
h0N
1 z

h0M
2

T ∗
z
(h0+1)N
1 z

(h0+1)M
2

qk,l = q′k,l ∈ M , and it follows that

zi01 zj02 ∈ M.

Since M is the reducing subspace of TzN
1 zM

2
, then zN−1

1 zM−1
2 ∈ M .

Consequently, the reducing subspace developed by zN−1
1 zM−1

2 has the form of (4.6). Thus statement (2)

holds.

From the above proof, we deduce that each reducing subspace M contains a reducing subspace M , which

means that M consists of all the minimal reducing subspaces.

Since each M is a reducing subspace of TzN
1 zM

2
, if M is minimal then M = M .

The proof is complete. 2

Theorem 2.4 in [5] by Shi and Lu showed that on the Bergman space over the bidisk the minimal reducing

subspaces of TzN
1 zM

2
has the form

Mn,m,a,b = span{azn+hN
1 zm+hM

2 + bδn,mz
ρ2(m+hM)
1 z

ρ1(n+hN)
2 }.

Note that since (azn1 z
m
2 + bδn,mz

ρ2(m)
1 z

ρ1(n)
2 )zhN1 zhM2 = azn+hN

1 zm+hM
2 + bδn,mz

ρ2(m+hM)
1 z

ρ1(n+hN)
2 and

D(−1,−1)(D2) is the Bergman space of the bidisk, Theorem 4.4 extends the result of Shi and Lu.
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