Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk

HongZhao LIN*

College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fujian, P. R. China
Received: 29.03.2016 • Accepted/Published Online: 17.04.2017 \quad Final Version: 22.01 .2018

Abstract: The reducing subspaces of Toeplitz operators $T_{z_{1}^{N}}\left(\right.$ or $\left.T_{z_{2}^{N}}\right), T_{z_{1}^{N} z_{2}^{N}}$, and $T_{z_{1}^{N} z_{2}^{M}}$ on Dirichlet type spaces of the bidisk $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ are described, which extends the results for the corresponding operators on the Bergman space of the bidisk.

Key words: Reducing subspace, Toeplitz operator, Dirichlet type spaces, bidisk

1. Introduction

Let \mathbb{D} denote the open unit disk of complex plane \mathbb{C} and \mathbb{R} denote the set of real numbers. $\mathbb{D}^{2}=\left\{\left(z_{1}, z_{2}\right) ; z_{1} \in\right.$ $\left.\mathbb{D}, z_{2} \in \mathbb{D}\right\}$ is called the bidisk. We say that a function $f: \mathbb{D}^{2} \rightarrow \mathbb{C}$ is holomorphic if it is holomorphic in each variable separately. Each holomorphic function f on the bidisk can be represented as

$$
f(z, w)=\sum_{i, j \in \mathbb{N}} a_{i, j} z_{1}^{i} z_{2}^{j}
$$

with $(z, w) \in \mathbb{D}^{2}$ and $a_{i, j} \in \mathbb{C}$. Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}$; the Dirichlet type space of the bidisk $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ consists of all holomorphic functions f on the bidisk satisfying

$$
\|f\|_{\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)}=\sum_{i, j \in \mathbb{N}}\left|a_{i, j}\right|^{2}(1+i)^{\alpha_{1}}(1+j)^{\alpha_{2}}<\infty
$$

$\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ is a Hilbert space with the inner product

$$
\langle f, g\rangle=\sum_{i, j \in \mathbb{N}} a_{i, j} \overline{\bar{b}_{i, j}}(1+i)^{\alpha_{1}}(1+j)^{\alpha_{2}}
$$

where $f=\sum_{i, j \in \mathbb{N}} a_{i, j} z_{1}^{i} z_{2}^{j}$ and $g=\sum_{i, j \in \mathbb{N}} b_{i, j} z_{1}^{i} z_{2}^{j}$. Given $z=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$, each point evaluation $\lambda_{z}^{\alpha}(f)=$ $f(z)$ is a bounded linear functional on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Hence, for each $z \in \mathbb{D}^{2}$, there exists a unique reproducing kernel $K_{z}(w) \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ with $w=\left(w_{1}, w_{2}\right) \in \mathbb{D}^{2}$ such that

$$
f(z)=\left\langle f(w), K_{z}(w)\right\rangle, \forall f \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)
$$

[^0]Actually, it can be calculated that $K_{z}(w)=\sum_{i, j \geq 0} \frac{w_{1}^{i} w_{z}^{j} z_{i}^{i} z_{z}^{j}}{(i+1)^{2}(j+1)^{\alpha_{2}}}$. One can see [1] for more details about Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Throughout this paper, we denote $\gamma_{i, j}^{\alpha}=\left\|z_{1}^{i} z_{2}^{j}\right\|_{\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)}=\sqrt{(i+1)^{\alpha_{1}}(j+1)^{\alpha_{2}}}$. For simplicity, we denote $\left\|z_{1}^{i} z_{2}^{j}\right\|_{\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)}$ by $\left\|z_{1}^{i} z_{2}^{j}\right\|$.

It is easy to see that $\mathcal{D}_{(0,0)}\left(\mathbb{D}^{2}\right)$ is the Hardy space over the bidisk $H^{2}\left(\mathbb{D}^{2}\right)$ and $\mathcal{D}_{(-1,-1)}\left(\mathbb{D}^{2}\right)$ is the Bergman space over the bidisk $B^{2}\left(\mathbb{D}^{2}\right)$. In this paper, we only deal with $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ satisfying $\alpha_{1} \cdot \alpha_{2} \neq 0$.

Given holomorphic function f on the bidisk \mathbb{D}^{2}, if $h f \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ for any $h \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$, we define $T_{f}: \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right) \rightarrow \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ by

$$
T_{f}(h)=f h, \quad \forall h \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right) .
$$

If N, M are integers larger than 1 with $N \neq M$, it is easy to check that $T_{z_{1}^{N}}$ (or $T_{z_{2}^{N}}$) is a bounded linear operator on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Note that

$$
\left\|T_{z_{1}^{N} z_{2}^{N}}\right\|=\left\|T_{z_{1}^{N}} T_{z_{2}^{N}}\right\| \leq\left\|T_{z_{1}^{N}}\right\|\left\|T_{z_{2}^{N}}\right\|, \quad\left\|T_{z_{1}^{N} z_{2}^{M}}\right\|=\left\|T_{z_{1}^{N}} T_{z_{2}^{M}}\right\| \leq\left\|T_{z_{1}^{N}}\right\|\left\|T_{z_{2}^{M}}\right\| ;
$$

both $T_{z_{1}^{N} z_{2}^{N}}$ and $T_{z_{1}^{N} z_{2}^{M}}$ are bounded linear operators on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$.
Suppose that \mathfrak{M} is a closed subspace of Hilbert space \mathcal{H}. Recall that \mathfrak{M} is a reducing subspace of the operator T if $T(\mathfrak{M}) \subseteq \mathfrak{M}$ and $T^{*}(\mathfrak{M}) \subseteq \mathfrak{M}$. A reducing subspace \mathfrak{M} is said to be minimal if there are no nontrivial reducing subspaces of T contained in \mathfrak{M}.

Stessin and Zhu [6] completely characterized the reducing subspaces of weighted unilaterial shift operators of finite multiplicity. As a consequence, they gave the description of the reducing subspaces of $T_{z^{N}}$ on the Bergman space and Dirichlet space of the unit disk. For more general symbols, the reducing subspaces of the Toeplitz operators with finite Blaschke product were well studied (see [2, 3, 8] for example). Recently, Lu et al. extended the result in [6] to Bergman space with several variables. They completely characterized the reducing subspaces of $T_{z_{1}^{N}}$ and $T_{z_{1}^{N} z_{2}^{N}}$ in [4] on the weighted Bergman space of the bidisk and on the weighted Bergman space over polydisk in [7], respectively. Moreover, they [5] solved the problems of $T_{z_{1}^{N} z_{2}^{M}}$ with $N \neq M$ on both settings.

Motivated by the above work, we will investigate the reducing subspaces of Toeplitz operators $T_{z_{1}^{N}}$ (or $\left.T_{z_{2}^{N}}\right), T_{z_{1}^{N} z_{2}^{N}}$, and $T_{z_{1}^{N} z_{2}^{M}}$ on Dirichlet type spaces of the bidisk. The paper is organized as follows. In section 2, we give the description of the reducing subspace of Toeplitz operators $T_{z_{1}^{N}}$ (or $T_{z_{2}^{N}}$). We characterize the reducing subspaces of $T_{z_{1}^{N} z_{2}^{N}}$ in section 3 and the case of $T_{z_{1}^{N} z_{2}^{M}}$ is discussed in section 4.

2. The reducing subspace of $T_{z_{1}^{N}}$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$

In this section, we will characterize the reducing subspace of $T_{z_{1}^{N}}\left(\right.$ or $\left.T_{z_{2}^{N}}\right)$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$.
We observe that each $f\left(z_{1}, z_{2}\right)=\sum_{i, j \in \mathbb{N}} a_{i, j} z_{1}^{i} z_{2}^{j} \in \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ has the decomposition

$$
\begin{equation*}
f=\sum_{i=0}^{\infty} z_{1}^{i} f_{i}\left(z_{2}\right) \tag{2.1}
\end{equation*}
$$

where $f_{i}\left(z_{2}\right)=\sum_{j=0}^{\infty} a_{i, j} z_{2}^{j} \in \mathcal{D}_{\alpha_{2}}(\mathbb{D})$ for each i.

If we denote $\gamma_{i}^{a}=\sqrt{(1+i)^{a}}$ for $i \in \mathbb{N}$ and $a \in \mathbb{R}$, it is easy to get the relationship between $\gamma_{i, j}^{\alpha}$ and $\gamma_{i}^{\alpha_{1}}$ or $\gamma_{j}^{\alpha_{2}}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$. Direct computation shows the following lemma.

Lemma 2.1 Suppose i, j, k are nonnegative integers; then $\frac{\gamma_{i, j}^{\alpha}}{\gamma_{k, j}^{\alpha}}=\frac{\gamma_{i}^{\alpha_{1}}}{\gamma_{k}^{\alpha_{1}}}, \frac{\gamma_{i, j}^{\alpha}}{\gamma_{i, k}^{\alpha}}=\frac{\gamma_{j}^{\alpha_{2}}}{\gamma_{k}^{\alpha_{2}}}$.

Lemma 2.2 Suppose i, n are nonnegative integers; then

$$
\frac{\gamma_{i+h N}^{\alpha_{1}}}{\gamma_{i}^{\alpha_{1}}}=\frac{\gamma_{n+h N}^{\alpha_{1}}}{\gamma_{n}^{\alpha_{1}}}, \quad \forall h \in \mathbb{N}
$$

holds if and only if $i=n$.
Proof We only need to prove the necessity. By the assumption,

$$
\frac{\gamma_{i+h N}^{\alpha_{1}}}{\gamma_{n+h N}^{\alpha_{1}}}=\frac{\gamma_{i}^{\alpha_{1}}}{\gamma_{n}^{\alpha_{1}}}, \quad \forall h \in \mathbb{N}
$$

Taking $h \rightarrow \infty$ in the above equation,

$$
\lim _{h \rightarrow \infty} \frac{\gamma_{i+h N}^{\alpha_{1}}}{\gamma_{n+h N}^{\alpha_{1}}}=1
$$

which implies that

$$
\frac{\gamma_{i+h N}^{\alpha_{1}}}{\gamma_{n+h N}^{\alpha_{1}}}=1, \quad \forall h \in \mathbb{N}
$$

By the definition of $\gamma_{i}^{\alpha_{1}}$, it is equivalent to

$$
\begin{equation*}
(i+h N+1)^{\alpha_{1}}=(n+h N+1)^{\alpha_{1}}, \quad \forall h \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

Since $\alpha_{1} \neq 0$, then $i=n$.

Lemma 2.3 Suppose \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Then the following statements hold:
(1) If $f=\sum_{n \geq 0} z_{1}^{n} f_{n}\left(z_{2}\right) \in \mathfrak{M}$ with $f_{n}\left(z_{2}\right) \neq 0$, then $z_{1}^{n} f_{n}\left(z_{2}\right) \in \mathfrak{M}$;
(2) If $g=\sum_{n \geq 0} z_{2}^{n} g_{n}\left(z_{1}\right) \in \mathfrak{M}^{\perp}$ with $g_{n}\left(z_{1}\right) \neq 0$, then $z_{2}^{n} g_{n}\left(z_{1}\right) \in \mathfrak{M}^{\perp}$.

Proof First assume $f=z_{1}^{p} f_{p}\left(z_{2}\right)$. Let $z_{1}^{p} f_{p}\left(z_{2}\right)=u\left(z_{1}, z_{2}\right)+v\left(z_{1}, z_{2}\right)$ be the orthogonal decomposition on \mathfrak{M}, where $u\left(z_{1}, z_{2}\right)=\sum_{k=0}^{\infty} z_{1}^{k} u_{k}\left(z_{2}\right) \in \mathfrak{M}$ and $v\left(z_{1}, z_{2}\right) \in \mathfrak{M}^{\perp}$.

For nonnegative integer h, note that $T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}} z_{1}^{k} z_{2}^{j}=\frac{\left(\gamma_{k+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k}^{\alpha}\right)^{2}} z_{1}^{k} z_{2}^{j}$. By Lemma 2.1, we calculate

$$
\begin{aligned}
T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}} P_{\mathfrak{M}}\left(z_{1}^{p} f_{p}\left(z_{2}\right)\right) & =T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}} P_{\mathfrak{M}}(u+v) \\
& =T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}} u \\
& =T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}} \sum_{k=0}^{\infty} z_{1}^{k} u_{k}\left(z_{2}\right) \\
& =\sum_{k=0}^{\infty} \frac{\left(\gamma_{k+h N}^{\alpha_{1}}\right)^{2}}{\left(\gamma_{k}^{\alpha_{1}}\right)^{2}} z_{1}^{k} u_{k}\left(z_{2}\right) .
\end{aligned}
$$

On the other hand, direct computation shows that

$$
\begin{aligned}
P_{\mathfrak{M}} T_{z_{1}^{h N}}^{*} T_{z_{1}^{h N}}\left(z_{1}^{p} f_{p}\left(z_{2}\right)\right) & =P_{\mathfrak{M}}\left(\frac{\left(\gamma_{p+h N}^{\alpha_{1}}\right)^{2}}{\left(\gamma_{p}^{\alpha_{1}}\right)^{2}} z_{1}^{p} f_{p}\left(z_{2}\right)\right) \\
& =\frac{\left(\gamma_{p+h N}^{\alpha_{1}}\right)^{2}}{\left(\gamma_{p}^{\alpha_{1}}\right)^{2}} u \\
& =\sum_{k=0}^{\infty} \frac{\left(\gamma_{p+h N}^{\alpha_{1}}\right)^{2}}{\left(\gamma_{p}^{\alpha_{1}}\right)^{2}} z_{1}^{k} u_{k}\left(z_{2}\right)
\end{aligned}
$$

Since $T_{z_{1}^{h N}}$ and $T_{z_{1}^{h N}}^{*}$ commute with $P_{\mathfrak{M}}$, it follows that, if $u_{k}\left(z_{2}\right) \neq 0$, then for each positive integer h

$$
\frac{\gamma_{k+h N}^{\alpha_{1}}}{\gamma_{k}^{\alpha_{1}}}=\frac{\gamma_{p+h N}^{\alpha_{1}}}{\gamma_{p}^{\alpha_{1}}}
$$

which is equivalent to

$$
\frac{\gamma_{k+h N}^{2}}{\gamma_{p+h N}^{2}}=\frac{\gamma_{k}^{2}}{\gamma_{p}^{2}}
$$

Since $\alpha_{1} \neq 0$, Lemma 2.2 implies that

$$
k=p
$$

Therefore, $P_{\mathfrak{M}}\left(z_{1}^{p} f_{p}\left(z_{2}\right)\right)=u=z_{1}^{p} u_{p}\left(z_{2}\right) \in \mathfrak{M}$.
Now assume $f=\sum_{n \geq 0} z_{1}^{n} f_{n}\left(z_{2}\right) \in \mathfrak{M}$ and $P_{\mathfrak{M}} z_{1}^{n} f_{n}\left(z_{2}\right)=z_{1}^{n} u_{n}\left(z_{2}\right)$. By the above discussion,

$$
P_{\mathfrak{M}} f=P_{\mathfrak{M}} \sum_{n \geq 0} z_{1}^{n} f_{n}\left(z_{2}\right)=\sum_{n \geq 0} z_{1}^{n} u_{n}\left(z_{2}\right)
$$

Note that $P_{\mathfrak{M}} f=f$. Comparing the expressions, it follows that

$$
f_{n}\left(z_{2}\right)=u_{n}\left(z_{2}\right)
$$

That is

$$
P_{\mathfrak{M}} z_{1}^{n} f_{n}\left(z_{2}\right)=z_{1}^{n} f_{n}\left(z_{2}\right),
$$

which means that $z_{1}^{n} f_{n}\left(z_{2}\right) \in \mathfrak{M}$. Thus statement (1) is obtained.
Note that if \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N}}$, so is \mathfrak{M}^{\perp}. By the symmetry, statement (2) is desired.
Let $\mathcal{M}_{n_{1}}^{(1)}=\overline{\operatorname{span}}\left\{z_{1}^{n_{1}+h N}: h \in \mathbb{N}\right\}$. The next theorem characterizes the reducing subspaces of $T_{z_{1}^{N}}$ on Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$.

Theorem 2.4 Suppose n_{1} is an integer with $0 \leq n_{1} \leq N-1$. The reducing subspaces

$$
f\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)}=\overline{\operatorname{span}}\left\{f\left(z_{2}\right) z_{1}^{n_{1}+h N}: h \in \mathbb{N}\right\}, \quad \text { where } f\left(z_{2}\right) \in \mathcal{D}_{\alpha}(\mathbb{D})
$$

are the only minimal reducing subspaces of $T_{z_{1}^{N}}$ on Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Each reducing subspace \mathfrak{M} contains some minimal reducing subspace as above.

Proof For each $h \in \mathbb{N}$, we calculate

$$
T_{z_{1}^{N}} f\left(z_{2}\right) z_{1}^{n_{1}+h N}=f\left(z_{2}\right) z_{1}^{n_{1}+(h+1) N} \in f\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)}
$$

and

$$
T_{z_{1}^{N}}^{*} f\left(z_{2}\right) z_{1}^{n_{1}+h N}=\left\{\begin{array}{ll}
\frac{\left(\gamma_{n_{1}}^{\alpha_{1}}+h N\right)^{2}}{\left(\gamma_{n_{1}}^{n_{1}+(h-1) N}\right)^{2}} f\left(z_{2}\right) z_{1}^{n_{1}+(h-1) N} \in f\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)}, & h \geq 1 \\
0, & h=0
\end{array},\right.
$$

which means $f\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)}$ is the reducing subspace of $T_{z_{1}^{N}}$. Next we will show that such type of reducing subspace is minimal.

If $\mathfrak{M} \subseteq \mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ is the reducing subspace of $T_{z_{1}^{N}}$, since \mathfrak{M} is nonempty, there is nonzero $f=$ $\sum_{n \geq 0} z_{1}^{n} f_{n}\left(z_{2}\right) \in \mathfrak{M}$. By Lemma 2.3, there exists some $n_{0} \in \mathbb{N}$ such that $z_{1}^{n_{0}} f_{n_{0}}\left(z_{2}\right) \in \mathfrak{M}$ and $f_{n_{0}}\left(z_{2}\right) \neq 0$. Let $n_{1}=n_{0} \bmod N$; then $f_{n_{0}}\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)} \subseteq \mathfrak{M}$ is the minimal reducing subspace.

Furthermore, if \mathfrak{M} is minimal, then $f_{n_{0}}\left(z_{2}\right) \mathcal{M}_{n_{1}}^{(1)}=\mathfrak{M}$. The result is desired.
Theorem 2.5 Suppose n_{2} is an integer with $0 \leq n_{2} \leq N-1$. The reducing subspaces

$$
g\left(z_{1}\right) \mathcal{M}_{n_{2}}^{(2)}=\overline{\operatorname{span}}\left\{g\left(z_{1}\right) z_{2}^{n_{2}+k N}\right\}, \text { where } g\left(z_{1}\right) \in \mathcal{D}_{\alpha}(\mathbb{D})
$$

are the only minimal reducing subspaces of $T_{z_{2}^{N}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Each reducing subspace \mathfrak{M} contains some minimal reducing subspace as above.

Proof The result is immediately followed by Theorem 2.4.

Theorem 2.6 Suppose N_{1}, N_{2} are positive integers larger than 1 and \mathfrak{M} is a closed subspace of $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. If \mathfrak{M} is the reducing subspaces of both $T_{z_{1}^{N_{1}}}$ and $T_{z_{2} N_{2}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$, then there exist $\mathcal{M}_{n_{1}}^{(1)}$ and $\mathcal{M}_{n_{2}}^{(2)}$ such that

$$
\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)}:=\overline{\operatorname{span}}\left\{z_{1}^{n_{1}+h N_{1}} z_{2}^{n_{2}+k N_{2}}: h, k \in \mathbb{N}\right\} \subseteq \mathfrak{M}
$$

where n_{1} and n_{2} are integers with $0 \leq n_{1} \leq N_{1}-1,0 \leq n_{2} \leq N_{2}-1$. In particular, \mathfrak{M} is the minimal reducing subspace if and only if $\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)}=\mathfrak{M}$. There are totally $N_{1} N_{2}$ such minimal reducing subspaces on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$.
Proof Since \mathfrak{M} is the reducing subspaces of $T_{z_{1}^{N_{1}}}$, then by Theorem 2.4 there exists

$$
f\left(z_{2}\right) z_{1}^{n_{1}} \in \mathfrak{M},
$$

where nonzero function $f\left(z_{2}\right)=\sum_{i=1}^{\infty} a_{i} z_{2}^{i} \in \mathcal{D}_{\alpha}(\mathbb{D})$ and $n_{1} \in \mathbb{N}$ with $0 \leq n_{1} \leq N_{1}-1$. Note that $f\left(z_{2}\right) z_{1}^{n_{1}}=\left(\sum_{i=1}^{\infty} a_{i} z_{2}^{i}\right) z_{1}^{n_{1}}=\sum_{i=1}^{\infty} z_{2}^{i} a_{i} z_{1}^{n_{1}} \in \mathfrak{M}$. Since \mathfrak{M} is also the reducing subspaces of $T_{z_{2}^{N_{2}}}$, by Lemma 2.3, there exist $i_{0} \in \mathbb{N}$ such that $z_{2}^{i_{0}} z_{1}^{n_{1}} \in \mathfrak{M}$. Let $n_{2}=i_{0} \bmod N_{2}$, and it follows that

$$
\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)} \subseteq \mathfrak{M}
$$

is the reducing subspace of both $T_{z_{1}^{N_{1}}}$ and $T_{z_{2}^{N_{2}}}$.

If reducing subspace \mathfrak{M} is minimal, it certainly follows that $\mathfrak{M}=\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)}$.
Examining the proof above, it is easy to see that all the minimal reducing subspaces of both $T_{z_{1}^{N_{1}}}$ and $T_{z_{2}^{N_{2}}}$ can be expressed as $\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)}$. The total number of the minimal reducing subspaces is $N_{1} N_{2}$ since there are N_{1} different spaces $\mathcal{M}_{n_{1}}^{(1)}$ and N_{2} different spaces $\mathcal{M}_{n_{2}}^{(2)}$. This completes the proof.

Corollary 2.7 Suppose N is a positive integer larger than 1 and \mathfrak{M} is a closed subspace of $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. If \mathfrak{M} is the reducing subspaces of both $T_{z_{1}^{N}}$ and $T_{z_{2}^{N}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$, then there exist $\mathcal{M}_{n_{1}}^{(1)}$ and $\mathcal{M}_{n_{2}}^{(2)}$ such that

$$
\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)} \subseteq \mathfrak{M}
$$

where n_{1} and n_{2} are integers with $0 \leq n_{1} \leq N-1,0 \leq n_{2} \leq N-1$. In particular, \mathfrak{M} is the minimal reducing subspace if and only if $\mathcal{M}_{n_{1}}^{(1)} \otimes \mathcal{M}_{n_{2}}^{(2)}=\mathfrak{M}$. There are totally N^{2} such minimal reducing subspaces on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$.
Proof It follows from Theorem 2.6.
Zhou and Lu [4] describe all the reducing subspaces of $T_{z_{1}^{N}}$ (or $T_{z_{2}^{N}}$) on the Bergman space of the bidisk. Observe that $\mathcal{D}_{(-1,-1)}\left(\mathbb{D}^{2}\right)$ is the common Bergman space of the bidisk, and we extend the result in [4]. Comparing with the results in [4], Theorem 2.4 and Theorem 2.5 imply that $T_{z_{1}^{N}}$ (or $T_{z_{2}^{N}}$) shares the same structure of reducing subspaces on each Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. In other words, if $\alpha \neq 0$, the structure of reducing subspaces of $T_{z_{1}^{N}}\left(\right.$ or $\left.T_{z_{2}^{N}}\right)$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ is independent of the weight α whenever $\alpha_{1} \alpha_{2} \neq 0$.

3. The reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$

In this section, we will study reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. It shows that the structure of reducing subspaces of $T_{z_{1}^{N} z_{2}^{N}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ is dependent on α.

Firstly we make further study of $\gamma_{i, j}^{\alpha}$.

Lemma 3.1 Suppose k, m, i, j, N are nonnegative integers and $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}$. If

$$
\frac{\left(\gamma_{i+h N, j+h N}^{\alpha}\right)^{2}}{\left(\gamma_{i, j}^{\alpha}\right)^{2}}=\frac{\left(\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m, m}^{\alpha}\right)^{2}}, \quad \forall h \in \mathbb{N}
$$

then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then $(i, j)=(k+m, m)$ or $(i, j)=(m, k+m)$.
(2) If $\alpha_{1}=-\alpha_{2}$, then $(i, j)=(k+m, m)$ or $\frac{m}{k+m}=\frac{j}{i}=1$.
(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then $(i, j)=(k+m, m)$.

Proof By the assumption,

$$
\frac{\left(\gamma_{i+h N, j+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}=\frac{\left(\gamma_{i, j}^{\alpha}\right)^{2}}{\left(\gamma_{k+m, m}^{\alpha}\right)^{2}}, \quad \forall h \in \mathbb{N}
$$

Taking $h \rightarrow \infty$ in the above equation, it follows that for any positive integer h

$$
\frac{\left(\gamma_{i+h N, j+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}=1
$$

By definition of $\gamma_{i, j}^{\alpha}$, it turns into

$$
\begin{equation*}
(i+h N+1)^{\alpha_{1}}(j+h N+1)^{\alpha_{2}}=(k+m+h N+1)^{\alpha_{1}}(m+h N+1)^{\alpha_{2}} . \tag{3.1}
\end{equation*}
$$

If $\alpha_{1}=\alpha_{2} \neq 0$, the above equation is equivalent to

$$
(i+h N+1)(j+h N+1)=(k+m+h N+1)(m+h N+1)
$$

which implies statement (1).
If $\alpha_{1}=-\alpha_{2} \neq 0,(3.1)$ is equivalent to

$$
(i+h N+1)(m+h N+1)=(k+m+h N+1)(j+h N+1)
$$

which implies statement (2).
Now suppose $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$. Without loss of generality, we may assume $\alpha_{1}>0$ and $\alpha_{2}>0$. If $\lambda=h N$, (3.1) is equivalent to

$$
(i+\lambda+1)^{\alpha_{1}}(j+\lambda+1)^{\alpha_{2}}=(k+m+\lambda+1)^{\alpha_{1}}(m+\lambda+1)^{\alpha_{2}}, \quad \forall \lambda \in \mathbb{C}
$$

Note that $\alpha_{1} \neq \alpha_{2}$; by comparing the multiplicity of zeros on both sides of the equation, statement (3) follows.
Next we describe the projection of monomial on reducing subspace \mathfrak{M}.

Theorem 3.2 Suppose that \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$ on Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ and $P_{\mathfrak{M}}$ is the projection onto \mathfrak{M}. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then

$$
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m}, \quad\left(a-|a|^{2}\right)\left\|z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right\|^{2}=|b|^{2}\left\|z_{2}^{k}\left(z_{1} z_{2}\right)^{m}\right\|^{2} .
$$

(2) If $\alpha_{1}=-\alpha_{2}$, then

$$
\begin{gathered}
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=a z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, \quad a=|a|^{2}, \quad \text { for } k>0 \\
P_{\mathfrak{M}}\left(\left(z_{1} z_{2}\right)^{m}\right)=\sum_{i=0}^{\infty} a_{i}\left(z_{1} z_{2}\right)^{i}, \quad a_{m}=\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}, \quad \text { for } k=0
\end{gathered}
$$

(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then

$$
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=a z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, \quad a=|a|^{2}
$$

Proof Let $z_{1}^{k}\left(z_{1} z_{2}\right)^{m}=f\left(z_{1}, z_{2}\right)+g\left(z_{1}, z_{2}\right)$ be the orthogonal decomposition on \mathfrak{M}, where $f\left(z_{1}, z_{2}\right)=$ $\sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$ and $g\left(z_{1}, z_{2}\right)=\sum_{i, j=0}^{\infty} g_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}^{\perp}$.

For nonnegative integer h, we calculate

$$
\begin{aligned}
T_{z_{1}^{h N} z_{2}^{h N}}^{*} T_{z_{1}^{h N} z_{2}^{h N}} P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right) & =T_{z_{1}^{h N} z_{2}^{h N}}^{*} T_{z_{1}^{h N} z_{2}^{h N}} P_{\mathfrak{M}}(f+g) \\
& =T_{z_{1}^{h N} z_{2}^{h N}}^{*} T_{z_{1}^{h N} z_{2}^{h N}} f \\
& =T_{z_{1}^{h N} z_{2}^{h N}}^{*} \sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i+h N} z_{2}^{j+h N} \\
& =\sum_{i, j=0}^{\infty} f_{i, j} \frac{\left(\gamma_{i+h N, j+h N}^{\alpha}\right)^{2}}{\left(\gamma_{i, j}^{\alpha}\right)^{2}} z_{1}^{i} z_{2}^{j}
\end{aligned}
$$

On the other hand, a direct computation shows that

$$
\begin{aligned}
P_{\mathfrak{M}} T_{z_{1}^{h N} z_{2}^{h N}}^{*} T_{z_{1}^{h N} z_{2}^{h N}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right) & =P_{\mathfrak{M}} T_{z_{1}^{h N} z_{2}^{h N}}^{*}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m+h N}\right) \\
& =P_{\mathfrak{M}}\left(\left(\frac{\left.\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m, m}^{\alpha}\right)^{2}} z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)\right. \\
& =\sum_{i, j=0}^{\infty} f_{i, j} \frac{\left(\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m, m}^{\alpha}\right)^{2}} z_{1}^{i} z_{2}^{j}
\end{aligned}
$$

Since $T_{z_{1}^{h N} z_{2}^{h N}}$ and $T_{z_{1}^{h N} z_{2}^{h N}}^{*}$ commute with $P_{\mathfrak{M}}$, if $f_{i, j} \neq 0$, it follows that

$$
\frac{\left(\gamma_{i+h N, j+h N}^{\alpha}\right)^{2}}{\left(\gamma_{i, j}^{\alpha}\right)^{2}}=\frac{\left(\gamma_{k+m+h N, m+h N}^{\alpha}\right)^{2}}{\left(\gamma_{k+m, m}^{\alpha}\right)^{2}}, \quad \forall h \in \mathbb{N}
$$

If $\alpha_{1}=\alpha_{2}$, by Lemma 3.1, $(i, j)=(m+k, m)$ or $(i, j)=(m, m+k)$, which implies that

$$
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m}, \quad \text { for constants } a, b
$$

Since $\left\langle z_{1}^{k}\left(z_{1} z_{2}\right)^{m}-P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right), P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)\right\rangle=0$, it follows that

$$
\begin{equation*}
\left\langle z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)\right\rangle=\left\|P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)\right\|^{2} \tag{3.2}
\end{equation*}
$$

A direct computation shows that $a\left\|z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right\|^{2}=|a|^{2}\left\|z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right\|^{2}+|b|^{2}\left\|z_{2}^{k}\left(z_{1} z_{2}\right)^{m}\right\|^{2}$. Thus statement (1) holds.

If $\alpha_{1}=-\alpha_{2}$, by Lemma 3.1, $(i, j)=(m+k, m)$ or $\frac{m}{k+m}=\frac{j}{i}=1$, which implies that for $k>0$

$$
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=a z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, \quad \text { for constant } a
$$

and for $k=0$

$$
P_{\mathfrak{M}}\left(\left(z_{1} z_{2}\right)^{m}\right)=\sum_{i=0}^{\infty} a_{i}\left(z_{1} z_{2}\right)^{i}, \quad \text { for constants } a_{i} .
$$

Observe that (3.2) holds for any α, and statement (2) follows from the direct computation with (3.2).
If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, by Lemma $3.1,(i, j)=(m+k, m)$, which together with (3.2) implies statement (3) holds.

Lemma 3.3 Let Λ be an index set and let \mathcal{H} be a Hilbert space. Suppose that \mathcal{H} is the direct sum of its closed subspace $X_{i}(i \in \Lambda)$, that is $\mathcal{H}=\bigoplus_{i \in \Lambda} X_{i}, \mathfrak{M}$ is a reducing subspace of bounded linear operator T on \mathcal{H} and $P_{\mathfrak{M}} X_{i} \subseteq X_{i}$. If $f=\sum_{i \in \Lambda} f_{i} \in \mathfrak{M}$ with $f_{i} \in X_{i}$, then $f_{i} \in \mathfrak{M}$ for each $i \in \Lambda$.
Proof Note that

$$
\sum_{i \in \Lambda} f_{i}=f=P_{\mathfrak{M}} f=\sum_{i \in \Lambda} P_{\mathfrak{M}} f_{i}
$$

The result follows from $f_{i}=P_{\mathfrak{M}} f_{i}$ since $f_{i} \in X_{i}$ and $P_{\mathfrak{M}} f_{i} \in X_{i}$.

Theorem 3.4 Suppose that \mathfrak{M} is a nontrivial reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$ in $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ and $f=\sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i} z_{2}^{j} \in$ \mathfrak{M}. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then $f_{i, i} z_{1}^{i} z_{2}^{i} \in \mathfrak{M}$ and $f_{i, j} z_{1}^{i} z_{2}^{j}+f_{j, i} z_{1}^{j} z_{2}^{i} \in \mathfrak{M}$ with $i \neq j$.
(2) If $\alpha_{1}=-\alpha_{2}$, then $\sum_{i=0}^{\infty} f_{i, i} z_{1}^{i} z_{2}^{i} \in \mathfrak{M}$ and $f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$ with $i \neq j$.
(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then $z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$.

Proof If $\alpha_{1}=\alpha_{2}$, rewrite $f=\sum_{i \geq 0} f_{i, i} z_{1}^{i} z_{2}^{i}+\sum_{i>j} f_{i, j} z_{1}^{i} z_{2}^{j}+f_{j, i} z_{1}^{j} z_{2}^{i}$. Theorem 3.2 implies that

$$
P_{\mathfrak{M}} z_{1}^{i} z_{2}^{i} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{i}\right\} \text { and } P_{\mathfrak{M}} \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{j}, z_{1}^{j} z_{2}^{i}\right\} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{j}, z_{1}^{j} z_{2}^{i}\right\}
$$

By Lemma 3.3, it follows that

$$
f_{i, i} z_{1}^{i} z_{2}^{i} \in \mathfrak{M} \text { and } f_{i, j} z_{1}^{i} z_{2}^{j}+f_{j, i} z_{1}^{j} z_{2}^{i} \in \mathfrak{M} .
$$

Thus statement (1) holds.
If $\alpha_{1}=-\alpha_{2}$, rewrite $f=\sum_{i \geq 0} f_{i, i} z_{1}^{i} z_{2}^{i}+\sum_{i \neq j} f_{i, j} z_{1}^{i} z_{2}^{j}$. Theorem 3.2 implies that

$$
P_{\mathfrak{M}} \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{i} ; i \in \mathbb{N}\right\} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{i} ; i \in \mathbb{N}\right\} \text { and } P_{\mathfrak{M}} z_{1}^{i} z_{2}^{j} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{j}\right\}
$$

By Lemma 3.3, it follows that

$$
\sum_{i \geq 0} f_{i, i} z_{1}^{i} z_{2}^{i} \in \mathfrak{M} \text { and } f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}
$$

Thus statement (2) holds.
If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, Theorem 3.2 implies that $P_{\mathfrak{M}}\left(z_{1}^{i} z_{2}^{j}\right) \subseteq \overline{\operatorname{span}}\left\{z_{1}^{i} z_{2}^{j}\right\}$. Statement (3) is also achieved from Lemma 3.3 .

Theorem 3.5 Suppose that M is the minimal reducing subspaces of $T_{z_{1}^{N} z_{2}^{N}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then

$$
M=\overline{\operatorname{span}}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}, \quad a, b \in \mathbb{C}, m, k \in \mathbb{N}, 0 \leq m \leq N-1
$$

(2) If $\alpha_{1}=-\alpha_{2}$, then

$$
\begin{aligned}
& M=\overline{\operatorname{span}}\left\{\left(\sum_{i=1}^{\infty} a_{i} z_{1}^{i} z_{2}^{i}\right)\left(z_{1}^{l N} z_{2}^{l N}\right): l \in \mathbb{N}\right\}, \quad a_{i} \in \mathbb{C}, m \in \mathbb{N} \\
\text { or } & M=\overline{\operatorname{span}}\left\{a z_{1}^{k}\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}, \quad a \in \mathbb{C}, m, k \in \mathbb{N}, 0 \leq m \leq N-1, \\
\text { or } & M=\overline{\operatorname{span}}\left\{b z_{2}^{k}\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}, \quad b \in \mathbb{C}, m, k \in \mathbb{N}, 0 \leq m \leq N-1 .
\end{aligned}
$$

(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then

$$
\begin{aligned}
& M=\overline{\operatorname{span}}\left\{a z_{1}^{k}\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}, \quad a \in \mathbb{C}, m, k \in \mathbb{N}, 0 \leq m \leq N-1, \\
\text { or } \quad & M=\overline{\operatorname{span}}\left\{b z_{2}^{k}\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}, \quad b \in \mathbb{C}, m, k \in \mathbb{N}, 0 \leq m \leq N-1 .
\end{aligned}
$$

Proof Suppose that \mathfrak{M} is a nontrivial reducing subspace. Then there exists nonzero function $f=\sum_{i, j \geq 0} f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$.

For $\alpha_{1}=\alpha_{2}$. We consider the following two cases. If $f_{i, i} \neq 0$ for some i, by Theorem 3.4, $z_{1}^{i} z_{2}^{i} \in \mathfrak{M}$. Note that if \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$, then $T_{z_{1}^{l N} z_{2}^{l N}} \mathfrak{M} \subseteq \mathfrak{M}$ and $T_{z_{1}^{l N} z_{2}^{l N}}^{*} \mathfrak{M} \subseteq \mathfrak{M}$. Let $a+b=1, k=0, m=i$ $\bmod N$; then $M \subseteq \mathfrak{M}$ is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$.

If $f_{i, j} \neq 0$ for some multi-index (i, j) with $i>j$, by Theorem 3.4, $f_{i, j} z_{1}^{i} z_{2}^{j}+f_{j, i} z_{1}^{j} z_{2}^{i} \in \mathfrak{M}$. Let $a=f_{i, j}, b=f_{j, i}, k=i-j$ and $m=j \bmod N$; then $M \subseteq \mathfrak{M}$ is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$.

For $\alpha_{1}=-\alpha_{2}$. If $\sum_{i=1}^{\infty} f_{i, i} z_{1}^{i} z_{2}^{i} \neq 0$, by Theorem 3.4, $\sum_{i=1}^{\infty} f_{i, i} z_{1}^{i} z_{2}^{i} \in \mathfrak{M}$. Therefore, $M=$ $\overline{\operatorname{span}}\left\{\left(\sum_{i=1}^{\infty} f_{i, i} z_{1}^{i} z_{2}^{i}\right)\left(z_{1}^{l N} z_{2}^{l N}\right): h \in \mathbb{N}\right\} \subseteq \mathfrak{M}$ is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$.

If $f_{i, j} \neq 0$ for some multi-index (i, j) with $i \neq j$, without loss of generality we assume $i>j$. By Theorem 3.4, $z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$. Let $a=f_{i, j}, k=i-j$ and $m=j \bmod N$; then $M=\overline{\operatorname{span}}\left\{a z_{1}^{k}\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): h \in \mathbb{N}\right\} \subseteq \mathfrak{M}$ is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$.

A similar discussion implies the case of $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$.
From the above proof, we deduce that each reducing subspace \mathfrak{M} contains a reducing subspace M, which means that M consists of all the minimal reducing subspaces.

Therefore, if \mathfrak{M} is a minimal reducing subspace then $\mathfrak{M}=M$.
This complete the proof.
Theorem 2.5 in [4] showed that if \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N} z_{2}^{N}}$ on the Bergman space over the bidisk, then there exist nonnegative integers a, b, k, m with $0 \leq m \leq N-1$ and $a, b \in \mathbb{C}$ (Carefully examining the original proof, we find that it should be $a, b \in \mathbb{C}$ instead of $b \in\{0,1\}$ in [4] Theorem 2.5.) such that

$$
\begin{equation*}
\overline{\operatorname{span}}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\} \subseteq \mathfrak{M} . \tag{3.3}
\end{equation*}
$$

In particular, \mathfrak{M} is minimal if and only if $\mathfrak{M}=\operatorname{span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1}^{m+l N} z_{2}^{m+l N}\right): l \in \mathbb{N}\right\}$. Note that since $\mathcal{D}_{(-1,-1)}\left(\mathbb{D}^{2}\right)$ is the bidisk Bergman space, Theorem 3.5 extends the result of Theorem 2.5 in [4] to more general spaces.

LIN/Turk J Math

4. The reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$

In this section, we will study reducing subspaces of $T_{z_{1}^{N} z_{2}^{M}}$ on Dirichlet type spaces $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ with $\alpha \neq 0$. The result shows that the structure of reducing subspaces of $T_{z_{1}^{N} z_{2}^{M}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ is dependent on α. Here we define $\rho_{1}(n)=\frac{M(n+1)}{N}-1$ and $\rho_{2}(m)=\frac{N(m+1)}{M}-1$.

Lemma 4.1 Suppose n, m, i, j, N are nonnegative integers. If

$$
\frac{\gamma_{i+h N, j+h M}^{\alpha}}{\gamma_{i, j}^{\alpha}}=\frac{\gamma_{n+h N, m+h M}^{\alpha}}{\gamma_{n, m}^{\alpha}}, \quad \forall h \in \mathbb{N}
$$

holds, then the following statements hold.
(1) If $\alpha_{1}=\alpha_{2}$, then $(i, j)=(n, m)$ or $(i, j)=\left(\rho_{2}(m), \rho_{1}(n)\right)$ if $\rho_{2}(m), \rho_{1}(n) \in \mathbb{N}$.
(2) If $\alpha_{1}=-\alpha_{2}$, then $(i, j)=(n, m)$ or $\frac{i+1}{j+1}=\frac{n+1}{m+1}=\frac{N}{M}$.
(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then $(i, j)=(n, m)$.

Proof By the assumption,

$$
\frac{\gamma_{i+h N, j+h M}^{\alpha}}{\gamma_{n+h N, m+h M}^{\alpha}}=\frac{\gamma_{i, j}^{\alpha}}{\gamma_{n, m}^{\alpha}}, \quad \forall h \in \mathbb{N}
$$

Taking $h \rightarrow \infty$ in the above equation, it follows that for any $h \in \mathbb{N}$

$$
\frac{\gamma_{i+h N, j+h M}^{\alpha}}{\gamma_{n+h N, m+h M}^{\alpha}}=1
$$

By the definition of $\gamma_{i, j}^{\alpha}$, it converts to

$$
\begin{equation*}
(i+h N+1)^{\alpha_{1}}(j+h M+1)^{\alpha_{2}}=(n+h N+1)^{\alpha_{1}}(m+h M+1)^{\alpha_{2}} \tag{4.1}
\end{equation*}
$$

If $\alpha_{1}=\alpha_{2}$, then (4.1) is equivalent to

$$
(i+h N+1)(j+h M+1)=(n+h N+1)(m+h M+1)
$$

It is easy to see

$$
\frac{i+1}{N}=\frac{n+1}{N}, \frac{j+1}{M}=\frac{m+1}{M}
$$

or

$$
\frac{i+1}{N}=\frac{m+1}{M}, \frac{j+1}{M}=\frac{n+1}{N}
$$

which implies statement (1).
If $\alpha_{1}=-\alpha_{2}$, then (4.1) is equivalent to

$$
(i+h N+1)(m+h M+1)=(n+h N+1)(j+h M+1)
$$

It is easy to see

$$
\frac{i+1}{N}=\frac{n+1}{N}, \quad \frac{m+1}{M}=\frac{j+1}{M}
$$

or

$$
\frac{i+1}{N}=\frac{j+1}{M}, \quad \frac{m+1}{M}=\frac{n+1}{N}
$$

which implies statement (2).
If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$. Firstly, we consider the case of $\alpha_{1} \cdot \alpha_{2}>0$. Without loss of generality, we assume $\alpha_{1}>0$ and $\alpha_{2}>0$. Observe that the left of (4.1) has zeros $-\frac{i+1}{N},-\frac{j+1}{M}$ with order α_{1}, α_{2}, respectively, while the right of (4.1) has zeros $-\frac{n+1}{N},-\frac{m+1}{M}$ with order α_{1}, α_{2}, respectively. For $-\frac{i+1}{N} \neq-\frac{j+1}{M}$, note that $\alpha_{1} \neq \alpha_{2}$, and it follows that

$$
-\frac{i+1}{N}=-\frac{n+1}{N}, \quad-\frac{j+1}{M}=-\frac{m+1}{M} .
$$

Thus statement (3) holds.
For $-\frac{i+1}{N}=-\frac{j+1}{M}$, it follows that

$$
-\frac{i+1}{N}=-\frac{n+1}{N}=-\frac{j+1}{M}=-\frac{m+1}{M}
$$

which also implies statement (3).
Secondly, as to the case of $\alpha_{1} \cdot \alpha_{2}<0$, without loss of generality, we assume $\alpha_{1}>0$ and $\alpha_{2}<0$. Therefore, (4.1) turns into

$$
(i+h N+1)^{\alpha_{1}}(m+h M+1)^{-\alpha_{2}}=(n+h N+1)^{\alpha_{1}}(j+h M+1)^{-\alpha_{2}}
$$

A similar discussion shows that $i=n$ and $m=j$. This complete the proof.
Next we describe the projection of monomial on reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$.
Theorem 4.2 Suppose that \mathfrak{M} is a reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$ on Dirichlet type space $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ and $P_{\mathfrak{M}}$ is the projection onto \mathfrak{M}. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then

$$
P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=a z_{1}^{n} z_{2}^{m}+b \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}
$$

where $a=|a|^{2}+\left|b \delta_{n, m}\right|^{2}$ and $\delta_{n, m}=\left\{\begin{array}{ll}1 & , \quad \text { if } \rho_{2}(m), \rho_{1}(n) \in \mathbb{N} \\ 0 & , \quad \text { if others }\end{array}\right.$.
(2) If $\alpha_{1}=-\alpha_{2}$, let $S_{N, M, n, m}=\left\{(i, j) ; \frac{i+1}{j+1}=\frac{n+1}{m+1}=\frac{N}{M}, i \in \mathbb{N}, j \in \mathbb{N}\right\}, S_{N, M, n, m}^{\prime}=S_{N, M, n, m}-(n, m)$, then

$$
P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=a z_{1}^{n} z_{2}^{m}+\sum_{(i, j) \in S_{N, M, n, m}^{\prime}} a_{i, j} z_{1}^{i} z_{2}^{j}, \quad a=|a|^{2}+\sum_{(i, j) \in S_{N, M, n, m}^{\prime}}\left|a_{i, j}\right|^{2} .
$$

(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then

$$
P_{\mathfrak{M}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=a z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, \quad a=|a|^{2}
$$

Proof

Let $z_{1}^{n} z_{2}^{m}=f\left(z_{1}, z_{2}\right)+g\left(z_{1}, z_{2}\right)$ be the orthogonal decomposition on \mathfrak{M}, where $f\left(z_{1}, z_{2}\right)=\sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i} z_{2}^{j} \in$ \mathfrak{M} and $g\left(z_{1}, z_{2}\right)=\sum_{i, j=0}^{\infty} g_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}^{\perp}$.

For nonnegative integer h, we calculate

$$
\begin{aligned}
T_{z_{1}^{h N} z_{2}^{h M}}^{*} T_{z_{1}^{h N} z_{2}^{h M}} P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right) & =T_{z_{1}^{h N} z_{2}^{h M}}^{*} T_{z_{1}^{h N} z_{2}^{h M}} P_{\mathfrak{M}}(f+g) \\
& =T_{z_{1}^{h N} z_{2}^{h M}}^{*} T_{z_{1}^{h N} z_{2}^{h M}} f \\
& =T_{z_{1}^{h N} z_{2}^{h M}}^{*} \sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i+h N} z_{2}^{j+h M} \\
& =\sum_{i, j=0}^{\infty} f_{i, j} \frac{\left(\gamma_{i+h N, j+h M}^{\alpha}\right)^{2}}{\left(\gamma_{i, j}^{\alpha}\right)^{2}} z_{1}^{i} z_{2}^{j}
\end{aligned}
$$

On the other hand, direct computation shows that

$$
\begin{aligned}
P_{\mathfrak{M}} T_{z_{1}^{h N} z_{2}^{h M}}^{*} T_{z_{1}^{h N} z_{2}^{h M}}\left(z_{1}^{n} z_{2}^{m}\right) & =P_{\mathfrak{M}} T_{z_{1}^{h N} z_{2}^{h M}}^{*}\left(z_{1}^{n+h N} z_{2}^{m+h M}\right) \\
& =P_{\mathfrak{M}}\left(\frac{\left(\gamma_{n+h N, m+h M}^{\alpha}\right)^{2}}{\left(\gamma_{n, m}^{\alpha}\right)^{2}} z_{1}^{n} z_{2}^{m}\right) \\
& =\sum_{i, j=0}^{\infty} f_{i, j} \frac{\left(\gamma_{n+h N, m+h M}^{\alpha}\right)^{2}}{\left(\gamma_{n, m}^{\alpha}\right)^{2}} z_{1}^{i} z_{2}^{j}
\end{aligned}
$$

Since $T_{z_{1}^{h N} z_{2}^{h M}}$ and $T_{z_{1}^{h N} z_{2}^{h M}}^{*}$ commute with $P_{\mathfrak{M}}$, if $f_{i, j} \neq 0$, it follows that

$$
\frac{\gamma_{i+h N, j+h M}^{\alpha}}{\gamma_{i, j}^{\alpha}}=\frac{\gamma_{n+h N, m+h M}^{\alpha}}{\gamma_{n, m}^{\alpha}}, \quad \forall h \in \mathbb{N}
$$

If $\alpha_{1}=\alpha_{2}$, Lemma 4.1 indicates that $(i, j)=(n, m)$ or $(i, j)=\left(\rho_{2}(m), \rho_{1}(n)\right)$ if $\rho_{2}(m), \rho_{1}(n) \in \mathbb{N}$, which implies for constants a, b

$$
P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=a z_{1}^{n} z_{2}^{m}+b \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}
$$

Note that

$$
\begin{equation*}
\left\|P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)\right\|_{\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)}^{2}=\left\langle P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right), z_{1}^{n} z_{2}^{m}\right\rangle \tag{4.2}
\end{equation*}
$$

and

$$
\left\|z_{1}^{n} z_{2}^{m}\right\|^{2}=\left\|z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}\right\|^{2}
$$

direct computation shows that $|a|^{2}+\left|b \delta_{n, m}\right|^{2}=a$.
If $\alpha_{1}=-\alpha_{2}$, Lemma 4.1 indicates that $(i, j)=(n, m)$ or $\frac{i+1}{j+1}=\frac{n+1}{m+1}=\frac{N}{M}$. It follows that $P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=b z_{1}^{n} z_{2}^{m}+\sum_{(i, j) \in S_{N, M, n, m}} a_{i, j} z_{1}^{i} z_{2}^{j}$. Combining like terms, we can write $P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=a z_{1}^{n} z_{2}^{m}+$ $\sum_{(i, j) \in S_{N, M, n, m}^{\prime}} a_{i, j} z_{1}^{i} z_{2}^{j}$. By (4.2) and the fact that $\left\|z_{1}^{i} z_{2}^{j}\right\|^{2}=\left\|z_{1}^{n} z_{2}^{m}\right\|^{2}$ whenever $(i, j) \in S_{N, M, n, m}^{\prime}$, direct computation shows that $a=|a|^{2}+\sum_{(i, j) \in S_{N, M, n, m}^{\prime}}\left|a_{i, j}\right|^{2}$.

If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, Lemma 4.1 indicates that $(i, j)=(n, m)$. It follows that $P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)=a z_{1}^{n} z_{2}^{m}$. By (4.2), direct computation shows that $a=|a|^{2}$.

Note that if $\frac{n+1}{m+1} \neq \frac{N}{M}$, then $S_{N, M, n, m}=\emptyset$. Consequently, $S_{N, M, n, m}^{\prime}=\emptyset$ for most of $(n, m) \in \mathbb{N}^{2}$. That is, $P_{\mathfrak{M}}\left(z_{1}^{n} z_{2}^{m}\right)$ always equals $a z_{1}^{n} z_{2}^{m}$ in statement (2) of Theorem 4.2.

Theorem 4.3 Suppose \mathfrak{M} is a nontrivial reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$ in $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$ and $f=\sum_{i, j=0}^{\infty} f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then

$$
f_{n, m} z_{1}^{n} z_{2}^{m}+f_{\rho_{2}(m), \rho_{1}(n)} \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)} \in \mathfrak{M}
$$

(2) If $\alpha_{1}=-\alpha_{2}$, then

$$
f_{n, m} z_{1}^{n} z_{2}^{m}+\sum_{(i, j) \in S_{N, M, n, m}^{\prime}} f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}
$$

(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then

$$
f_{n, m} z_{1}^{n} z_{2}^{m} \in \mathfrak{M}
$$

Proof For $\alpha_{1}=\alpha_{2}$, if $\rho_{2}(m), \rho_{1}(n) \in \mathbb{N}$, then $\delta_{n, m}=1$. Note that $\rho_{2}\left(\rho_{1}(n)\right)=n, \rho_{1}\left(\rho_{2}(m)\right)=m$; by Theorem 4.2 it follows that

$$
\begin{equation*}
P_{\mathfrak{M}} \overline{\operatorname{span}}\left\{z_{1}^{n} z_{2}^{m}, \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}\right\} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{n} z_{2}^{m}, \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}\right\} \tag{4.3}
\end{equation*}
$$

If $\left.\rho_{2}(m)\right) \notin \mathbb{N}$ or $\rho_{1}(n) \notin \mathbb{N}$, then $\delta_{n, m}=0$. It is easy to see that (4.3) holds either. That is, (4.3) holds for any (n, m). Using Lemma 3.3, statement (1) holds.

For $\alpha_{1}=-\alpha_{2}$, if $\frac{n+1}{m+1} \neq \frac{N}{M}$, then $S_{N, M, n, m}^{\prime}=\emptyset$. By Theorem 4.2, it is easy to see

$$
\begin{equation*}
P_{\mathfrak{M}} \overline{\operatorname{span}}\left\{z_{1}^{h} z_{2}^{k} ;(h, k) \in(n, m) \bigcup S_{N, M, n, m}^{\prime}\right\} \subseteq \overline{\operatorname{span}}\left\{z_{1}^{h} z_{2}^{k} ;(h, k) \in(n, m) \bigcup S_{N, M, n, m}^{\prime}\right\} \tag{4.4}
\end{equation*}
$$

If $\frac{n+1}{m+1}=\frac{N}{M}$, note that $S_{N, M, i, j}=S_{N, M, n, m}$ if $(i, j) \in S_{N, M, n, m}$; then

$$
P_{\mathfrak{M}}\left(z_{1}^{i} z_{2}^{j}\right) \in \overline{\operatorname{span}}\left\{z_{1}^{h} z_{2}^{k} ;(h, k) \in(i, j) \bigcup S_{N, M, i, j}^{\prime}\right\}=\overline{\operatorname{span}}\left\{z_{1}^{h} z_{2}^{k} ;(h, k) \in S_{N, M, n, m}\right\}
$$

Thus (4.4) holds either. Therefore, (4.4) holds for any (n, m). Statement (2) follows from Lemma 3.3.
By Theorem 4.2 and Lemma 3.3, a similar discussion comes to statement (3). The proof is complete.

Theorem 4.4 Suppose that M is the minimal reducing subspaces of $T_{z_{1}^{N} z_{2}^{M}}$ on $\mathcal{D}_{\alpha}\left(\mathbb{D}^{2}\right)$. Then the following statements hold:
(1) If $\alpha_{1}=\alpha_{2}$, then

$$
M=\overline{\operatorname{span}}\left\{\left(a z_{1}^{n} z_{2}^{m}+b \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}\right) z_{1}^{h N} z_{2}^{h M}: h \in \mathbb{N}\right\}
$$

where $a, b \in \mathbb{C}$ and $m, n \in \mathbb{N}$ such that $0 \leq n \leq N-1$ or $0 \leq m \leq M-1$.
(2) If $\alpha_{1}=-\alpha_{2}$, then

$$
\begin{equation*}
M=\overline{\operatorname{span}}\left\{a z_{1}^{n} z_{2}^{m}\left(z_{1}^{h N} z_{2}^{h M}\right): h \in \mathbb{N}\right\}, \tag{4.5}
\end{equation*}
$$

where $a \in \mathbb{C}$ and $m, n \in \mathbb{N}$ such that $0 \leq n \leq N-1$ or $0 \leq m \leq M-1$, or

$$
\begin{equation*}
M=\overline{\operatorname{span}}\left\{z_{1}^{(h+1) N-1} z_{2}^{(h+1) M-1}: h \in \mathbb{N}\right\} . \tag{4.6}
\end{equation*}
$$

(3) If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then

$$
M=\overline{\operatorname{span}}\left\{a z_{1}^{n} z_{2}^{m}\left(z_{1}^{h N} z_{2}^{h M}\right): h \in \mathbb{N}\right\},
$$

where $a \in \mathbb{C}$ and $m, n \in \mathbb{N}$ such that $0 \leq n \leq N-1$ or $0 \leq m \leq M-1$.
Proof Suppose that \mathfrak{M} is a nontrivial reducing subspace. Then there exists nonzero $f=\sum_{i, j \geq 0} f_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M}$. If $\alpha_{1}=\alpha_{2}$, then by Theorem 4.3

$$
g_{k, l} \triangleq a z_{1}^{k} z_{2}^{l}+b \delta_{k, l} z_{1}^{\rho_{2}(l)} z_{2}^{\rho_{1}(k)} \in \mathfrak{M} \text { for any }(k, l)
$$

where $a=f_{k, l}$ and $b=f_{\rho_{2}(l), \rho_{1}(k)}$. Note that there exists $h_{0} \in \mathbb{N}$ such that $\left(T_{z_{1}^{N} z_{2}^{M}}^{*}\right)^{h_{0}} g_{k, l} \neq 0$ and $\left(T_{z_{1}^{N} z_{2}^{M}}^{*}\right)^{h_{0}+1} g_{k, l}=0$. Let $n=k-h_{0} N, m=l-h_{0} M$; then $0 \leq n \leq N-1$ or $0 \leq m \leq M-1$. Since \mathfrak{M} is the reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$ and $\delta_{k, l}=\delta_{n, m}$, then $a z_{1}^{n} z_{2}^{m}+b \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)} \in \mathfrak{M}$. Thus statement (1) holds.

If $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, then by Theorem 4.3

$$
r_{k, l} \triangleq a z_{1}^{k} z_{2}^{l} \in \mathfrak{M} \text { for any }(k, l),
$$

where $a=f_{k, l}$. Note that there exists $h_{0} \in \mathbb{N}$ such that $\left(T_{z_{1}^{N} z_{2}^{M}}^{*}\right)^{h_{0}} r_{k, l} \neq 0$ and $\left(T_{z_{1}^{N}}^{*} z_{2}^{M}\right)^{h_{0}+1} r_{k, l}=0$. Let $n=k-h_{0} N, m=l-h_{0} M$; then $0 \leq n \leq N-1$ or $0 \leq m \leq M-1$. Since \mathfrak{M} is the reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$, then $a z_{1}^{n} z_{2}^{m} \in \mathfrak{M}$. Thus statement (3) holds.

If $\alpha_{1}=-\alpha_{2}$, then by Theorem 4.3

$$
q_{k, l} \triangleq a z_{1}^{k} z_{2}^{l}+\sum_{(i, j) \in S_{N, M, k, l}^{\prime}} b_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M} \text { for any }(k, l),
$$

where $a=f_{k, l}$ and $b_{i, j}=f_{i, j}$.
If $\frac{k+1}{l+1} \neq \frac{N}{M}$, then $S_{N, M, k, l}^{\prime}=\emptyset$. Therefore, $q_{k, l}=a z_{1}^{k} z_{2}^{l} \in \mathfrak{M}$. A similar discussion as the case of $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$ shows \mathfrak{M} has a reducing subspace as (4.5).

If $\frac{k+1}{l+1}=\frac{N}{M}$, then $(k, l) \in S_{N, M, k, l}$. Therefore

$$
q_{k, l}=\sum_{(i, j) \in S_{N, M, k, l}} b_{i, j} z_{1}^{i} z_{2}^{j} \in \mathfrak{M} .
$$

Since $(i, j) \in S_{N, M, k, l}$, then $i=(h+1) N-1$ and $j=(h+1) M-1$ for some $h \in \mathbb{N}$. Let $h_{0}=\min \{h \in \mathbb{N}$: $\left.b_{i, j} \neq 0\right\}$ and write

$$
q_{k, l}=b_{i_{0}, j_{0}} z_{1}^{i_{0}} z_{2}^{j_{0}}+q_{k, l}^{\prime}
$$

where $\left(i_{0}, j_{0}\right)=\left(\left(h_{0}+1\right) N-1,\left(h_{0}+1\right) M-1\right)$, and $q_{k, l}^{\prime}=q_{k, l}-b_{i_{0}, j_{0}} z_{1}^{i_{0}} z_{2}^{j_{0}}$. Note that $T_{z_{1}^{h_{0} N} z_{2}^{h_{0} M}} T_{z_{1}^{\left(h_{0}+1\right) N} z_{2}^{\left(h_{0}+1\right) M}}^{*} q_{k, l}=q_{k, l}^{\prime} \in \mathfrak{M}$, and it follows that

$$
z_{1}^{i_{0}} z_{2}^{j_{0}} \in \mathfrak{M}
$$

Since \mathfrak{M} is the reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$, then $z_{1}^{N-1} z_{2}^{M-1} \in \mathfrak{M}$.
Consequently, the reducing subspace developed by $z_{1}^{N-1} z_{2}^{M-1}$ has the form of (4.6). Thus statement (2) holds.

From the above proof, we deduce that each reducing subspace \mathfrak{M} contains a reducing subspace M, which means that M consists of all the minimal reducing subspaces.

Since each M is a reducing subspace of $T_{z_{1}^{N} z_{2}^{M}}$, if \mathfrak{M} is minimal then $\mathfrak{M}=M$.
The proof is complete.
Theorem 2.4 in [5] by Shi and Lu showed that on the Bergman space over the bidisk the minimal reducing subspaces of $T_{z_{1}^{N} z_{2}^{M}}$ has the form

$$
M_{n, m, a, b}=\overline{\operatorname{span}}\left\{a z_{1}^{n+h N} z_{2}^{m+h M}+b \delta_{n, m} z_{1}^{\rho_{2}(m+h M)} z_{2}^{\rho_{1}(n+h N)}\right\}
$$

Note that since $\left(a z_{1}^{n} z_{2}^{m}+b \delta_{n, m} z_{1}^{\rho_{2}(m)} z_{2}^{\rho_{1}(n)}\right) z_{1}^{h N} z_{2}^{h M}=a z_{1}^{n+h N} z_{2}^{m+h M}+b \delta_{n, m} z_{1}^{\rho_{2}(m+h M)} z_{2}^{\rho_{1}(n+h N)}$ and $\mathcal{D}_{(-1,-1)}\left(\mathbb{D}^{2}\right)$ is the Bergman space of the bidisk, Theorem 4.4 extends the result of Shi and Lu.

References

[1] Jupiter D, Reddet D. Multipliers on Dirichlet type spaces. Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 2006; 72: 179-203.
[2] Guo K, Huang H. On multiplication operators on the Bergman space: similarity, unitary equivalence and reducing subspaces. J Operator Theory 2009; 65: 355-378.
[3] Guo K, Sun S, Zheng D, Zhong C. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J Reine Angew Math 2009; 628: 129-168.
[4] Lu Y, Zhou X. Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J Math Soc Jpn 2010; 62: 745-765.
[5] Shi Y, Lu Y. Reducing subspaces for Toeplitz operators on the polydisk. B Korean Math Soc 2013; 50: 687-696.
[6] Stessin M, Zhu K. Reducing subspaces of weighted shift operators. Proc Amer Math Soc 2002; 130: 2631-2639.
[7] Zhou X, Shi Y, Lu Y. Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc. Sci Sin Math 2011; 41: 427-438.
[8] Zhu K. Reducing subspaces for a class of multiplication operators. J Lond Math Soc 2000; 62: 553-568.

[^0]: *Correspondence: hzl_076@163.com
 2010 AMS Mathematics Subject Classification: 47B35

