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Abstract: The reducing subspaces of Toeplitz operators TZ{V (or Tzé\’ ), Tz{\’zgv , and Tz{VzéVI on Dirichlet type spaces of
the bidisk D, (]]])2) are described, which extends the results for the corresponding operators on the Bergman space of the
bidisk.
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1. Introduction
Let D denote the open unit disk of complex plane C and R denote the set of real numbers. D? = {(21,22); 2 €

D, 2o € D} is called the bidisk. We say that a function f :D? — C is holomorphic if it is holomorphic in each

variable separately. Each holomorphic function f on the bidisk can be represented as

fzw) = a7,

i,jJEN

with (2,w) € D? and a;; € C. Let a = (a1, a2) € R?; the Dirichlet type space of the bidisk D, (D?) consists
of all holomorphic functions f on the bidisk satisfying

D@2 = D lai P+ (1 + ) < co.
i,7EN

D, (D?) is a Hilbert space with the inner product

<fvg> = Z ai,jf,j(l +i)al (1 +j)a27

i,jEN

where f =37, iy a; 7z} and g = D oijeN bi j2iz}. Given z = (21,29) € D?, each point evaluation \*(f) =
f(2) is a bounded linear functional on D, (D?). Hence, for each z € D?, there exists a unique reproducing

kernel K, (w) € D,(D?) with w = (wy,ws) € D? such that

f(z) = (f(w), K. (w)), Y € Da(D?).

*Correspondence: hzl _076@163.com
2010 AMS Mathematics Subject Classification: 47B35

227



LIN/Turk J Math

Actually, it can be calculated that K.(w) = 2, ;5 uﬁ’ﬁ% One can see [1] for more details about

Dirichlet type space D (D?). Throughout this paper, we denote 7§, = ||z§z§||pa(mz) = /(i + 1) (j +1)o=.
For simplicity, we denote ||z{z§||DQ(D2) by ||ziz].
It is easy to see that D(gg)(D?) is the Hardy space over the bidisk H?(D?) and D(_; _1)(D?) is the
Bergman space over the bidisk B?(D?). In this paper, we only deal with D, (ID?) satisfying a; - ag # 0.
Given holomorphic function f on the bidisk D?, if hf € D,(D?) for any h € D,(D?), we define
T} : Do(D?) — Do(D?) by
T¢(h) = fh, ¥ h e Dy(D?).

If N,M are integers larger than 1 with N # M, it is easy to check that T.~ (or T,y ) is a bounded linear
operator on D, (D?). Note that

1Ty | = 1 Ton Ty | < I Ten I Topells NI

1 %2

ull = N Ty Tope | < (1T [T 1

N
1 %2

both T~ .y and T,x .y are bounded linear operators on D, (D?).

Suppose that 91 is a closed subspace of Hilbert space H. Recall that 9t is a reducing subspace of the
operator T' if T(9) C M and T*(M) C M. A reducing subspace M is said to be minimal if there are no
nontrivial reducing subspaces of T' contained in 1.

Stessin and Zhu [6] completely characterized the reducing subspaces of weighted unilaterial shift operators
of finite multiplicity. As a consequence, they gave the description of the reducing subspaces of T,~ on the
Bergman space and Dirichlet space of the unit disk. For more general symbols, the reducing subspaces of the
Toeplitz operators with finite Blaschke product were well studied (see [2, 3, 8] for example). Recently, Lu et al.
extended the result in [6] to Bergman space with several variables. They completely characterized the reducing
subspaces of T,v and T~y in [4] on the weighted Bergman space of the bidisk and on the weighted Bergman
space over polydisk in [7], respectively. Moreover, they [5] solved the problems of T.n . with N # M on both
settings.

Motivated by the above work, we will investigate the reducing subspaces of Toeplitz operators T~ (or
T.y), Ton.y, and T,y u on Dirichlet type spaces of the bidisk. The paper is organized as follows. In section
2, we give the description of the reducing subspace of Toeplitz operators T~ (or T.y ). We characterize the

reducing subspaces of T~y in section 3 and the case of T,y is discussed in section 4.

2. The reducing subspace of TZ{V on Dirichlet type spaces D, (D?)
In this section, we will characterize the reducing subspace of T~ (or T,y ) on Dirichlet type spaces Dq (D?).

We observe that each f(z1,22) =}, jen a; 7z} € Do(D?) has the decomposition

F=3 2 i), (2.1)
i=0

where fi(22) = 3272, i 7 € Do, (D) for each i.
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If we denote v = /(1 +4)® for i € N and a € R, it is easy to get the relationship between vi; and

it or 7;-12, where a = (a1, ag). Direct computation shows the following lemma.

.. . . V5 Ly v
Lemma 2.1 Suppose i, j, k are nonnegative integers; then ,YL'J = ;Yé” , ,YL'J W’
k,j k ik k

Lemma 2.2 Suppose i,n are nonnegative integers; then

aq aq
VithN _ VnthN
! = nTl, Vh S N,

’Yzq ! Tn
holds if and only if i =n.
Proof We only need to prove the necessity. By the assumption,

(5] «q?
ryn-i-hN Tn

Taking h — oo in the above equation,
Vit
lim — =1,
h—o0 ’Vn—&-hN

which implies that

Vi

i+h N

SRl =1, VheN
Yn+hN

By the definition of ~;™*, it is equivalent to
(i+hN+1)" =(n+hN+1)", VhelN (2.2)

Since ay # 0, then i =n. O

Lemma 2.3 Suppose M is a reducing subspace of TZ{V on Do (D?). Then the following statements hold:
(1) If f=2350%1fn(22) € M with fr(22) # 0, then 27 fr(22) € M;
(2) If g= 13,5075 9n(21) € ML with g, (21) # 0, then 258g,(z1) € ME.
Proof First assume f = 27 f,(22). Let 2} f,(22) = u(z1,22) + v(21, 22) be the orthogonal decomposition on

M, where u(z1,22) = > pe o 2V uk(22) € M and v(21, 22) € ML

aq
For nonnegative integer h, note that 17 ) NTny 2F z2 (?’:;aiﬁl)vgzl zy. By Lemma 2.1, we calculate
T;?NTZ{LNPW(fop(ZQ)) = T;{LNTZ{INPW(U + U)

oo
* k
= Tz{"NTZ{LN Zzl'LLk(ZQ)
k=0

_ Z 71<:+hN k(zz)
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On the other hand, direct computation shows that

(Vpinn)?
(p1)?

('Ygihzv)z
(p')?

o) 2

_ Z(Vgihjv) k

Wzﬂk(@)-

PWIT;{LNTZ{IN (Z;ffp(ZQ)) = me( fop(ZQ))

k=0

Since TZ{LN and 77,y commute with Py, it follows that, if uy (22) # 0, then for each positive integer h
1
YhihN . VSihN

aq aq
Yk Tp

)

which is equivalent to

2 2
TethN _ Yk

2 2
Vp+hN Tp

Since a; # 0, Lemma 2.2 implies that
k=p.

Therefore, Pon(2] fp(22)) = u = 2Vuy(22) € M.

Now assume f =3 27 fn(22) € M and Pz fn(22) = 2{'un(22). By the above discussion,

Puf=Pm Y 20 fa(22) = D 2ftn(2).

n>0 n>0
Note that Py f = f. Comparing the expressions, it follows that
fn(22) = un(22).

That is
Png?fn(Zg) = Z{Lfn(ZQ)a

which means that 2] f,,(z2) € 9. Thus statement (1) is obtained.

Note that if 91 is a reducing subspace of Tz{v , so is ML . By the symmetry, statement (2) is desired. O

Let M;ﬂ) = span{z?1+hN : h € N}. The next theorem characterizes the reducing subspaces of T~ on

Dirichlet type space D, (D?).
Theorem 2.4 Suppose ny is an integer with 0 < n; < N — 1. The reducing subspaces
F(22) M) = span{ f(z2)21" "N : h €N}, where f(2) € Da(D)

are the only minimal reducing subspaces of T~ on Dirichlet type space Do(D?). Each reducing subspace I

contains some minimal reducing subspace as above.
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Proof For each h € N, we calculate

Ty f(22) 2 Y = )t TIN € fzg) MY

and

ntinn)? ni+(h—1)N 1)
Tz*{v f(ZQ)Z?lJrhN = (7:11“}171)]\1)2]6(22)21 € f(Zz) ny Rzl )

0, h=0

which means f (22)M$L11) is the reducing subspace of Tz{\’ . Next we will show that such type of reducing subspace
is minimal.

If M C D,(D?) is the reducing subspace of TZ{\I7 since 9 is nonempty, there is nonzero f =
> n>0 41 fn(22) € M. By Lemma 2.3, there exists some ng € N such that 21 fr,(22) € M and fp,(22) # 0.

Let nqy = no mod N; then f,, (zz)/\/t%ﬂ) C M is the minimal reducing subspace.

Furthermore, if 9 is minimal, then f,, (zg)ME,,lﬂ = 9. The result is desired. O

Theorem 2.5 Suppose no is an integer with 0 < ny < N — 1. The reducing subspaces
9(z0) M) = span{g(z1)z> "}, where g(z1) € Da(D)

are the only minimal reducing subspaces of Tzé\’ on D, (D?). Each reducing subspace MM contains some minimal
reducing subspace as above.

Proof The result is immediately followed by Theorem 2.4. O

Theorem 2.6 Suppose N1, Ny are positive integers larger than 1 and M is a closed subspace of Dy (D?). If
ON is the reducing subspaces of both T ~, and T n, on Dq (D?), then there exist Mﬁ}f and M%) such that
1 2

M’Elll) ® M’Ei) = Spafn{z?1+hN1Z£l2+kN2 ch k€ N} C m’

where ni and ny are integers with 0 < ny < N; — 1,0 < ng < Ny — 1. In particular, I is the minimal

W

reducing subspace if and only if My, ® ./\/1532) = 9. There are totally N1 Ns such minimal reducing subspaces

on Dy (D?).
Proof Since M is the reducing subspaces of T’ ~, , then by Theorem 2.4 there exists
1

f(z2)z" € M,

where nonzero function f(22) = > ;o; aizh € Do(D) and ny € N with 0 < ny < N; — 1. Note that

f(z2)2 = (02, aizg)2" = 372, zhaizy™ € M. Since M is also the reducing subspaces of T v, , by Lemma
2

2.3, there exist 79 € N such that z;(’ z1t € M. Let ngy =ip mod Na, and it follows that
1 2
MY & MO ¢ o

is the reducing subspace of both T~ and T n, .
1 2
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If reducing subspace 21 is minimal, it certainly follows that 9t = Mﬁ}f ® M%QZ)
Examining the proof above, it is easy to see that all the minimal reducing subspaces of both T’ ~, and
1

T ~, can be expressed as M%ll) ® M%) . The total number of the minimal reducing subspaces is N1 Ny since
2

there are N7 different spaces MSR and N, different spaces Mgi) This completes the proof. O

Corollary 2.7 Suppose N is a positive integer larger than 1 and M is a closed subspace of D, (D?). If M is
the reducing subspaces of both T.x and T,y on Dq (D?), then there exist Mﬁ}f and M%) such that

M) ® M) c o,

where ny and ng are integers with 0 <n; < N —1,0 <ng < N —1. In particular, M is the minimal reducing
subspace if and only if Mﬁ}} ® ./\/l%) =9. There are totally N? such minimal reducing subspaces on D, (D?).
Proof It follows from Theorem 2.6. O

Zhou and Lu [4] describe all the reducing subspaces of T~ (or Tzév) on the Bergman space of the

bidisk. Observe that D(_L_l)(]D)Q) is the common Bergman space of the bidisk, and we extend the result in
[4]. Comparing with the results in [4], Theorem 2.4 and Theorem 2.5 imply that T~ (or T,y ) shares the same

structure of reducing subspaces on each Dirichlet type space D, (D?). In other words, if o # 0, the structure

of reducing subspaces of T~ (or T,y ) on Dq (D?) is independent of the weight o whenever ajag # 0.

3. The reducing subspace of T.~.x on Dirichlet type spaces D, (D?)

In this section, we will study reducing subspace of TZ{vzév on Dirichlet type spaces D, (D?). It shows that the
structure of reducing subspaces of T~y on D, (D?) is dependent on «.

Firstly we make further study of 7;";.

Lemma 3.1 Suppose k,m,i,j, N are nonnegative integers and o = (a1, az) € R?. If

(Wonngenn)® R imennmenn)?

Gl Ol
then the following statements hold:
(1) If a1 = as, then (i,§) = (k+mym) or (i,5) = (m,k +m).
(2) If an = —aq, then (i,j) = (k +m,m) or i = i=1.
(3) If |a1| # |as]|, then (i,7) = (k+m,m).
Proof By the assumption,
(7?+hN,j+hN)2 _ (’Yﬁj)Q Vh €N,

<’71?+m+hN,m+hN)2 (,yl?+m,m>2 ,
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Taking h — oo in the above equation, it follows that for any positive integer h

(7?+hN,j+hN)2 1
(7?+m+hN,m+hN)2
By definition of +{;, it turns into
(i +hN + 1) (j +hN +1)%2 = (k +m + hN +1)* (m + hN + 1)°2. (3.1)

If a1 = as # 0, the above equation is equivalent to
(i+hN+1)(j+hN+1) = (k+m+hN+1)(m+hN + 1),

which implies statement (1).

If oy = —ap #0, (3.1) is equivalent to
(i +hN +1)(m+hN+1) = (k+m-+hN +1)(G +hN + 1),

which implies statement (2).
Now suppose |a1| # |ag|. Without loss of generality, we may assume a3 > 0 and ag > 0. If A = hN,|

(3.1) is equivalent to
G+EA+DG+EA+F D2 =k4+m+ A+ D) (m+A+1)*2, VaeC.

Note that a; # aq; by comparing the multiplicity of zeros on both sides of the equation, statement (3) follows. O

Next we describe the projection of monomial on reducing subspace 9.

Theorem 3.2 Suppose that M is a reducing subspace of Tz{\fzé\r on Dirichlet type space Do (D?) and Py is
the projection onto 9. Then the following statements hold:

(1) If a1 = i, then

Pon(2F (2122)™) = (a2} +b25)(2122)™,  (a — |af?)||2} (z122)™||” = [b]*]|25 (z122)™ ||

(2) If a1 = —aa, then

Pgm(z’f(zlzg)m) = azf(z1Z2)m, a= |a|27 for k> 0;

o0 o0
Py ((z122)™ Zaz 2122)", Am = Z |ai|2a Jor k=0.
=0 =
(3) If |ay| # |aal, then
Pgm(zf(zlzz)m) = azf(zlzg)m, a=lal*.

Proof Let 2f(z122)™ = f(z1,22) + g(21,22) be the orthogonal decomposition on 90, where f(z1,29) =
> ii—o fiiZizh € M and g(z1,22) = > ii—o gij7iz) € ML,
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For nonnegative integer h, we calculate

Tl T o Pon (27 (2122)™)

T*{LNZS,NTZ?NZQNP&R(JC +9)

z
*
= TZ{LNZSNTZ{LNZQN]C

o0
- i+hN _j+hN
= Thwoan Y fist™ 4

4,7=0

oo ( (e} )2
. YithNj+hN) 5
Z fig (v.)? 2123
i,j=0 0]
On the other hand, a direct computation shows that

meT;szgNTz{‘Nng (Z]f (leQ)m) = PgﬁT:{lNng (Z{C (lez)m+hN)
a 2
_ Pm((7k+m+hN,m+hN)

k m
21 (z122)™)
(Viimm)? !

2
> (ryl(cl+7rz+hN,m+hN) j
= D fij

2122.
i,j=0 (Fyl?+m,m)2

Since Tz?Nng and 17,y _,~ commute with Poy, if fi; # 0, it follows that
1 2

(’YiOé+hN,j+hN)2 _ (71?+m+hN,m+hN)2 vV heN
(v95)? Memm)®

If @1 = as, by Lemma 3.1, (i,5) = (m+ k,m) or (i,7) = (m,m + k), which implies that
Pon(2F(2120)™) = (az¥ + b25)(2122)™,  for constants a, b.
Since (2 (2122)™ — P (28 (2122)™), P (2¥(2122)™)) = 0, it follows that
(1 (z122)™, Pon (21 (2122)™)) = || P (21 (2122)™) |1°. (3.2)

A direct computation shows that al|2f(z120)™ |2 = |a|?||25 (2122)™]|? + |b]?||25 (2122)™]|?. Thus statement (1)
holds.

If oy = —ag, by Lemma 3.1, (i,5) = (m+ k,m) or = % =1, which implies that for &k > 0

Pon(2F(2120)™) = az¥(2120)™,  for constant a,

and for £k =0

oo

Po((z122)™) = Zai(zlzg)i, for constants a;.
=0

Observe that (3.2) holds for any «, and statement (2) follows from the direct computation with (3.2).
If |y | # |az|, by Lemma 3.1, (i,7) = (m+k, m), which together with (3.2) implies statement (3) holds. O
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Lemma 3.3 Let A be an index set and let H be a Hilbert space. Suppose that H is the direct sum of its closed
subspace X; (i € A), that is H = @,
P X; CXi. If f=2"ca fi €M with f; € X;, then f; € M for each i € A.
Proof Note that

X;, M is a reducing subspace of bounded linear operator T on H and

> fi=f=Puf=> Pnfi

iEA i€EA

The result follows from f; = Pop f; since f; € X; and Py f; € X;. O

Theorem 3.4 Suppose that M is a nontrivial reducing subspace of T,y .y in Dy (D?) and f = Z?fj:o fii7iz e
M. Then the following statements hold:

(1) If an = ag, then fizizh € M and fi ;242 + fjiz]25 € M with i # 5.

(2) If a1 = —ag, then S5 fiizizh € M and f;;2}25 € M with i # j.

(3) If |on| # |azl, then ziz) € M.

fii2i2) + fj.i2] 2. Theorem 3.2 implies that

Proof If ay = ay, rewrite f =37, fiizizh + ;s

Ptz Cspan{zizi} and Pyspan{zizl, 2123} C span{ziz), 21 zi}.
By Lemma 3.3, it follows that
fiizizh € M and f”ziz% + f“z{zé e M.
Thus statement (1) holds.
If ap = —a, rewrite f =0 fiizizh + D it fijZi2). Theorem 3.2 implies that
Popspan{zizi;i € N} C span{zizi;i € N} and Pyziz) C span{ziz)}.

By Lemma 3.3, it follows that
Zf2712125 €M and fl’]Z’iZ% e M.

>0
Thus statement (2) holds.

If o] # |a|, Theorem 3.2 implies that Pyy(ziz)) C span{ziz)}. Statement (3) is also achieved from
Lemma 3.3 . O

Theorem 3.5 Suppose that M is the minimal reducing subspaces of Tz{\rzé\] on D,(D?). Then the following

statements hold:

(1) If a1 = ap, then

M = span{(azy + b2E) (2 TNV NY L1 e N}, a, b€ Com ke N,O<m < N — 1.
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(2) If a1 = —aa, then

M = span{( Zalzle INJANY:1eN}, a;eComeN

or M :W{azlf(zm+lsz+lN) ‘e N}’ a € (C7m7k c N70 <m<N-—-1,

or M = span{bk (TN Ny e N}, beComkeN,0<m <N —1.

(3) If |ay| # |azl, then

M—Span{azl(mHN m‘HN) leN}, aeCmkeN,0<m<N-1,

or M =span{bzk (TN NY 1T eNY, beComkeN,0<m <N —1.

Proof Suppose that 9 is a nontrivial reducing subspace. Then there exists nonzero function
f= Zi,jzo fijziz € M.

For oy = aia. We consider the following two cases. If f; ; # 0 for some i, by Theorem 3.4, ziz4 € M. Note
that if 91 is a reducing subspace of T, NN , then T, v mim COMand T N lNDJT CM. Let a+b=1,k=0,m=1
mod N; then M C 0N is a reducing subspace of T, v .

If f;; # 0 for some multi-index (i,7) with 7 > j, by Theorem 3.4, f;;ziz} + fjizlz4 € M. Let
a=fij,b=fjik=1—7jand m=j mod N;then M C 9N is a reducing subspace of TZ{vZé\r.

For a1 = —ap. If Y72, fiizizt # 0, by Theorem 3.4, Y00, fi;zizi € 9M. Therefore, M =
span{(>_i2, fi.izi28) (24N ZN) : h € N} € O is a reducing subspace of Ty

If f; ; # 0 for some multi-index (4, j) with ¢ # j, without loss of generality we assume ¢ > j. By Theorem
3.4, ziz) € M. Let a= f;;,k=1i—j and m = j mod N; then M = span{azf(z"HN2+Ny . h e N} C 9
is a reducing subspace of Tov.y.

A similar discussion implies the case of |a1] # |aa].

From the above proof, we deduce that each reducing subspace 91 contains a reducing subspace M , which
means that M consists of all the minimal reducing subspaces.

Therefore, if 9t is a minimal reducing subspace then 9t = M .

This complete the proof. O
Theorem 2.5 in [4] showed that if 9 is a reducing subspace of T.v.y on the Bergman space over the

bidisk, then there exist nonnegative integers a,b, k,m with 0 <m < N —1 and a,b € C (Carefully examining
the original proof, we find that it should be a,b € C instead of b € {0,1} in [4] Theorem 2.5.) such that

span{ (azk + bzE)(Zm TN Y e N} C . (3.3)
In particular, 9 is minimal if and only if M = span{(azl + b25) (2" TN 2 TN) . | € N}. Note that since

D(_1,_1)(ID?) is the bidisk Bergman space, Theorem 3.5 extends the result of Theorem 2.5 in [4] to more general
spaces.
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4. The reducing subspace of TZ{ery on Dirichlet type spaces D, (D?)

In this section, we will study reducing subspaces of T~ on Dirichlet type spaces Do(D?) with « # 0. The

result shows that the structure of reducing subspaces of T,y on Dq (D?) is dependent on «. Here we define

N(m+1) _1.

—1 and pa(m) = =57

p1(n) = L(Xrﬂ)

Lemma 4.1 Suppose n,m,i,j, N are nonnegative integers. If

h h Yn+hN h
Vi+hN,j+hM , M
i+ J+ n+ m+ , Vh e N,

« a
fyi,j 7n,m

holds, then the following statements hold.

(1) If ay = az, then (i,) = (n,m) or (i.j) = (p2(m), pr(n)) if pa(m), pi(n) € N.

(2) If o = —aw, then (i,5) = (n,m) or ;i} = 7’:;11 =2
(3) If |al| # ‘O‘2|f then (27]) = (n,m)
Proof By the assumption,

ViYAN jHhM Virj

= = , VhelN,
«
’yn+hN,m+hM ’Yn,m

Taking h — oo in the above equation, it follows that for any h € N

(6%
Vit hN,j+hM 1

)

(e}
Yn+hN,m+hM

By the definition of +j;, it converts to

(i 4+ hN + 1) (j + hM + 1) = (n+ AN + 1)* (m + hM + 1)°2.

If a1 = ag, then (4.1) is equivalent to
(i4+hN+1)(j+hM +1) = (n+hN +1)(m + hM +1).

It is easy to see
i+1 n+1 j4+41 m+1
N N M M

or
i+1 m+1 j+1 n+l
N MM N’

which implies statement (1).

If @y = —aq, then (4.1) is equivalent to

(i4+hN +1)(m+hM +1) = (n+ hN +1)(j + hM +1).
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It is easy to see
i+1 n+1 m+1 j+1
N N M M

or
i+1 j+1 m+1 n+l
N M’ M N’

which implies statement (2).
If |o1| # |ae|. Firstly, we consider the case of o - e > 0. Without loss of generality, we assume a; > 0

and as > 0. Observe that the left of (4.1) has zeros —%, —% with order «q, as, respectively, while the
right of (4.1) has zeros —"TH, _m7+1 with order «y, as, respectively. For —% #+ —%

and it follows that

, note that a1 # aq,

i+l 41l g41 0 m+1
N N’ M M

Thus statement (3) holds.

For —% = 77, it follows that

i+1 n+1  j+1 m+1
N N M M’

which also implies statement (3).

Secondly, as to the case of a7 - as < 0, without loss of generality, we assume o3 > 0 and as < 0.
Therefore, (4.1) turns into

(+hAN+1D)"(m+hM+1)"*=Mn+hN+1)*(G+hM+1)"

A similar discussion shows that ¢ = n and m = j. This complete the proof. O

Next we describe the projection of monomial on reducing subspace of Tn ar .

Theorem 4.2 Suppose that M is a reducing subspace of TZ{\rZéw on Dirichlet type space Do(D?) and Py is

the projection onto 9. Then the following statements hold:
(1) If a1 = aq, then

) _ azl 22 +b($n mzf’z(m) Pl(")

, if  pa(m),pr(n) €N

P (27

where a = |a|* + |bdp.m|* and 6 L
o o 0 , if others

(

(2) If a1 = —ag, let SN,M,n,m = { Z7.7)7 ;ii = %_,_11 = %72. eN,je N}; S;V,M,n,m = SN,]V[JL,m - (n,m),

then
Pm(zf2") =azpzg'+ Y aiyza,  a=laP+ > ail”

(63 €SN M mim (H:9)ESN Mnim

(3) If |oa| # |az|, then

Pgm(zf(zlzg)m) = azf(zlzg)m, a= |a|2.

238



LIN/Turk J Math

Proof
Let 27 20" = f(z1, 22)+¢(z1, 22) be the orthogonal decomposition on 9, where f(z1, 2z2) = Z?}:o fizizh €
M and g(z1,22) = Y750 gi ;72 € M-

For nonnegative integer h, we calculate

* n.m — *
TziLNzébM TZiLNZgM P{)j’t(zl 22 ) = TZ{”NZQIM Tz{lNng P{)jl(f + g)

* T
hN ,hM hN _hM
Zl 22 Zl Z2 f

o
— * E . Ji+hN _j+hM
- Tz{lNng fmzl D)

,7=0
o0 o 2
— }: _ _(7i+hN,j+hM) i
= fl,] Wzle.
i,j=0 ,J
On the other hand, direct computation shows that
5 ey = * n+hN _m+hM
PEUITZ{LNZSMTszng (21 Z9 ) = PDRTZ{LNZQLM (21 2o )

(7g+hN m+hM)2
= P~ )

(Vo m)?
. = __(75+hN,m+hM)2 ij
- Z fw (,ya )2 2142
i,§=0 n,m

Since TZ{LNZS.M and T:{LNng commute with Poy, if f; ; # 0, it follows that

Vit RN j+hM Vit h N m+hM
i+hN,j+ _ Int+hN,m+

= = o , VheN.
’yi,j ,Yn,m

If a3 = ay, Lemma 4.1 indicates that (i,7) = (n,m) or (i,7) = (p2(m), p1(n)) if pa(m),p1(n) € N,

which implies for constants a,b
Pon(2725") = a2l 2" + b6y 22 251

Note that
1P (21 25) |5, 2y = (Pom(27'25"), 27 25") (4.2)

and

2251 = (|02 2512,

direct computation shows that |a|? + b3, m|? = a.

If a; = —az, Lemma 4.1 indicates that (i,7) = (n,m) or &l = ntl — It follows that

itl N
JH1 mtl — M-
Pon(2725") = 2028 + 3 jesw ar ai ;7iz5. Combining like terms, we can write Py (27'25") = az]23" +
5 ,M,n,m ’
i,J i, 0|2 — ||4n,m]|2 ;o / :
E(m)es& L aigz1Z. By (4.2) and the fact that [|2iz;]|° = [[27'25"||° whenever (i,j) € Sk prp.m» direct

computation shows that a = |a|? + Z(i,j)es 2

’ |a/7; 1
N,M,n,m J
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If |o1| # |ag|, Lemma 4.1 indicates that (i,7) = (n,m). It follows that Py (2]23") = az]25*. By (4.2),

direct computation shows that a = |a|?. O

Note that if 244 2 4%, then Sy arnm = 0. Consequently, Sy 5/, ,, = 0 for most of (n,m) € N*. That

is, P (27 23") always equals az'2%" in statement (2) of Theorem 4.2.

Theorem 4.3 Suppose M is a nontrivial reducing subspace of T,n . in Do (D?) and f = Z;X;ZO fmzizg e Mm.
Then the following statements hold:

(1) If oy = ag, then

Fam 2225+ Fonm) s (m) O i ™ 252 € 1.

(2) If ay = —ag, then
frm21 25" + Z f”zizg € M.
(6,5 ESN M,n,m
(3) If |oa| # |az|, then
frm2l 25" € M.
Proof For oy = ag, if p2(m),p1(n) € N, then d,,, = 1. Note that p2(p1(n)) = n, p1(p2(m)) = m; by
Theorem 4.2 it follows that

Pyyspan{z1zy', 5n7mzf2(m)z§1 (")} C span{z1#3", 5n7m252(m)z§1(")}. (4.3)

If po(m)) ¢ N or p1(n) ¢ N, then 0,,, = 0. It is easy to see that (4.3) holds either. That is, (4.3) holds for
any (n,m). Using Lemma 3.3, statement (1) holds.

For a1 = —ap, if ::Lfl #* %, then S;V,M,n,m = (). By Theorem 4.2, it is easy to see
Pypspan{zlz5: (h, k) € (n,m) US;VMnm} C span{ztz5; (h, k) € (n,m) USEVM”m} (4.4)

If % = %, note that SN,M,Lj = SN7M,n7m if (’L,j) S SN7M7n,m§ then

P (212}) € span{z{'25; (h, k) € (i,§)| ) Sn ari ;) = 5Dan{z125; (B, k) € Snarnm -

Thus (4.4) holds either. Therefore, (4.4) holds for any (n,m). Statement (2) follows from Lemma 3.3.

By Theorem 4.2 and Lemma 3.3, a similar discussion comes to statement (3). The proof is complete. O

Theorem 4.4 Suppose that M s the minimal reducing subspaces of T,y a on Do(D?). Then the following

statements hold:
(1) If oy = ag, then
M = span{(az{z3" + bén,mzf"’(m)zgl(n))z{thQM :h e N},

where a,b € C and m,n € N such that 0 <n<N—-1or0<m<M-—1.
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(2) If a1 = —aa, then
M = span{azy 25 (2PN 24M) . h € N}, (4.5)
where a € C and m,n € N such that 0 <n<N—-1or0<m<M-—-1, or

M= span{zgﬂ)]v*lzéhH)M*l :h e N} (4.6)

(8) If |as| # |az|, then
M = span{az 25 (2PN 25M) b e N},
where a € C and m,n € N such that 0 <n<N—-1o0or0<m<M-—1.

Proof Suppose that 9 is a nontrivial reducing subspace. Then there exists nonzero f = Zl >0 f”zizé € M.

If @y = as, then by Theorem 4.3
gr 2 azb 2l + bék,lzf"’(l)zgl(k) e M for any (k,1),

where a = fr; and b = f,,1),p,(k)- Note that there exists hy € N such that (TZ*NZM)hng,z # 0 and
1 2
(Tz*{vzév,)h“‘lgk’l =0. Lee n =k —hoN, m =1l —hoM; then 0 <n < N-1lor0<m¢<M-1.

Since M is the reducing subspace of T,n . and gy = 0p,m, then azi'z3" + bén,msz(m)zgl(n) € 9. Thus

statement (1) holds.
If |aq] # ||, then by Theorem 4.3

TRl 2 azizh € M for any (k,1),

where a = fi;. Note that there exists hy € N such that (Tz*{vzéw)hork,l # 0 and (T:{vzéw)ho+lrk,l = 0. Let
n=k—hoN, m=1—hoM;then 0 <n<N-1or 0<m< M—1. Since 9 is the reducing subspace of
T, ~,m, then az]'zl* € M. Thus statement (3) holds.
1 <2
If @y = —aw, then by Theorem 4.3
Qg = azbzh + Z b”z{zé e M for any (k,1),
(H.3)ESN okt

where a = fi; and b, ; = f; ;.

If kL & then Sy, = 0. Therefore, qr; = azfzy € M. A similar discussion as the case of
|an| # |az| shows 9t has a reducing subspace as (4.5).

If % = 2, then (k,1) € Sy ark,- Therefore

— i J
Q| = Z b; ;2125 € M.
(4,5)ESN, M k1

Since (¢,7) € Sn,m ki, then i = (h+1)N —1 and j = (h+1)M — 1 for some h € N. Let hy = min{h € N:
b; ; # 0} and write

_ 10 ,J0 /
ak,1 = bio,jozl zy + A1
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where (io,jo) = ((ho + 1)N — 1, (ho + 1)M — 1), and g}, ; = gk, — bio jo 723" . Note that

* o .

TZ?ONZSOJMTZ§hO+I)NZ§hO+1)]Wqk7l = ¢}, € M, and it follows that
10 ,J0

21" 25" € M.

Since M is the reducing subspace of T x_ar, then AT e

Consequently, the reducing subspace developed by z{v 71254 ~! has the form of (4.6). Thus statement (2)
holds.

From the above proof, we deduce that each reducing subspace 91 contains a reducing subspace M , which
means that M consists of all the minimal reducing subspaces.

Since each M is a reducing subspace of T, ar, if 9 is minimal then M = M.

The proof is complete. O

Theorem 2.4 in [5] by Shi and Lu showed that on the Bergman space over the bidisk the minimal reducing

subspaces of T~ has the form

span AN ,m+hM m+hM n+hN
My, = Spaafaz N gt b, g oD 0 (1R,

. hM hN
Note that since (azl'zf' + by pzt? ™ 20 M) ZhN DM — o nthN My s o2 hM) pr(nthN) g

’D(,L,D(DQ) is the Bergman space of the bidisk, Theorem 4.4 extends the result of Shi and Lu.
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