
Turk J Math

(2018) 42: 243 – 256

c⃝ TÜBİTAK
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Abstract: The aim of this paper is to propose an efficient method to compute approximate solutions of linear Fredholm–

Volterra integro-differential equations (FVIDEs) using Taylor polynomials. More precisely, we present a method based

on operational matrices of Taylor polynomials in order to solve linear FVIDEs. By using the operational matrices of

integration and product for the Taylor polynomials, the problem for linear FVIDEs is transformed into a system of linear

algebraic equations. The solution of the problem is obtained from this linear system after the incorporation of initial

conditions. Numerical examples are presented to show the applicability and the efficiency of the method. Wherever

possible, the results of our method are compared with those yielded by some other methods.

Key words: Integro-differential equations, operational matrix method, Taylor polynomials, inner product, best poly-

nomial approximation

1. Introduction

Various problems of physics and engineering lead to investigation of integro-differential equations. For instance,

Tadmor and Athavale [25] introduced a class of integro-differential equations to model images. In addition, a

particularly rich source of such equations is electrical circuit analysis [2]. For this reason, the theory of these

equations has attracted the attention of physicists and mathematicians for a long time. Many papers are devoted

to the problems of the existence, uniqueness and stability of solutions; the regularization of ill-posed problems;

and the analytical and numerical solution methods of the above mentioned equations [7, 16, 26].

Since obtaining the exact solution of these equations is difficult, researchers have so far developed many

numerical methods. Some of these methods are the homotopy approach [14], the Chebyshev polynomial

approach [1], the collocation method [34], the Legendre wavelets method [20], the Taylor polynomials method

[31], the Tau method [11], the compact finite difference method [35], the multi-parametric homotopy approach

[15], a topological method [23], a method based on the power series and Pade series [27], a Taylor collocation

method [4], the Jacobi-spectral method [3], and the methods in [18–21].

In [6, 10, 19, 32], operational matrix methods based on Bernstein, Jacobi, and Chebyshev polynomials

were presented in order to numerically solve integro-differential equations. Our main purpose is to apply

operational matrices of integration and product for VFIDEs. For that purpose, we utilize the least-squares

approximation of the given function by Taylor polynomials to obtain operational matrices. Unknown function

and its derivatives are expressed in matrix forms by using operational matrices. The resulting matrix forms are

∗Correspondence: syuzbasi@akdeniz.edu.tr

243
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substituted in the given functional equation. Then we drop out the matrix depending on the unknown variable.

The remaining expression is the linear system of algebraic equations to be solved. Finally, solving this system,

we get the coefficients of the polynomial solution belonging to the considered functional equation.

We consider the mth-order linear FVIDE given by

m∑
k=0

φk (x)u
(k) (x) = g (x) + λ1

1∫
0

K1 (x, t)u (t) dt+ λ2

x∫
0

K2 (x, t)u (t) dt (0 ≤ x, t ≤ 1) , (1)

with initial conditions

u(i) (0) = αi (i = 0, 1, ...,m− 1) .

Here φk (x) , g (x) , K1 (x, t), and K2 (x, t) are smooth functions on the interval 0 ≤ x, t ≤ 1, αi, λ1 and λ2

are given real constants. Let us define

I1 =
m∑

k=0

φk (x)u
(k) (x) , I2 =

1∫
0

K1 (x, t)u (t) dt, I3 =

x∫
0

K2 (x, t)u (t) dt.

Our aim is to approximate each part I1, I2 ,I3 of equation (1) by truncated Taylor series. To this end, we outline

operational matrices for Taylor polynomials.

This paper is organized as follows: in the next section, we introduce the operational matrices. The

solution method is given in Section 3. Section 4 is devoted to the demonstration of the validity of the present

method. Finally, Section 5 contains conclusions regarding the present scheme.

2. Operational matrices

In this section, we first give preliminary theorems for least-squares approximation of function by polynomials.

Then we use it to derive operational matrices of integration and product. The theorems that we will mention

are also stated and proved in [17]. In the rest of this paper, we will use the term “Taylor polynomials” in order

to refer to polynomials expressed in the standard basis {1, x, x2, . . . , xN} for some natural number N . We

emphasize that the results that will be obtained by the present method are not the same as those obtained by

the Taylor polynomials method.

2.1. Least-squares approximation

Let V be a normed space and suppose that any given element v ∈ V is to be approximated by an element

w ∈ W , where W is a fixed subspace of V . Moreover, M is a complete subspace of W .

Theorem 1 Let V be an inner product space and M ̸= ∅ a convex subset that is complete (in the metric

induced by the inner product). Then for every given v ∈ V there exists a unique w ∈ M such that

δ = inf
w∗∈M

∥v − w∗∥ = ∥v − w∥ .

Lemma 1 In Theorem 1, let M be a complete subspace of W and v ∈ V be fixed. Then z = v−w is orthogonal

to W .
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Now let V = L2 [0, 1]. Let us define the inner product by

⟨f, g⟩ =
1∫
0

f(x)g(x)dx

and suppose that any given f ∈ L2 [0, 1] is to be approximated by w ∈ W , where W = Span{1, x, x2, ..., xN} .
Any element w0 ∈ W is uniquely determined by the coefficients A = [a0, a1, ..., aN ] such that

f(x) ≈ w0 =

N∑
i=0

aix
i = AX (x) , (2)

where X (x) = [1 x x2... xN ]T . Therefore, W is finite dimensional and it is a complete subspace too. In view

of Theorem 1, there is a best approximation out of W . Let w0 be the best approximation of f , that is

∥f − w0∥2 ≤ ∥f − w∥2

for all w ∈ W, where ∥f∥2 =

(
1∫
0

f2(x)dx

)1/2

. According to Lemma 2, f−w0 is orthogonal to W . This implies

that

1∫
0

(f(x)− w0)x
idx = 0

for i = 0, 1, ..., N . The last equations can be written as

A

1∫
0

X(x)XT (x)dx =

1∫
0

f(x)XT (x)dx.

Then A can be obtained by

A =

1∫
0

f(x)XT (x)dx

 1∫
0

X(x)XT (x)dx

−1

,

where

1∫
0

f(x)XT (x)dx =

 1∫
0

f(x)dx,

1∫
0

xf(x)dx, ...,

1∫
0

xNf(x)dx

 .

Let

Q =

1∫
0

X(x)XT (x)dx.
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Then, in view of the integrals in the last expression, we find

Q = [Qi,j ] =

 1∫
0

xi−1xj−1dx



=


1 1

2
1
3 · · · 1

N+1

1
2

1
3

1
4 · · · 1

N+2

...
...

...
...

...
1

N+1
1

N+2
1

N+3 · · · 1
2N+1


where i, j = 1, ..., N +1, which is the well-known Hilbert matrix. Although the condition number of the Hilbert

matrix is very high, this situation does not have a negative effect on the solution of the above linear system

since we actually need the inverse of Q rather than Q itself. The exact inverse of the Hilbert matrix of any size

can be readily obtained using any computer algebra system. For instance, one can make use of the Symbolic

Math Toolbox in MATLAB to compute it without error by first defining the Hilbert matrix of size N by

H=sym(hilb(N)) and then finding its inverse by inv(H). For more detail, see the note in [30, Ex. 4.22].

2.2. Operational matrix of integration for Taylor polynomials

To establish the relation between the unknown function and its derivatives, we use the operational matrix of

integration. In this subsection, we obtain the operational matrix of integration for Taylor polynomials.

Suppose that P is an (N + 1)× (N + 1) operational matrix of integration; then

x∫
0

X (t) dt ≈ PX (x) ,

where 0 ≤ x ≤ 1.

Integrating the components of X (t) , and defining two new matrices as

S =


1 0 0 · · · 0

0 1
2 0 · · · 0

...
...

...
...

0 0 0 · · · 1
N+1

 , X1(x) =


x

x2

...

xN+1

 ,

we have the following product of matrices:

x∫
0

X (t) dt = SX1 (x) =


1 0 0 · · · 0

0 1
2 0 · · · 0

...
...

...
...

0 0 0 · · · 1
N+1




x

x2

...

xN+1

 .

Components of X1 (x) can be expressed in terms of the basis set X (x). We can write

X (x) = IX (x) ,
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where I is the (N + 1)× (N + 1) identity matrix. Then

xi−1 = IiX (x) (i = 1, 2, ..., N + 1) ,

where Ii is the i−th row of I. For f (x) = xN+1, by (2) we have

xN+1 ≈ AN+1X (x) .

Now, substituting the expressions for xi i = 1, 2, ..., N + 1, in X1 (x) we have

x∫
0

X (t) dt ≈ SLX (x) .

Here L =
[
IT2 IT3 ... ITN+1 AT

N+1

]T
is an (N + 1) × (N + 1) matrix. Finally, we get the operational matrix of

integration in the following form:

P = SL. (3)

2.3. Operational matrix of product for Taylor polynomials

It is frequently necessary to evaluate the product of vector X (x) and the given function. In this subsection,

we get the operational matrix of product, which is very useful when considering a functional equation that has

variable coefficients. Let α (x) ∈ L2 [0, 1] be a given function; then C is an (N + 1) × (N + 1) operational

matrix of product and the relation

α (x)X (x) ≈ CX (x)

holds.

Now we want to approximate elements of the product α (x)X (x) using the scheme that was described

at the beginning of this section.

By (2), we have

xi−1α (x) ≈ EiX (x) . (i = 1, 2, ..., N + 1)

Then

α (x)X (x) =


α (x)

xα (x)

...

xNα (x)

 ≈


E1

E2

...

EN+1

X (x) .

Therefore, our desired matrix is

C =


E1

E2

...

EN+1

 . (4)

In the next section, we utilize operational matrices to solve FVIDEs.
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3. Description of the method

In many matrix methods [1, 31, 34], firstly the unknown function is expressed by polynomials, then its derivatives

are determined by using the operational matrix of derivatives. In our case, we do the opposite, i.e. we firstly

express the high derivative of the unknown function by Taylor polynomials. Then, by using the operational

matrix of integration and the initial conditions, we express the unknown function by polynomials. Thus, let

u(m) (x) ≈ u
(m)
N (x) = AX (x) . (5)

Then, integrating (5) by using matrix integration (3) and the Newton–Leibniz formula, we have

u
(m−1)
N (x)− u

(m−1)
N (0) = u

(m−1)
N (x)− αm−1 = A

x∫
0

X (t) dt = APX (x) , (6)

u
(m−2)
N (x) = AP2X (x) + αm−1x+ αm−2,

· · ·

u
(m−l)
N (x) = APlX (x) +

l−1∑
i=0

αm−l+ix
i

i!
,

· · ·

uN (x) = APmX (x) +
m−1∑
i=0

αix
i

i!
(l = 1, ...,m) .

Substituting the expressions (5) and (6) in I1, we have

I1 =
m∑

k=0

φk (x)u
(k) (x) =

m−1∑
k=0

φk (x)

[
APm−kX (x) +

m−k−1∑
i=0

αk+ix
i

i!

]
+ φm (x)AX (x)

=

m−1∑
k=0

APm−k [φk (x)X (x)] +A [φm (x)X (x)] +

m−1∑
k=0

m−k−1∑
i=0

φk (x)
αk+ix

i

i!
.

Then, using the operational matrix of product (4), the last equation can be expressed as

I1 =
m∑

k=0

APm−kCkX (x) + f1 (x) , (7)

where f1 (x) =
m−1∑
k=0

m−k−1∑
i=0

φk (x)
αk+ix

i

i! and Ck are the operational matrices of product. For the second part,

we have

I2 =

1∫
0

K1 (x, t)u (t) dt =

1∫
0

K1 (x, t)

[
APmX (t) +

m−1∑
i=0

αit
i

i!

]
dt

= APm

 1∫
0

K1 (x, t)X (t) dt

+

1∫
0

m−1∑
i=0

K1 (x, t)
αit

i

i!
dt.
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Let L1 be the (N + 1)× 1 matrix defined by

L1 =

1∫
0

K1 (x, t)X (t) dt.

We approximate each element of L1 by (2) as

1∫
0

tiK1 (x, t) dt ≈ DiX (x) (i = 0, 1, ..., N) ,

and L1 can be expressed as follows:

L1 ≈
[
DT

0 DT
1 ... DT

N

]T
X (x) = DX (x) . (8)

Now if we define

f2 (x) =

1∫
0

m−1∑
i=0

K1 (x, t)
αit

i

i!
dt

and use (8), we get

I2 = APmDX (x) + f2 (x) . (9)

For the last part, we have

I3 =

x∫
0

K2 (x, t)u (t) dt =

x∫
0

K2 (x, t)

[
APmX (t) +

m−1∑
i=0

αit
i

i!

]
dt

= APm

 x∫
0

K2 (x, t)X (t)

+

x∫
0

(
m−1∑
i=0

K2 (x, t)
αit

i

i!

)
dt.

Analogously, let L2 be the (N + 1)× 1 matrix defined by

L2 =

x∫
0

K2 (x, t)X (t) dt.

Then, by using (2) for each element of L2, we have

x∫
0

tiK2 (x, t) dt ≈ MiX (x) . (i = 0, 1, ..., N)

Then we obtain

L2 =
[
MT

0 MT
1 ... MT

N

]T
X (x) = MX (x) . (10)
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Using equation (10), for I3 we have

I3 = APmMX (x) + f3(x), (11)

where f3(x) =
x∫
0

(
m−1∑
i=0

K2 (x, t)
αit

i

i!

)
dt.

Now, using (7), (9), and (11) we can write the approximation of equation (1), which is obtained with the

help of operational matrices, in the following form:

m∑
k=0

APm−kCkX (x) = λ1APmDX (x) + λ2APmMX (x)+FX (x) . (12)

Here for f (x) = g (x) + f1(x) + f2(x) + f3(x) we can write

f (x) ≈ FX (x) .

To obtain the unknown coefficients, we drop out X (x) in equation (12). Provided that the matrix(
m∑

k=0

Pm−kCk − λ1P
mD− λ2P

mM

)
has full rank, i.e. it has rank N + 1, then the unknown coefficients are

determined by

A = FW−1, (13)

where

W =
m∑

k=0

Pm−kCk − λ1P
mD− λ2P

mM (14)

is the system matrix. Finally, using (6), we get the approximate solution uN (x) of equation (1).

4. Numerical examples

In this section, we apply the present method for some FVIDEs and compare the error of approximate solutions

with other methods. All the numerical computations have been carried out using a program written in MATLAB.

Example 1 [34] Our first problem is

u′′ (x)+xu′ (x)−xu (x) = exp (x)−sinx+0.5x cosx+

1∫
0

sinx exp (−t)u (t) dt−0.5

x∫
0

cosx exp (−t)u (t) dt, (15)

with initial conditions u (0) = u′ (0) = 1.

The exact solution of this problem is u (x) = exp (x) . We wish to find the approximate solution of (15)

for N = 4 by using the present method. To this end, we approximate the derivative as

u′′ (x) ≈ u′′
4 (x) = AX,

where A = [a0, a1, a2, a3, a4] , X =
[
1 x x2 x3 x4

]
. Using (6), we have

u′ (x) ≈ u′
4 (x) = APX+1 (16)

u (x) ≈ u4 (x) = AP2X+x+1,
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where

P =



0 1 0 0 0

0 0 0.5 0 0

0 0 0 0.333 0

0 0 0 0 0.25

7.936E − 4 −2.3809E − 2 0.166 −0.444 0.499


is the integration matrix. Moreover, the integral part is approximated as

1∫
0

sinx exp (−t)u (t) dt ≈ AP2L1+c1 sinx,

where L1 =

[
sinx

1∫
0

exp (−t) dt, sinx
1∫
0

t exp (−t) dt, ..., sinx
1∫
0

tN exp (−t) dt

]T
, c1 =

1∫
0

(t+ 1) exp (−t) dt. Us-

ing equation (2), we have

L1 ≈ DX (x) . (17)

The integral with variable upper limit can be expressed as

x∫
0

cosx exp (−t)u (t) dt ≈ AP2L2 +

x∫
0

cosx (t+ 1) exp (−t) dt,

where L2 =

[
x∫
0

cosx exp (−t) dt,
x∫
0

t cosx exp (−t) dt, ...,
x∫
0

tN cosx exp (−t) dt

]T
. By using (10), the last matrix

can be expressed as

L2 ≈
[
MT

0 MT
1 ... MT

N

]T
X (x) = MX (x) . (18)

Now, according to Section 2, the function

f (x) = g (x) + f1(x) + f2(x) + f3(x)

= exp (x)− sinx+ 0.5x cosx+ x2 + c1 sinx− 0.5

x∫
0

cosx (t+ 1) exp (−t) dt,

where f1(x) = x2, f2 (x) = c1 sinx, f3(x) =
x∫
0

cosx (t+ 1) exp (−t) dt and g (x) = exp (x)− sinx+ 0.5x cosx,

is approximated as

f (x) ≈ FX (x) . (19)

Substituting equations (16)–(19) in (14) and dropping out the matrix X (x) , we get

A = F1

(
I+PC1 −P2C1 −P2D+ 0.5P2M

)−1
,

where C1 is the matrix of product for α (x) = x. Finally, using (16), we have the approximate solution

u4 (x) = 0.069656x4 + 0.139309x3 + 0.510808x2 + 0.998396x+ 1.00005.
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The numerical results for the error function eN (x) and the approximate solution uN (x) are shown for

N = 9 and N = 10 in Table 1. Since the approximate solution depends directly on the system matrix W in

the system (13), the condition of this matrix is crucial in obtaining the coefficients of the final approximate

solution correctly. For instance, the system matrix W



1.00007 −0.08241 1.01372 −0.43436 −0.04297

−0.00003 0.98210 −0.00834 0.52832 −0.17954

−0.00035 0.00322 0.92661 0.19461 0.12206

0.00049 −0.01849 0.10923 0.68242 0.42401

0.00143 −0.04470 0.28882 −0.70833 1.62648


for N = 4 has condition number 4.2272, while it has condition number 28.9494 and 55.6233 for N = 9 and

N = 10, respectively.

Table 1. Exact and approximate values, Example 1.

x Exact solution Values of uN (x) Values of error eN (x) Values of error eN (x)

N=9 N=9 N=10

0.2 1.221402758160170 1.221402758160681 5.111E-13 7.704E-13

0.4 1.491824697641270 1.491824697641063 2.077E-13 4.112E-13

0.6 1.822118800390509 1.822118800390078 4.310E-13 8.659E-14

0.8 2.225540928492468 2.225540928493186 7.175E-13 5.568E-13

1.0 2.718281828459046 2.718281828456610 2.435E-12 2.520E-13

Example 2 [33] The second problem is the Fredholm integro-differential equation

u′ (x) = x exp (x) + exp (x)− x+

1∫
0

xu (t) dt

with the initial condition u (0) = 0.

The exact solution of this problem is u (x) = x exp (x) . Applying the proposed method for N = 5, we

get the approximate solution u5 (x) = 0.0767445x5 +0.1223801x4 +0.5249685x3 +0.9935215x2 +1.0006671x−
0.0000163. We also obtained the approximate solutions with N = 3, 7, 10. In Table 2, absolute errors of the

present method corresponding to N = 3, 5, 7 are compared with errors of HPM [33] with N = 4 terms, Bessel

collocation method [34] with N = 5, 7, CAS wavelet method [8] with k = 2,M = 1, and differential transform

method [9] with h = 0.1, n = 10. Errors obtained by our method are smaller than those of the Bessel collocation

method [34] and HPM [33] for listed parameter values, which is also shown visually in Figure 1. As for the CAS

wavelet method [8] and differential transform method [9], although the errors of the present method are smaller,

the related papers do not include any parameter values in order to present a fair comparison. In addition, Table

3 compares the errors of our solutions with N = 10 with those obtained by Bernoulli polynomials [5] with

the same N value. The values demonstrate that errors of the present method are smaller for this N value.

As for the condition of the system matrix, its condition number is equal to 1.7841, 1.7871, 1.7880, and 1.7884

for N = 3, 5, 7, and 10, respectively. These small numbers make us expect that little accuracy is lost when

computing the coefficients of the approximate solutions for this example problem.
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Table 2. Comparison of absolute errors for Example 2.

x HPM [33] N = 4 Bessel collocation [34] Present method

N=5 N=7 N=5 N=7

0.2 0.925E-5 1.128E-5 2.266E-8 2.465E-6 6.105E-9

0.4 0.370E-4 7.916E-6 2.519E-8 8.795E-7 1.556E-9

0.6 0.833E-4 1.477E-5 2.732E-8 1.746E-6 5.914E-10

0.8 0.148E-3 5.405E-6 2.723E-8 3.151E-6 5.444E-9

x CAS wavelet method [8] Differential transformation [9] Present method

k = 2,M = 1 h = 0.1, n = 10 N = 3

0.1 1.34917637E-3 1.00118319E-2 9.06437906E-4

0.2 1.15960044E-3 2.78651355E-2 1.89226311E-3

0.4 5.93105645E-2 7.55356316E-2 8.61682056E-4

0.6 4.39287720E-2 1.09551714E-1 1.21866327E-3

0.8 1.34514117E-2 6.94512700E-2 1.76527755E-3

0.9 1.32045209E-2 1.00034260E-2 1.19827383E-3

Table 3. Comparison of errors of Bernoulli polynomials [5] and present method, Example 2.

x Bernoulli polynomials [5] Present method

u10(x) |e10(x)| u10(x) |e10(x)|
0.1 0.110517091657253 1.50312E-10 0.1105170918040005 3.56431E-12

0.2 0.244280551030778 6.01255E-10 0.2442805516251053 6.928703E-12

0.3 0.404957640919486 1.35331E-9 0.4049576422898417 1.70407E-11

0.4 0.596729876639513 2.41699E-9 0.5967298790466395 9.86865E-12

0.5 0.824360631451310 3.89875E-9 0.8243606353411325 8.93166E-12

0.6 1.093271273765889 6.46841E-9 1.093271280250227 1.59222E-11

0.7 1.409626882046905 1.31824e-8 1.409626895224665 4.6686E-12

0.8 1.780432707658582 3.51353e-8 1.780432742784639 9.33528E-12

0.9 2.213642693742780 1.06298E-7 2.213642800056560 1.53051E-11

1.0 2.718281510541929 3.17917E-7 2.718281828518279 5.92330E-11

Example 3 [28] The next equation is

u′ (x) = 2 exp (x)− 2 +

x∫
0

u (t) dt+

1∫
0

u (t) dt

with the initial condition u (0) = 0.

The exact solution of this problem is u (x) = x exp (x) . The problem was solved by using the series

solution method in [28]. We apply the present method for N = 5, 8, 9. The obtained numerical results are

shown in Figure 2. The condition number of the system matrix is respectively 3.0609, 3.4784, 3.7972 for

N = 5, 8, 9.
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Figure 1. Absolute errors of the present method, homotopy perturbation method, and Bessel collocation method in

Example 2.
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Figure 2. Absolute errors |eN (x)| for N = 5, 8, 9 in Example 3.

Table 4. Error values for Example 4.

x Tau method [22] Present method
N=10 N=10 N=12 N=14

0.2 1.00E-10 7.389E-15 9.473E-16 5.595E-1
0.4 1.00E-10 5.521E-15 1.930E-15 1.983E-17
0.6 1.00E-10 5.238E-15 2.922E-15 4.669E-17
0.8 2.20E-9 7.278E-15 3.863E-15 1.232E-17
1.0 2.49E-8 3.088E-14 4.866E-15 1.268E-17

Example 4 [31] The next problem is

u′ (x) = 1−
x∫
0

u (t) dt

with the initial condition u (0) = 0.
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The exact solution of the problem is u (x) = sinx. We applied the present method for N = 5, 10, 12, 14.

The maximum error for N = 5 in the Taylor method [31] is 0.195E − 3, and it is 9.666E − 6 in the Bessel

collocation method [34], while it is 7.124E − 7 in our method with the same N value. The errors obtained by

the Tau method [22] with N = 10 and errors of our solutions obtained with N = 10, 12, 14 are presented in

Table 4. It is seen that our method is superior to the Tau method for N = 10, and our solutions are improved

significantly by increasing the value of N . Lastly, the system matrix of this problem has condition number

equal to 1.6598, 2.6977, 2.4255, and 1.6527 for N = 5, 10, 12, and 14, respectively.

5. Conclusions

In this paper, we introduce an operational matrix method based on the operational matrices of integration and

product for Taylor polynomials. The least-squares approximation is used to obtain the required operational

matrices. By using operational matrices without collocation points, we convert the considered integro-differential

equation problem to a system of algebraic equations. Numerous other matrix methods use the operational matrix

of differentiation to establish relations between the unknown function and its derivatives [1, 31, 34]. In our case,

we use an integration matrix instead. Numerical results show that the accuracy of our method is superior to

that of the homotopy perturbation method [33], Bernoulli polynomials [5], Tau method [22] and the Bessel

collocation method [34] with collocation points. Our method yields good approximations of the solutions of the

considered problems even for small values of N . On the whole, we can comment that the numerical scheme

presented in this study is an easy-to-implement method that can be relied on to solve problems of similar type

with a reasonable level of accuracy.
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