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Abstract: An introductory study of large deviations upper bounds from a worst-case perspective under parameter

uncertainty (referred to as ambiguity) of the underlying distributions is given. Borrowing ideas from robust optimiza-

tion, suitable sets of ambiguity are defined for imprecise parameters of underlying distributions. Both univariate and

multivariate i.i.d. sequences of random variables are considered. The resulting optimization problems are challenging

min–max (or max–min) problems that admit some simplifications and some explicit results, mostly in the case of the

normal probability law.
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1. Introduction

The purpose of this paper is to present an investigation of large deviations (see [9, 13] for gentle introductions

to large deviations) upper bounds for i.i.d. sequences of random vectors (or random variables) when ambiguity

believed to affect parameters of the underlying probability law is taken into account in a pessimistic, i.e. worst-

case, fashion for an unwelcome event. It is well accepted that key parameters of commonly used distributions

are rarely known with precision in practice. Therefore, addressing this imprecision is of great importance in

modeling probabilistic phenomena. The present study is the result of an effort to apply some ideas from robust

optimization to large deviations. Robust optimization was initiated by the seminal contributions of Ben-Tal

and Nemirosvki [1] and El-Ghaoui and Lebret [10], and it is presently a very active field of investigation; see

[3] for a comprehensive review. The spirit of robust optimization can be summarized as follows: faced with an

optimization problem (e.g., an engineering design problem) where the data are subject to imprecision (typically,

imprecision due to errors of estimation), find the best solution against the worst possible values of imprecise data

in a judiciously chosen set of ambiguity. The specification of the set of ambiguity for the imprecise parameters

typically reflects the degree to which one wishes to preserve one’s design in the face of adversities of nature. In

other words, a set of ambiguity that takes into account all possible occurrences of imprecise data may result in a

very conservative or expensive solution, which may be impossible to implement. At the other extreme, a set of

ambiguity leaving important information out may result in an unstable or fragile solution. Hence, the need to

strike a balance in the choice of the ambiguity set. A second issue in the choice of ambiguity set is the geometry

of the set, which affects the numerical solvability of the resulting problem. Here, it is important to specify sets
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leading to convex and thus numerically solvable robust optimization problems, namely the so-called ellipsoidal,

polyhedral, or norm sets; see [3]. On the other hand, the level of conservatism of the optimal robust solution also

depends on the specification of the ambiguity set, e.g., a polyhedral ambiguity set based on the infinity norm

may ignore dependencies among parameters and result in the worst values of all parameters at once. Ellipsoidal

uncertainty sets are preferable in that respect since they mimic the engineering design approach that the value

of a random quantity should not exceed a constant times its standard deviation. The reader is referred to the

recent book [2] for a comprehensive coverage of robust optimization.

The present paper is not the first to explore worst-case large deviations asymptotics; see, e.g., [12, 14, 16].

The worst-case probability of an event A with respect to a set of probability measures (a capacity) is defined,

and a general version of Cramér’s theorem is proved in [12]. In [14], univariate i.i.d. processes are considered

on a compact metric space with marginal distribution assumed to lie in a so-called moment class (a set of

distributions with fixed first, and/or second, and/or third moment and so on). Then the worst-case rate

function with respect to this moment class is studied in detail with application to queuing and information

theory. In [16], large deviations theory is used to study the exponential rate of decrease of error probabilities for

a sequence of decisions based on a test statistic sequence whose distribution is a member of a parametric class of

distributions. An application to i.i.d. detection is also given. In particular, the set of distributions is specified

as the ϵ-contamination class around a nominal distribution. This reference also studies the impact of applying

convex conjugation to a worst-case cumulant generating function with respect to the set of distributions, instead

of finding the convex conjugate function first and then passing to the worst-case estimate. The former operation

leads to a lower bound to the tightest exponential rate, which is exact if the cumulant generating function is a

closed, proper convex function for each distribution. Our research effort is also linked to a thread of research in

mathematical finance referred to as “model uncertainty”; see, e.g., [5], where a set of distributions is given as

potentially governing the evolution of a financial variable (e.g., a stock) and worst-case calculations are performed

with respect to that set. In a reference related to the present paper [11], robust large deviations (among other

things) for a coherent version of the entropic risk measure applied to risk pooling in the insurance industry are

studied. In contrast to these references that usually deal with function spaces, the present paper focuses on

specific distributions with uncertain parameters taking values in a specific set of ambiguity (ellipsoidal in the

multivariate case) and explores (explicit) solvability of resulting optimization problems, with the exception of

Section 4 where we deal with all discrete probability vectors resulting in a fixed mean for finite alphabets.

Consider the empirical means S̄n = 1
n

∑n
j=1 Xj , for i.i.d. d-dimensional random sequence {Xn} . Let

θ be a vector of parameters controlling the probability law of X1 , and for n ≥ 1, let µ
(θ)
n be the law of the

empirical mean of the n i.i.d. random variables. The “true” value of θ is assumed to lie in an ambiguity set

Uϵ where ϵ controls the level of ambiguity against which one is prepared to protect oneself.

The logarithmic moment generating function (a.k.a. cumulant generating function) associated with the

probability law µ
(θ)
1 of X1 is defined as

Λ(z) = lnE[ez
TX1 ]. (1.1)

The Legendre–Fenchel transform of Λ(z) is

Λ∗(x) = sup
z∈Rd

{zTx− Λ(z)}.
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For fixed θ , it is well known that (see, e.g., [8], pp. 36–42)

1

n
lnµ(θ)

n (C) ≤ − inf
y∈C

Λ∗(y) (1.2)

for every closed set C . In the present paper we shall be dealing with the problem of obtaining upper bounds

for the following quantity:

sup
θ∈Uϵ

1

n
lnµ(θ)

n (C)

for every closed set C , i.e. we shall concern ourselves with studying optimization problems of the form

sup
θ∈Uϵ

{− inf
y∈C

Λ∗(y)}

since we have immediately using (1.2) the worst-case upper bound:

sup
θ∈Uϵ

1

n
lnµ(θ)

n (C) ≤ sup
θ∈Uϵ

{− inf
y∈C

Λ∗(y)}. (1.3)

The paper is organized as follows. In Section 2, we shall treat the problem in two cases of univariate

random sequences where the controlling parameter(s) are subject to ambiguity. In Section 3, we pass to random

vector sequences. We obtain our most explicit worst-case bounds in the Gaussian case. A slightly more general

result is obtained for a “shifted” sequence where ambiguity is placed on the shift parameter and no specific

assumption on the ambiguity set is made except for closedness and convexity. We also look at a Poisson random

vector sequence example from queuing theory. A brief excursion into the Sanov theorem and the method of

types is given in Section 4. It is our hope that the present paper will trigger further work on the subject of

large deviations estimation under model uncertainty.

2. Univariate examples

In this section as an introduction two cases illustrate the ideas of the paper in the context of unidimensional

i.i.d. sequences.

2.1. An exponentially distributed sequence

We begin with the exponential distribution, i.e. we assume the law governing the i.i.d. sequence Xi is the

exponential law with mean 1/λ . It is well known that Λ∗ is given as:

Λ∗(x) = λx− lnλx− 1, for x > 0,

(it is equal to ∞ otherwise). Specifying the natural ambiguity set U = [a, b] (we omit ϵ), after straightforward

algebraic calculation one obtains for any closed interval C the following worst-case large deviations principle

(LDP) upper bound:

sup
λ∈[a,b]

1

n
lnµ(λ)

n (C) ≤ − inf
x∈C

ϕ(x)

where

ϕ(x) =

 bx− ln bx− 1 x < 1/b
ax− ln ax− 1 x > 1/a
0 1/b ≤ x ≤ 1/a.
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Figure 1 exhibits plots of the functions Λ∗ and the piecewise function above resulting from the worst-case LDP

bound for a = 1 and b = 2 and λ = 1.8 for Λ∗ . Figure 2 contains the two functions when λ = 1.2 in Λ∗ . In

both figures, the dotted curve is the piecewise function of the worst-case LDP bound, while the dashed curve is

the Legendre–Fenchel function Λ∗ .

Figure 1. Exponential case: the Legendre–Fenchel function Λ∗ for λ = 1.8 (dashed curve) and the worst-case LDP

bound function (dotted curve) for a = 1 and b = 2.

Note that for “true” λ close to the upper end of the interval the two functions are very close for small

values of x and differ for larger values. This observation is reversed when the true λ is closer to the lower end

of the interval. We note that the rate function is zeroed out in the ambiguity interval (or an interval induced

by the ambiguity interval), an observation also made in [14] (see fig. 2 of [14]).

2.2. A normally distributed sequence under joint (µ, σ)-ambiguity

The final example in this section is for a normally distributed i.i.d. sequence Xi with the Legendre–Fenchel

transform of the cumulant generating function given as

Λ∗(x) =
(x− µ)2

σ2

where µ and σ2 are the mean and the variance of the normal probability law governing X1 . For ease of

notation, we use s for the variance σ2 . We shall consider a joint ambiguity structure on µ, s of the following

form:

Uϵ = {(µ, s) :
√
(µ− µ̂)2 + (s− ŝ)2 ≤ ϵ}.

One could certainly consider separate/independent ambiguity in µ and σ2 . However, this independent structure

again leads to rather predictable extreme behaviour for µ and σ as the reader can easily verify. Furthermore,

a joint structure remains tractable in the univariate case as opposed to the multivariate normal case, which is

treated in the next section.
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Figure 2. Exponential case: the Legendre–Fenchel function Λ∗ for λ = 1.2 (dashed curve) and the worst-case LDP

bound function (dotted curve) for a = 1 and b = 2.

We are thus dealing with this problem:

sup
(µ,s)∈Uϵ

− inf
x∈C

(x− µ)2

s
,

or equivalently with

sup
x∈C

sup
(µ,s)∈Uϵ

− (x− µ)2

s
.

The solution of the inner sup problem boils down to a unidimensional root finding problem for a second-degree

polynomial equation.

Proposition 1 For a normally distributed i.i.d. sequence {Xn} where the parameters µ and σ2 are confined

to the ball Uϵ = {(µ, s) :
√
(µ− µ̂)2 + (s− ŝ)2 ≤ ϵ} the following hold:

1. For x > µ̂+ ϵ we have

sup
(µ,σ2)∈Uϵ

1

n
lnµ(θ)

n (C) ≤ sup
x∈C

− (x− µ∗)2

s∗
,

where µ∗ = µ̂+ γ∗ , s∗ = (x−µ̂−γ∗)γ∗

2
√

ϵ2−(γ∗)2
, and γ∗ is a positive root (in the interval (0, ϵ)) of the equation

γ2 + γ(x− µ̂)− 2ŝ
√

ϵ2 − γ2 − 2ϵ2 = 0.

2. For x < µ̂− ϵ we have

sup
(µ,σ2)∈Uϵ

1

n
lnµ(θ)

n (C) ≤ sup
x∈C

− (x− µ∗)2

s∗
,
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where µ∗ = µ̂− γ∗ , s∗ = (−x+µ̂−γ∗)γ∗

2
√

ϵ2−(γ∗)2
, and γ∗ is a positive root (in the interval (0, ϵ)) of the equation

γ2 + γ(µ̂− x)− 2ŝ
√

ϵ2 − γ2 − 2ϵ2 = 0.

3. For x ∈ [µ̂− ϵ, µ̂+ ϵ]

sup
(µ,σ2)∈Uϵ

1

n
lnµ(θ)

n (C) ≤ 0,

i.e. µ∗ = x , s∗ = ŝ (s∗ is irrelevant).

Proof The inner problem sup(µ,s)∈Uϵ
− (x−µ)2

s is a convex optimization problem (the objective function is

concave and the set of feasible solutions is convex). Since the set of feasible solutions is compact, we can replace

the sup by max. The necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions (with nonnegative

multiplier λ) give:

−1

s
(x− µ) + λ(µ− µ̂) = 0, (2.1)

− (x− µ)2

s2
+ 2λ(s− ŝ) = 0, (2.2)

(µ− µ̂)2 + (s− ŝ)2 = ϵ2, (2.3)

λ
(
ϵ2 − (µ− µ̂)2 − (s− ŝ)2

)
. (2.4)

We ignore momentarily the requirement that s > 0. We make the ansatz µ∗ = µ̂+ γ where γ is positive. If we

can find µ∗, s∗, λ∗ satisfying the KKT optimality conditions (with a positive γ and s∗ ), the proof is complete.

From (2.3) we have s− ŝ = ϵ2 − γ2 . Using this in (2.1) we obtain λ =
2
√

ϵ2−γ2

γ2 . Since we have two expressions

for s∗ from (2.2) and (2.3), they should agree, i.e. we have the equation

(x− µ̂− γ)γ

2
√
ϵ2 − γ2

= ŝ+
√
ϵ2 − γ2,

which gives the nonlinear equation

γ2 + γ(x− µ̂)− 2ŝ
√
ϵ2 − γ2 − 2ϵ2 = 0.

The function on the left of the equation has a negative value at γ = 0 and a positive value at γ = ϵ , which

implies by continuity that the equation has a positive root in the interval (0, ϵ) provided that x > µ̂+ ϵ .

If x ≤ µ̂ − ϵ then we take the ansatz µ = µ̂ = γ for γ > 0, and we proceed exactly as in the previous

part to obtain the nonlinear equation:

γ2 + γ(−x+ µ̂)− 2ŝ
√

ϵ2 − γ2 − 2ϵ2 = 0,

where the function on the left of the equation has a negative root at γ = 0 and a positive root at γ = ϵ provided

x < µ̂− ϵ .

Finally, for part 3, it is easy to verify that µ∗ = x and s∗ = ŝ satisfy the optimality conditions with

λ = 0 and the constraint inactive. 2
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3. The multivariate case

In this section we examine worst-case uniform LDP bounds under model uncertainty for the empirical means

S̄n = 1
n

∑n
j=1 Xj , for i.i.d. d-dimensional random sequences. We start with the Gaussian case.

3.1. Gaussian sequences

Let S̄n = 1
n

∑n
j=1 Xj denote the empirical means for i.i.d. d-dimensional Gaussian sequence {Xn} with mean

m and covariance matrix K assumed invertible. For all m ∈ Rd and n ≥ 1, let µ
(m)
n be the law of the

empirical mean of n i.i.d. N (m,K) random variables. The “true” value of m is assumed to lie in an ellipsoid

Uϵ = {m|∥K−1/2(m − m̄)∥ ≤ ϵ} around a nominal mean value m̄ , where ϵ controls the ambiguity. We define

the weighted norm of vector x ∈ Rd as ∥x∥K =
√
xTK−1x . Therefore, the set Uϵ is the closed ϵ-ball centered

Uϵ at m̄ , B̄(m̄; ϵ), with respect to that norm.

We give below, for each closed subset C of Rd , an upper bound for n−1 lnµ
(m)
n (C), uniform in m ∈ Uϵ

(and n ≥ 1). The proof is a simple exercise in KKT optimality conditions.

Proposition 2 Under the above hypotheses,

sup
m∈Uϵ

1

n
lnµ(m)

n (C) ≤ − inf
y∈C

[
1y∈Uc

ϵ

1

2
(∥y − m̄∥K − ϵ)2

]
y ∈ Uc

ϵ

for every closed set C .

Proof For fixed m and K , we have

1

n
lnµ(m)

n (C) ≤ − inf
y∈C

Λ∗(y) = − inf
y∈C

1

2
∥y −m∥2K

for every closed set C . Now, consider the worst-case bound:

sup
m∈Uϵ

1

n
lnµ(m)

n (C) ≤ sup
m∈Uϵ

sup
y∈C

−1

2
∥y −m∥2Km ∈ Uϵ.

We have

sup
m∈Uϵ

sup
y∈C

−1

2
∥y −m∥2K =

{
0 if C ∩ Uϵ ̸= ∅
supy∈C − 1

2 (∥y − m̄∥ − ϵ)
2

otherwise.

Notice that this computation of the supremum admits a nice geometric interpretation: it is the problem of

computing the projection of y onto Uϵ with respect to the weighted norm ∥.∥K . Obviously, when y ∈ Uϵ , the

solution is to take m∗ = y . It is geometrically evident that the point in Uϵ closest to y with respect to the

norm ∥.∥K is the point

m∗ = m̄+
ϵ

∥y − m̄∥K
(y − m̄).

This solution can be obtained by direct application of the KKT theorem to the convex optimization problem

over m for fixed y :

max
m∈Uϵ

−1

2
(y −m)TK−1(y −m).
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One forms the Lagrange function with a nonnegative multiplier λ :

L(m,λ) = −1

2
(y −m)TK−1(y −m) + λ(ϵ2 − (y −m)TK−1(y −m)).

The first-order conditions yield m∗ = y+2λm̄
2λ+1 . Substituting into the constraint assumed to be active, one gets

λ∗ =

√
(y−m)TK−1(y−m)

2ϵ − 1
2 , from which the result follows after straightforward algebra. 2

Remark. We note that the Legendre–Fenchel transform expression of the multivariate Gaussian, given

as (y − m)TK−1(y − m), is equal to (up to a constant) the Mahalanobis distance between two Gaussian

distributions with means m and y and common variance-covariance matrix K , which is in turn equal to the

differential relative entropy between these two Gaussians; see, e.g., [7] for this connection to machine learning

and information theory.

Now, we assume that K is also ambiguous, independently from m . Hence, we consider ambiguity in

(µ,K) where µ ∈ Uϵ as above and K takes values in the set Kδ = {K ⪰ 0|∥K − K̂∥F ≤ δ} , where K̂ is a

symmetric positive definite matrix. Here, ∥X∥F is the Frobenius norm of the matrix X , given as Tr(XTX).

Recalling the trace inner product of symmetric n × n matrices X and Y as ⟨X,Y ⟩ = Tr(XY ), the norm

constraint on K is equivalently written as

√
⟨K − K̂,K − K̂⟩ ≤ δ .

Now, we consider the problem

sup
m∈Uϵ,K∈Kδ

1

n
lnµ(m)

n (C) ≤ sup
m∈Uϵ,K∈Kδ

{
− inf

y∈C
Λ∗(y)

}
︸ ︷︷ ︸

RHS

.

Proposition 3 For i.i.d. d-dimensional Gaussian random sequence {Xn} with mean m and covariance matrix

K taking values in Uϵ and Kδ , respectively, we have

sup
m∈Uϵ,K∈Kδ

1

n
lnµ(m)

n (C) ≤ sup
y∈C

inf
λ∈Rd

F (λ),

where

F (λ) =
1

2
λT K̂λ+ δ∥λλT ∥F + ϵ

√
λT K̂λ+ δ∥λλT ∥F + λT (m̄− y).

Proof Here we shall deviate from the proof of the previous result since the Legendre–Fenchel transform of the

cumulant generating function depends on K−1 , whereas we wish to work directly on K when K is ambiguous.

We proceed as follows. Rewrite the RHS:

sup
m∈Uϵ,K∈Kδ

{
− inf

y∈C
Λ∗(y)

}
= sup

K∈Kδ

sup
m∈Uϵ

{
sup
y∈C

−Λ∗(y)

}
.

Using the definition of Λ∗ we have

sup
K∈Kδ

sup
m∈Uϵ

sup
y∈C

{
− sup

λ∈Rd

{λT y − Λ(λ)}
}
.
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Since the sequence {Xn} is Gaussian, we have

E[eλ
TX1 ] = eλ

Tm+ 1
2λ

TKλ,

and therefore, after exchanging the order of the suprema, we can rewrite the RHS as

sup
y∈C

sup
K∈Kδ

sup
m∈Uϵ

{
− sup

λ∈Rd

[λT y − λTm− 1

2
λTKλ]

}
,

or as

sup
y∈C

sup
K∈Kδ

sup
m∈Uϵ

{
inf

λ∈Rd
[−λT y + λTm+

1

2
λTKλ]

}
.

Now, using an appropriate min–max theorem for exchanging the order of the third sup and the inf (see, e.g.,

[15], Cor. 37.3.2), since the function is concave (linear) in m and (strictly) convex in λ , and Uϵ is compact,

the above is equal to

sup
y∈C

sup
K∈Kδ

{
inf

λ∈Rd
sup
m∈Uϵ

[−λT y + λTm+
1

2
λTKλ]

}
.

We can calculate the inner supremum

sup
m∈Uϵ

[−λT y + λTm+
1

2
λTKλ]

in closed-form as

−λT y + λT m̄+
1

2
λTKλ+ ϵ

√
λTKλ

since the function to be maximized is linear, and the set Uϵ is a convex, compact (and conic) set. This follows

easily from KKT optimality conditions. Thus, the RHS has been transformed into

sup
y∈C

sup
K∈Kδ

inf
λ∈Rd

−λT y + λT m̄+
1

2
λTKλ+ ϵ

√
λTKλ.

Now, invoking the min–max theorem one more time, we can equivalently rewrite the above as

sup
y∈C

inf
λ∈Rd

sup
K∈Kδ

−λT y + λT m̄+
1

2
λTKλ+ ϵ

√
λTKλ

and concentrate on the problem:

sup
K∈Kδ

1

2
λTKλ+ ϵ

√
λTKλ.

One can further rewrite the objective function as

1

2
⟨C,K⟩+ ϵ

√
⟨C,K⟩,

where C ≡ λλT , or as

1

2
⟨C,X + K̂⟩+ ϵ

√
⟨C,X + K̂⟩,
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and treat the problem over the symmetric matrix variable X ≡ K− K̂ . Now, one writes the Lagrange function

L(X, γ) =
1

2
⟨C,X + K̂⟩+ ϵ

√
⟨C,X + K̂⟩+ γ(δ2 − ⟨X,X⟩)

with a positive multiplier γ . First-order conditions give

X =
1

4γ
(1 +

ϵ

σ
)C

where σ ≡
√
⟨C,X + K̂⟩ . Using the definition of σ and supposing that the constraint is active we have two

equations in two unknowns σ, γ :

1

4γ
(1 +

ϵ

σ
)B +A = σ2,

1

16γ2
(1 +

ϵ

σ
)2B = δ2,

where B ≡ ∥C∥2F and A ≡ ⟨C, K̂⟩ . The solutions are obtained as σ =
√

A+ δ
√
B and γ = 1

4
(
√

A+δ
√
B+ϵ)

√
B√

A+δ
√
B

,

which results in X∗ = δ
∥C∥F

C after evident simplification, thus giving K∗ = K̂ + δ C
∥C∥F

, a positive definite

matrix. 2

Note that G(y) ≡ infλ∈Rd F (λ) is a concave function of y since it is the infimum of a collection of affine

functions.

As a variation on the theme of Proposition 2, consider the mean ambiguity set defined as a box around

a nominal value m̄ :
U∞ = {m|∥m− m̄∥∞ ≤ ϵ}.

We assume K known with certainty. We obtain the following result, which is less explicit than our Proposition

2 above.

Proposition 4 Under the hypotheses of Proposition 2,

sup
m∈U∞

1

n
lnµ(m)

n (C) ≤ sup
y∈C

[
(m̄− y)Tλ∗ +

1

2
(λ∗)TKλ∗ + ϵ∥λ∗∥1

]

for every closed set C , where λ∗ is any d-vector satisfying the inclusion

0 ∈ (m̄− y) +Kλ+ ϵ{g ∈ Rd : ∥g∥∞ ≤ 1, gTλ = ∥λ∥1}.

Proof We proceed as in the proof of the previous proposition to arrive at the right-hand side

RHS ≡ sup
y∈C

{
inf

λ∈Rd
sup

m∈U∞

[−λT y + λTm+
1

2
λTKλ]

}
.

Now, taking the inner supremum over m yields

RHS = sup
y∈C

{
inf

λ∈Rd
[−λT y + λT m̄+ ϵ∥λ∥1 +

1

2
λTKλ]

}
.
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Now, since the function in the expression above is convex in λ , but not everywhere differentiable, we use the

subdifferential characterization of the minimizer [15], and the proof is complete. 2

The above proposition serves to appreciate the virtues of the specific ellipsoidal ambiguity set used in the

present paper (defined via the covariance matrix K ), which allows closed-form expressions for multivariate

Gaussian random sequences, essentially the only case in multivariate analysis where we were able to obtain

explicit bounds. Another case allowing to make progress towards explicit bounds is discussed next.

3.2. A shifted sequence

Consider a sequence of d-dimensional random vectors X1, X2, . . . where Xn = m+ Yn with m a deterministic

but ambiguous vector (the shift) and Yn a random d-dimensional vector sequence. No specific assumption

about the probability law governing Y is made. However, we shall assume the shift vector m takes values in

the closed, convex set U . After straightforward algebra, we have that the cumulant generating function Λ(z)

of X1 is given as

Λ(z) = zTm+ λ(z)

where λ(z) is the cumulant generating function corresponding to Y1 . Let µ
(m)
n denote the probability law of

S̄n =
∑n

i=1 Xi as usual. Then, from the worst-case Cramér bound, we have that for every closed set C

sup
m∈U

1

n
lnµ(m)

n (C) ≤ sup
x∈C

inf
z∈Rd

{λ(z)− zTx+ sup
m∈U

zTm}

using the definition of the Legendre–Fenchel transform and the usual infimum/supremum manipulations (we

use again the min–max theorem for exchanging the order of the third sup and the inf [15], Cor. 37.3.2). Now,

the term supm∈U zTm is actually the support function SU (z) (evaluated at z ) of the closed convex set U from

convex analysis [15]. Hence, the right-hand side of the inequality above becomes

sup
x∈C

inf
z∈Rd

{g(z)− zTx},

where g(z) ≡ λ(z) + SU (z). Therefore, we have proved:

Proposition 5 For a sequence of d-dimensional random vectors X1, X2, . . . where Xn = m+ Yn with m (the

shift) taking values in the closed, convex set U , and Yn is a random d-dimensional vector sequence, we have

sup
m∈U

1

n
lnµ(m)

n (C) ≤ − inf
x∈C

g∗(x)

for every closed set C , where g∗ is the Legendre–Fenchel transform of g defined as λ(z) + SU (z) .

The above result furnishes a way to incorporate different probability laws and ambiguity sets into large

deviations.

Now, as an application, consider the case where {Yn} is a d-dimensional normally distributed random

sequence with mean 0 and variance-covariance K (we do not need mean equal to zero here, it is only for

convenience). Furthermore, we revert to ellipsoidal ambiguity set Uϵ = {m|∥K−1/2(m − m̄)∥ ≤ ϵ} instead of

the unspecified closed, convex set U . The term supm∈Uϵ
zTm is equal to zT m̄ + ϵ

√
zTKz (notice that the
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term zT m̄ + ϵ
√
zTKz can be interpreted to reflect the engineering design methodology that random variable

zTm with mean zT m̄ most likely lies within ϵ standard deviation, i.e. ϵ
√
zTKz , of its mean.) For the

multivariate Gaussian we have that λ(z) = 1
2z

TKz . Now, we can evaluate g(z) and its Legendre–Fenchel

transform explicitly. We solve the inner inf problem, which is a quadratic-norm problem

zT (m̄− x) +
1

2
zTKz + ϵ∥z∥K ,

(there is a quadratic and a weighted norm term: ∥z∥K =
√
zTKz ) in closed-form. From the first-order

conditions (they are sufficient as the function is convex), one obtains:

m̄− x+Kλ+
ϵ√

zTKz
Kz = 0,

which gives

z∗ =
σ

σ + ϵ
K−1(x− m̄)

where we have defined σ =
√
zTKz . Substituting the expression for z∗ into the definition of σ one obtains the

quadratic equation in σ as

σ2 + 2ϵσ + ϵ2 −H2 = 0,

where H =
√
(x− m̄)TK−1(x− m̄). The positive root of the equation is given by H − ϵ , for H ≥ ϵ . The

result, which is identical to the result of Proposition 2, follows by substituting the solution

z∗ =
H − ϵ

H
K−1(x− m̄)

into the function. When H < ϵ , one simply takes z∗ = 0. Therefore, we have

sup
m∈Uϵ

1

n
lnµ(m)

n (C) ≤ − inf
x∈C

[
1x∈Uc

1

2
(∥x− m̄∥K − ϵ)2

]
for every closed set C .

3.3. A multivariate Poisson sequence

Now, we consider an example from queuing theory [17]. Suppose yij are i.i.d. random variables following a

Poisson law with rate λj . Define the vectors

xi =
J∑

j=1

yijej ,

where ej ∈ Rd are given vectors for j = 1, . . . , J . We shall be interested in a worst-case LDP upper bound

estimate for the average x1+...+xn

n as in the previous paragraphs. For n ≥ 1, let µ
(Λ)
n be the law of the

empirical mean of the n i.i.d. random variables, where Λ is the J -vector with components λj . We shall

confine ambiguity in the rates λj to the ambiguity set

L = {Λ ∈ RJ : ∥Λ− Λ̂∥2 ≤ ϵ}.
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We are interested in the bound:

sup
Λ∈L

1

n
lnµ(m)

n (C) ≤ sup
Λ∈L

{− inf
x∈C

ℓ(x)},

where ℓ(x) is given as

ℓ(x) = sup
θ
{θTx− g(θ)}

with the cumulant generating function

g(θ) =

J∑
j=1

λj(e
θT ej − 1).

Going through the usual motions we have the right-hand side of the inequality as

sup
x∈C

inf
θ∈Rd

sup
Λ∈L

{−θTx+
J∑

j=1

λj(e
θT ej − 1)}.

For ease of notation denote by ξj(θ) the quantity eθ
T ej − 1, and hence by ξ(θ) the J -vector with components

ξj(θ). Now, evaluation of the innermost supremum gives the right-hand side:

sup
x∈C

inf
θ∈Rd

{−θTx+ ξ(θ)T Λ̂+ ϵ∥ξ(θ)∥2}.

We note that the function H(x), defined as

H(x) ≡ inf
θ∈Rd

{−θTx+ ξ(θ)T Λ̂+ ϵ∥ξ(θ)∥2},

is a concave function since it is the pointwise infimum of a collection of affine functions. However, an explicit

expression for H is not possible. Hence, calculations involving H have to be done numerically. For illustration,

we consider d = 2 = J with e1 = (1 0)T and e2 = (0 1)T , the unit vectors, Λ̂ = (10 10)T . For x1 ≥ 100 and

x2 ≥ 100, the function H attains its maximum at (100, 100). Figure 3 shows the behavior of H(100, 100) as ϵ

increases. It is almost a linear curve.

4. Sanov’s theorem under ambiguity

In this section, we shall briefly explore worst-case bounds within the method of types and Sanov’s theorem,

which can be viewed as an application of large deviations theory (more precisely, of the Gärtner–Ellis theorem;

see, e.g., [4]). Sanov’s theorem is also heavily used in information theory; see [6]. This section is related to the

work reported in [14] where the worst-case rate function is characterized using a variational formula involving

the solution of a semiinfinite linear optimization problem.

Our desktop reference for Sanov’s theorem is [8]. We denote by Σ the finite alphabet {a1, a2, . . . , aN}
(we also use the N -vector a to denote the vector with components (a1, a2, . . . , aN )). Let Y1, Y2, . . . , Yn be a

sequence of random variables that are i.i.d. according to the law µ ∈ M1(Σ) where M1(Σ) denotes the space

of all probability laws on Σ. The type Ly
n of a finite sequence y = (y1, . . . , yn) ∈ Σn is the empirical measure
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Figure 3. A plot of H(100, 100) versus ϵ with Λ̂ = (10 10)T .

induced by that sequence, i.e. Ly
n(ai) is the fraction of occurrences of ai in the sequence y = (y1, . . . , yn). The

relative entropy of a probability vector ν with respect to another probability vector µ is

H(ν|µ) =
|Σ|∑
i=1

ν(ai) ln
ν(ai)

µ(ai)
.

Let P denote the set of probability measures of which µ is a member. The following estimate follows immediately

from Sanov’s theorem (see Th. 2.1.10 [8]).

Proposition 6 For every set Γ of probability vectors in M1(Σ) , we have

lim sup
n→∞

sup
µ∈P

1

n
lnP (Ly

n ∈ Γ) ≤ sup
µ∈P

{− inf
ν∈Γ

H(ν|µ)}.

Proposition 6 notes that when one would like to generalize Sanov’s theorem to a case where the actual measure

is known to come from a given set of measures, the LDP rate for the empirical measure is exactly the relative

entropy distance between two sets of measures. Computing such distances is a topic currently studied in

computer science; reference [7] cited above in the remark after the proof of Proposition 2 is an example. Thus,

Proposition 6 provides a connection between these two problems and research areas.

In general, it is extremely difficult to obtain explicit expressions for the right-hand side in the above

bound. However, considering the case Pm = {µ : 1Tµ = 1, µ ≥ 0, aTµ = α} (we assume now that the alphabet

has numeric values), i.e. the set of probability vectors resulting in a mean value equal to α , we were able

to show a (somewhat limited) result. Assuming that a1 < a2 < a3 , for every set Γ of probability vectors in

M1(Σ), we have for N = 3 and α = a2 :

lim sup
n→∞

sup
µ∈Pm

1

n
lnP (Ly

n ∈ Γ) ≤ − inf
ν∈Γ

H(ν|µ∗),
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where µ∗
1 = a1(a2−a3)(ν1+ν3)

a1−a3
, µ∗

2 = ν2 , µ
∗
3 = (a1−a2)(ν1+ν3)

a1−a3
. Admittedly, the specification α = a2 is restrictive.

However, an explicit result for general α was not possible. In general, one has to solve N th degree polynomial

equations to find the solution of the inner problem. Hence, one must resort to numerical methods. As a

result, our efforts to extend the above result to general N , different α , and other specifications of P (e.g.,

P = {p ∈ M1(Σ) : dist(P, P̄ ) ≤ ε} for a nominal probability vector P̄ and a suitable distance measure) have so

far borne no fruit. This is the subject of future investigations.

5. Concluding remarks

We investigated the impact of ambiguity in parameters for common distributions on large deviations upper

bounds in a worst-case sense inspired by the last decade of development in robust optimization. In particular,

we adopted the ellipsoid specification of ambiguity for multivariate random sequences since ellipsoids help

mimic the engineering design approach that a random variable affecting the design will most likely not exceed

a constant times its standard deviation, and leads to tractable (at least in some cases) optimization problems

and explicit worst-case bounds. Much remains to be explored: some examples are hypothesis testing under

ambiguity and large deviations for Markov chains under ambiguity, among others.
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