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Abstract: In this study, we develop a model of recurrent neural networks with functional dependence on piecewise
constant argument of generalized type. Using the theoretical results obtained for functional differential equations with
piecewise constant argument, we investigate conditions for existence and uniqueness of solutions, bounded solutions, and

exponential stability of periodic solutions. We provide conditions based on the parameters of the model.
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1. Introduction and preliminaries

Differential equations with piecewise constant argument have been developed and studied by many authors
during the last few decades [1, 6, 13, 16-19, 22-24]. In the literature, most of the results have been obtained
by reducing these equations to discrete equations. Later, Akhmet [2—4] generalized this class of differential
equations by taking any piecewise constant functions as arguments, and he recently introduced functional
dependence on piecewise constant argument in [5]. Differential equations with piecewise constant argument of
generalized type have been considered widely in the book [4], which develops new methods of investigation.
These methods are more effective since they do not depend on the reduction to discrete equations and they
enable one to consider systems that are nonlinear with respect to values of solutions at the discrete moments

of time.
Differential equations with piecewise constant argument have widespread applications. One of these

application areas is neural networks [7-12, 25]. Neural networks are systems comprising numerous processing
units that correspond to the neurons in the brain. These units together with input, activation functions of
neurons, and the connection weight produce an output. Neural networks are very important in many areas such
as finance, economy, medicine, and electronics (see, for example, [14, 15, 20] and the references cited therein).
Therefore, it is worthwhile to study and develop neural networks using the theory of differential equations with
piecewise constant argument of generalized type.

In the literature, investigations of periodic solutions of neural networks are used practically in the learning

theory. This theory indicates that certain activities and motions can be learned by repetition. In biological
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neural networks, learning takes place as follows: neural cells are interconnected with links, which have specific
numerical weights. By creating new connections or adjusting repeatedly these weights representing memory,
learning of the networks is provided. Mathematically, by weighting values of the input and producing output,
networks learn. Later, the learning process is completed, i.e. when the information is loaded into neurons, it
can be retrieved from the neurons. In this context, it is important that a neural network has a stable solution
since it expresses that samples stored on learning outcomes can be called back. In the past few years, sufficient
conditions have been obtained for the stability of solutions of delayed neural networks [7, 8, 25]. Thus, it is
desirable to design neural networks that have bounded solutions, periodic solutions, and, in fact, exponentially
stable periodic solutions.

In this paper, it is aimed to consider a model of recurrent neural networks with functional dependence
on piecewise constant argument of generalized type. Existence and uniqueness of solutions, bounded solutions,
and exponential stability of periodic solutions will be addressed for the proposed model.

Denote by Z, R, and N the sets of all integers, real numbers, and natural numbers, respectively. Let
[| - || represent the Euclidean norm in R™, n € N. Fix two real valued sequences 6 = {60;}, ¢ = {(},
i € Z, such that 6; < ;41 with |0;] — oo as |i| = oo and 6; < ¢; < 6;41. For fixed numbers 7 € R
and n € N, let C = C ([-7,0],R™) describe the set of all continuous functions from [—7,0] to R™ with the

uniform norm ||¢||, = [maéc] [loll. Consider a subset D C R x C and continuous functionals h, g : D — R™. Let
T

Cs ={¢p €Cl|¢ll, < s} where 0 < s € R. Moreover, let Cy (W) denote the set of all bounded and continuous

functions on W.
We shall consider the following recurrent neural networks with functional dependence on piecewise

constant argument of generalized type:
2! (t) = —Az(t) + Bz (v (1)) + Ch (t,x) + Dg (t, z4)) + E, (1)

where x € R™ is the neuron state vector, t € R, and v (t) = ¢; if 6; < < 0;11. In the model, h and ¢ stand
for activation functions of neurons, and F is a constant external input vector. Besides, A =diag(as,...,a,)
and B is a matrix with positive entries, while C' and D denote the connection weight and delayed connection
weight matrices, respectively. In equation (1), 2; and x,4) mean x;(s) = x (t +s) and x4 = x (v (L) + )
for s € [-7,0].

Throughout this paper, the following assumptions will be needed:
(N1) h, g € Co (R x Cq) for each positive Q € R;
(N2) there exist positive Lipschitz constants L" and L9 such that

17 (t, ¢1) — h(t, ¢2)| < L™ [¢1 — o2l

and

lg (t, 1) — g (t, P2)|| < L7 ||f1 — b2l
for all (t,¢1), (t,¢2) € D;

(N3) there exist positive numbers 6 and ¢ such that 6;,1 —6; <0 and (;o1 — ( < (, i € Z.
For convenience, we adopt the following notation:

L = max (L"|CT| + L9 |DT)).
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2. Existence and uniqueness of solutions

Let T denote the n x n identity matrix. Denote by X (¢,s), X (s,s) =1, t,s € R, the state transition matrix
of the system
2 (t) = —Ax(t). (2)

It is clear that X (t,s) = e~ 4(t=%), Besides, the matrix function M; (t) for system (1) is as follows [5]:

t
M; (t) = e A0=6) 4 / e A=) Bds,i ¢ 7.

For a fixed ty € R, there exists a fundamental matrix Z (t) = Z (¢,t9), Z(to) = I of solutions of
2'(t) = —Az (t) + Bz (v (t))
such that

% — _AZ() + BZ(7(1).

Let 0; <ty < 0i+1 for a fixed i € Z. If t € [to, 9,‘+1], then
Z (t,t0) = M (t) M (to) -
If t € [0;,0;41] for arbitrary [ > 1,

i+1
Z(t) = M (t) | T Mt (0r) Mi—1 (68) | M (t0) -
k=l

Ifte [0j79j+1]7 J<t,

2(8) = M; (6) | T] M (Boss) Micor (Bx) | M (1),
k=j

We suppose that the following assumptions are valid.
(N4) For every fixed i € Z, det [M; (t)] # 0, Vt € [0;,0;11].

(N3)—(N4) imply the existence of positive constants m, M, and M such that m < ||Z (t,s)|| < M, || X (¢,s)| <
M for t, s € [0;,0;11], i € Z. Taking the fundamental matrix Z(t), t € R, for initial data z(tg) = o, a

solution z(t) of equation
2/ (t) = —Az(t) + Bz (v (1))
is expressed with the equality z(t) = Z(¢,to)xo, (to,zo) € R x R™.

(N5) ML(1+M)f<1.
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(N6) ||Z (t,s)|| < Ke=*(t=%) s <t , where K and a are positive numbers;

(NT7) there exist positive numbers 0, ¢ > 0 such that 0,41 —6; >0, (11 —( >, i € Z;

(N8) 9L (1 +2ﬂ) <1;

1—e—f

(Ng) %Me‘”nl (K+ <1+1_K§7fzﬂ) ea(jfiJrl)?) < 1, where 6, < tg < 9i+1; 0j <t < 0j+17 1< g and

ni1 = max (Lh ’CT‘ + L9 ‘DT’ e"‘§>;

(N10) ML (1+ K25 )8 < 1.

l—e—f

Consider two functions ¢, ¢ € C. If 0; <ty < ;41 for some ¢ € Z, there exist two cases for the initial
condition, depending on whether to < (; or (; < tg:

(ICh) If 0; <o < ¢ <041, then a solution z (t) = z (t,t0,¢), t > to, of equation (1) satisfies the initial
condition xy, (s) = ¢ (s), s € [-7,0];

(ICy) If 0; < ¢ < top < 41, then a solution x (t) = x (¢, 9, d, %), t > to, of equation (1) satisfies the

initial condition w4, (s) = ¢ (s) and () (s) =1 (s), s € [-7,0].

Definition 2.1 A function x (t) is a solution of (1) with (ICy) or (IC3) on an interval [to,to+a), a > 0,
if:
(i) it satisfies the initial condition;

(i) x (t) is continuous on [tg,to + a);

(iti) the derivative x’ (t) exists for t > to with the possible exception of the points 6;, where one-sided

derivatives exist;

(iv) equation (1) is satisfied by x (t) for all t > to, except, possibly, the points of 6 and it holds for the right

derivative of x (t) at points 0;.
The following lemma gives necessary conditions for existence and uniqueness of solutions.

Lemma 2.2 Assume that conditions (N1)-(N5) hold. Then for fized i € Z and for every (to, d, ) € [0;,0;41] ¥
C x C there exists a unique solution x (t) = x (t,to, @,%) of (1) on [to,0it+1].

Proof We will consider only the initial condition given by (IC}) and thus a solution of the form =z (t) =

(21(t), ooy 2 (1)) = 2 (t,0,8). Proof for (ICy) coincides with that for functional differential equations [21].
We fix i € Z and assume that 0; < to < 0;,1. Ewvistence. Take 29 (t) = Z (t,t9) ¢ (to) and define a sequence
{zF ()}, k>0 by

" () = ¢ (t —to) .t € [to — T, 0],
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Gi
") = Z(tto) {¢ (to) —&—/e_A(Q_S) (Ch (s,a%) + Dg (s,z¢,) + E) ds
to
t
—l—/e_A(t_s) (Ch (s,x’;) + Dg (s,xlgi) + E) ds,t € [to, 0i+1] -
Gi

Since h, g € Co (R x Cq), we can find an Mg € (0,00) such that ||k (t,2;)|| < Mg and ||g (t,2,@)| < Ma.
Thus, we have that
—k
Jmax o (@) —a* @) < [FTL 0+ M) ] g

where p = M (1+ M)0[Mq (’CT| + |DT‘) +|E|]. Thus, by (N5), there exists a unique solution z (t) =
x (¢, to, d) of the equation

Ci
z(t) = Z(tto) |:¢ (to) + /e_A(qi_s) (Ch(s,xzs) + Dy (s,xz¢,) + E)ds
to
t
—i—/e_A(t_s) (Ch(s,zs) + Dg(s,x¢,) + E)ds,t € [to, Oit1] -
Gi

It is clear that z(t) = z (t,t0, ¢) is also a solution of (1), proving the existence.

Uniqueness. Denote by 27 (t) = z7 (t,to, ¢), j = 1,2, the solutions of (1). Let ||¢| ., = sup||¢ (¢)]. We
R

find

G [ (s, 22) = R (s,23) | ds

Ci
ot - ] < 12w [ |ere
to

Gi

HZ )] [ e

to

t
+/HefA(tfs)

G

t
+/He_,4(t_s>

Gi

D[l (s 2¢,) = g (s,2,) || ds

GV (s 24) = B (s23) | ds

D%l (s:2¢,) = 9 (s,22,)[| ds

IN

Gi
M [ [jC 1 ot = 2+ D719, - ]
to
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+ [T [leT L ol = a2, + D7 2 o, 2] s

= M/M|CT|Lh maXO]Hx o) — x?(a)“ds

+M/M|DTng max_ o, (o) = o2, (o] ds

/M‘CT|L" max ||x (o) — a2 (U)Hds

o€[—7,0]

t
/ D717 max [z, (@)~ a2, (&) ds

Gi
< M/M(]CT\L’Ur [D7| 19 sup [l2* (1) — 2 ()] ds
R
+ [F(JCT| L+ DT 1) sup [ 0 - o 0)] s
R
i t
< M/MLHml—xQHoods—i—/MLHxl—a:QHOOds
G t
< M/MLHa:l—xQHds—i—/MLHxl—xQHds
< ML(1+ M) 5Hxl—x2H
< ML(1+M)6 max |[jz'—2?||.
[t0,0i+1]
Condition (N5) implies that z! (t) = 2% (¢). O

The following lemma is an important auxiliary result that will be used in the sequel.

Lemma 2.3 Assume that conditions (N1)-(N5) hold and fix i € Z. Then for every (to, ,¢) € [0;,0;41] xCxC
there exists a unique solution x (t) = x (t,to, o, ), t > to, of (1) and it satisfies the integral equation

Gi
z(t) = Z(tto) ld’ (t°>+/e_A(t°_s) (Ch (s,25) + Dy (5,2+(s)) + E) ds

to
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. Clt1
7j—1
+> Z(t0k41) / e AO1=) (Ch (s, 25) + Dy (5,24(s)) + E) ds (3)
k=1
Ck

t

—|—/e_A(t_s) (Ch(s,x5) + Dy (s,2(5)) + E) ds,
G

where 0i§t0§0i+1, 9j§t§9j+1, Z<]

3. Bounded solutions
Definition 3.1 A function x (t) is a solution of (1) on R if:

(i) x(t) is continuous;

(i) the derivative x’ (t) exists for all t € R with the possible exception of the points 0;, i € Z, where one-sided

derivatives ezists;
(11i) equation (1) is satisfied by x (t) for all t € R except points of 6 and it holds for the right derivative of
z (t) at points 0;.
Lemma 3.2 Assume that (N1)-(N7) are fulfilled. Then a bounded on R function x (t) is a solution of (1) if
and only if it satisfies the following integral equation:

t

x(t) = /e_A(t_s) (Ch(s,z5) + Dy (s, s)) + E) ds
G
j—1 Crt1
+ Z Z (t,0k+1) / e Alk+1—9) (Ch(s,xs) + Dg (s,zs) + E) ds, (4)
k=00 Ck

where 0; <t <0;41.
Proof Necessity. It can be proved by using equation (3) and assumption (N6) in a similar manner applied
to ordinary differential equations.

Sufficiency. Since the solution is bounded, there exists a positive constant  such that ||z (¢)]] < Q.

We have g, h € Cy (R x Cq). Thus, there is a positive number Mg such that sup ||k (s, zs)|| < Mg < oo and
R

sup Hg (8,907(5)) H < Mg < co. Then:
R

t

lo @l < [ e (€T in (s, 2l + 107l (s,2000) | + D s

Gi
i1 Cht1
n Z Kefa(tfek-%—l) / He*A(Gk.H*S) |CT|||h(S,$s)||d5
k=—o0
Ck
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Cret1
S A e (G R
k= C
t
< [T+ D7 M+ ) s
i1 Cht1
n Z Ke—(t—0ki1) /H(’CT‘MQ-F’DT‘MQJ'_lE')dS
k=—o0 Ck
B o a9
< T+ ) + ) (74525
<

Vi T T i Keo?
M (Mg (|CT|+|D"|) +|E|) 6 L2 ——5 |-

Thus, the series and the integral in (4) converge. If we differentiate (4), then it is seen that it satisfies

equation (1):

t

o (t) = /AefA(tfs) (Ch (s, 25) + Dg (s, 24(5)) + E) ds
G
j-1 Ch1
+ Z AZ (t,0r41) / e A O1=9) (O (s,25) + Dg (s, 2(5)) + E) ds
h=—eo &
i1 Cipr
+ Z BZ (¢;,0k+1) / e Al0ks1-5) (Ch (s,zs) + Dg (s,xﬂ,(s)) + E) ds
h=reo S

= Az (t)+ Bz (y(t)) + Ch(t,z;) + Dg (t,zy1)) + E.

Theorem 3.3 Suppose that conditions (N1)-(N8) are fulfilled. Then (1) admits a unique bounded on R
solution.

Proof Let us consider the complete metric space Cy (R) with the sup-norm |[|¢|| ., = sup||¢ ()| and define
R

on Cp (R) the operator [] such that

¢
H((t) = e A=) (Ch (s, H,) + Dyg (s, H,y)) + E) ds
v(s)
G

Cht1
Jj—1
+ > Z(t0k41) /e*A“)M*S) (Ch(s,H,) + Dg (s, Hy(s)) + E) ds,
k=—o0 Ck
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where t € [0;,0,41]. It can be shown that [] : Cy (R) — Co (R) and verified that this operator is contractive.
Let us take into account the assumption (N6). If u, v € Cy (R), then

Moo T

N (O |1h (s us) — h (s,v,)]| ds

IN
iﬁ\ﬁ

M |D"|[|g (s,uy(5)) = g (5,04(5)) || ds

+
@\ﬁ

Ch+1

j—1
+ D 120 /M\CT|||h(8,us)—h(svvs)||d8
k=—o0 Ck
i1 Cr+1
s 3 N2 O] [ TDT g (s, 0) =9 (5.0 0) s
k=—co Ck
t
: /M(|CT|LhHus—vsHo+|DT!L9||uv<s)—Ws)Ho) ds
G
j—1 Cht1
+Y Kemalt=0u) /M|CT|Lh\|urvsHods
k=—o0 Ck
-1 Cr+1
+ Z Keot=0m) /M|DT’L9H“7(S)_UV(S)HOdS
k=—o0 Cr
t
< /M(|CT|Lh+|DT|L9)supHu7des
G .
j—1 Ck+1
- Kemo(t=0x0) /M crLh —vld
k;m e | sup [[u — vl| ds
Cr
j—1 Crt1
+ Ke~o(t=0k+1) /M DTl L9 — | d
3 Ko (D7 L7 sup u — o] ds
Ck
t -1 Cht1
< /MLds—i— Z Ke~at=0k+1) /ML lu— | ds
¢ k=—o0 ¢
j k
_ _ ea@ —
< OLM flu—vl| 4 JFCKl_ie_aQLMHU*’UHOQ
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_ _ eaO —

o Kef

IA

IA

The assumption given by (N8) implies that the operator [] is contractive. Hence, (1) has a unique solution
u(t), which belongs to the set Co(R). O

4. Exponential stability of periodic solutions

In the sequel, we assume that the neural networks system (1) is w-periodic and additionally the following

periodicity property:

(N11) there exist numbers w € R, p € Z such that 0pp, =0 +w, Chp =k +w, k€ Z.

(N12) h(t +w,¢) = h(t,¢) and g(t + w,v) = g(t, ), t e R, w € R.

In what follows, we assume without loss of generality that (; = 0, and consider tg = (3. In the interval
t € [0;,0;41], consider the solution x (t) =z (£,0,¢) of (1) in the form

) Cht1
j—1
x(t) = Z(t)xo+ Z Z(t,0r41) / o A=) (OR (5,25) + Dy (5,24(5)) + E) ds
k=0 Ck
t
_|_/e_A(t_5) (Ch (s,zs)+ Dg (Sa x'y(s)) + E) ds, )
G

where Z (t) = Z (t,0), t € R. x(t) is a periodic solution if and only if z( satisfies

Ch+1
p—1
[I—Z(w)]xg = Z Z (w,041) / e~ ABkr1—9) (Ch(s,xs) + Dg (s,zys) + E) ds. (6)
k=0
Ck

Let det[I — Z (w)] # 0. Thus, for (6), it is true that

Cr1
p—1
zo=1[I—Zw)" Z Z (w, Ok41) / e A0t179) (O (s,25) + Dg (5, 7.(5)) + E) ds. (7)
k=0
Cr

If we write the value of xg defined by (7) in equation (5), we get
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. Cr+1
Jj—1
z(t) = ZW)[I=2Z W) Z7 (Bkpr) / e ATICh (s, 24) ds
k=0 ¢
k
j—1 Ck+1
+ ZWO) I —Z W) Z7" (Orsr) / e A0 179) (Dg (s,2(5)) + E) ds
k=0 o
p—l <k+1
+ Y ZM[I-Z (W) Z (W) Z (Okr1) / e A=) Ch (s, 24) ds
k=j g
k
p—]. <k+1
+ > ZMI-Z W) Z(w) Z (Orsr) / e 0173 (Dg (s,2(5)) + E) ds
k=j Ck

t
+ /efA(tfs) (C’h (s,zs) + Dg (8, 737(3)) + E) ds.
i

We are ready to construct the Green function G, (¢,s), t,s € [0,w] for our model. If ¢ € [0;,0;41], § =
0,1,.,p—1,

ZO) = Z(w)] 71 Z 7 (Ops1)e™ 2O+ 5 € G,y Chyr) k<,
Gylt,s) = ZW — Z(w)] " Z(w)Z ™ (Opr1)e AO179) s € (G, Gorr) \ [Go ] K > 5,
Z()[I — Z(w)] " Z(w) Z ™ (O pr e As+175) o= AU=5) 5 ¢ [¢/ 4]

Using the Green function, we can express the periodic solution by the integral equation

2(0) = [ Gy(t.5) (Ch (s, + Dy (s,2,0) + E) ds. ®

Denote by H = m?x | |Gp (t,s)]] < co. Then we can state the following theorems, which give necessary
t,s€|0,w

conditions for existence, uniqueness, and exponential stability of the periodic solution (8).

Theorem 4.1 Let conditions (N1)-(N5), (N11), and (N12) and the inequality HLw < 1 be satisfied and the

matriz [I — Z (w)] be nonsingular. Then (1) admits a unique w-periodic solution.

Proof Let the complete metric space C,,(R) denote the set of all continuous and w-periodic functions on R.
Define on C,(R) an operator such that

Hg(t) = / Gp(t, s) (C’h (s, §s) + Dg (5,57(3)) + E) ds, (9)
0
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where t € [6;,6,11),7=0,1,2,...,p— 1 and

Z(OI — Z(w)] 7' Z7 (O g1)e 200179 s € [, Goyr) , K < 5,
Gylt,s) = ZW - Z(w)] " Z(w)Z (Opr1)e AO179) s € (G, Gorr) \ [Go ] b > 5

ZW) — Z(w)] " Z(w) Z ™ (Opr1)e AO179) o= 419 s e (¢ 1]

It can be seen that []: C,(R) — C,(R). Let u, v € C,(R), and then we have that

[TTu -TTeo| < [1Ge ol IeT Ints )~ sl as
0
4 [ UG DT g (51100 = 9 (5,009) | ds
0

< /fl (ICT] L |lus — vsllg + |DT| L9 [y ey — vycs)|l) d
0

< /ﬁLHu—des
0

< HLwl|u—vl,

which completes the proof. O

Theorem 4.2 In addition to the conditions of Theorem j.1, assume that conditions (N6)—(N10) are true. Then

(1) admits a unique exponentially stable w-periodic solution.

Proof Let u and v be the solutions of equation (3) with initial data (¢, ¢,v) and (tg,n, ), respectively.
Thus, we have

u(t)—v(t) = Z(tto)(¢(to) —n(to))

. Crt1
Jj—1
+>Z(t,0k41) / e A=) (B (s,us) — h(s,vs)) ds
k=1
Ck
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j—1 Cr+1
+Y 7 (t,0641) / e AH=ID (g (8, 15(5)) = 9 (5,09(5))) ds
k=1 Ck

¢
+/e_A(t_s)C (h(s,us) —h(s,vs))ds

G

¢

+/e’A(t*S)D (9 (5:uy(0) =9 (5:04(5))) ds.
G

Let w(t) =u(t) —v(t), and then w satisfies the following equation:

w(t) = Z(tto)(¢(to) —n(to))
Gi

7 (4 to) /e—A“o—S)c (h (s,15) — h (5,15 — w3)) ds
to
Gi
+Z (. to) /G_A(“_S)D (9 (5,ur() = 9 (8, Uy () = Wa(s))) ds
to
i Cesn
577 (4, 010n) / e~ A=) (1 (5, us) — h (5,15 — ws)) ds (10)
k=i Cr
i Chin
+ D7 (t,0k41) / =0 TID (g (5, t5(5)) = 9 (5t 5) — o)) ds
k=1 Cr

t
+/e‘A(t—s)C(h (s,us) = h (s, us —ws))ds
G

t

+/e‘A<t—s>D (9 (s:1y(5)) = 9 (5, Uy (5) = Wy(s))) ds.
i

Now consider equation (10) for to = 0 and take initial function wy, = ¢ (s) —n (s) where ty = 0 assuming that
v(0) <0. Let ||[¢(s) —n(s)|| <, s € [-7,0], where § > 0. Fix € > 0 and denote

K

Li;(6) = 2 Merny <K+ (1 n 1Kea§ )ea(j—i+1)§).

—o—ad

Take 6 so small that £;; () < e. Let 15 be the set of all continuous functions that are defined on [—7,00)
such that:

L owy, =¢(s) —n(s), s €[-7,0];

2. |lw )| < Lij (6) e3¢ if > 0;
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3. w(t) is uniformly continuous on [0, c0),

for all w € 9s5. Define on 15 an operator 1:[ such that

¢(t)*77(t)7t€ [77_30]7
Z (t,0)(¢(0) =0 (0)) +

Ci
+Z (t,0) OfeASC (h(s,us) —h(s,us —ws))ds

Ci
Z (t,0) OfeASD (9 (5,u4(5)) = 9 (5,u4(5) — Wr(s)) ) ds

j—1 Crt1
+ > Z(t,0k41) f e~ Alkr1—5) (h(s,us) — h(s,us —ws))ds
k % Ck

—1 Cht1

+ Z 2 t0e1) | e AOZID (g (515(0)) = 9 (8, 8(0) = Wr(s))) ds
k

+fefA tfs)c’(h (S,Us) —h (S,Us - ws))ds
G

t
+ [ e~ Al=s)p (g (S, ua,(s)) -9 (57 Uny(s) — wv(S))) ds,t > 0.
G

We shall verify that ﬁ 5 — 5. Let us take into account the condition (N6). Denote ||¢||; = sup ||¢ (¢)].

0,00)

Indeed, for ¢t > 0 it is true that

Ci

oo < Koo [F(CTIL uwul + D27 o) s

0
i1 Chgt
3o e [T Ll + D7 27 o) ds
b= S
t
4 [T (O | sl + D7) 22 o ) d
i
Ci
= Ke ™™ 6+/M|C’T|thér[1_a§70] lws (o) ds
0
Gi
et [T L7 max s, (0)] ds

Cr+1

Jj—1
+§ Keat=0ks1) /MCT L" max |ws(o)| ds
e : | | o€[—T,0] || ( )”
k
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Ck+1

j—1
+kz::iKe—a(t—9k+1) / M |DT}L9 ger?afo Hw’y g) )Hds
k

t
+/M (‘CT| ' ag[l_af,o] lws (o)II + [ D] L9 ag[l_af,o] [[wys) (U)H) s
G

Gi
Ke ot |5+ / M |CT| LMLy (5)e 5" ds
0
Gi
+Ke *at/M|DT|L9£” 5)e*%SeMe”‘5ds
0
j—1 Ck+1
+ZKe*°‘(t*0’“+1) /M|CT]Lh£ij(5)e*%seMds
b=t &
j—1 Cht1

—I—ZKe_a(t_G’““) /M]DT}Lgﬁij(é)e—%seme"?ds

b= Ck
+ / M (|C7| Ly (8)e 3% + [DT| LoLy;(8)e Fre7e) dis
G

Ke ™ [5+ ( )Mﬁm e (|CT| L + | DT| L9e?) o <<i—0)}

j—1
2 —_— o
D Kereltmoy (_a> MLi;()eT |CT] e 3 (0ramc)

i1
2\ — 7 _o
Ke @t=0k) ( _Z V777 (5)e® | DT| L9e*Pe % (Crr1—Ck)
+]§:i e - 1(6)e™ | DT| L9e*e

+(-2) Az (JCT| 2+ |7 o) 5
Ke™ 3! {5+ SML ()" (|CT| L + | DT| Loe w‘))}

+e~ tZKe St a9k+1 M»CU T (‘CT| Lh + |DT|Lq a9) ¢
k=i

+§M&j(5)em <|CT| L" +|D"| Lge@) e 51036
Ke 2! {5 + iMLiij@)e“Tm]
7j—1

o o 27
+e 2t E Ke™ 2te®t1 2N L£,5(5)e ny
o
k=i
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2__
—I——Mﬁij(é)emnle 5t a07+1
(6]

o 2
< Ke 2t |:(5—|— —M/Jij(é)emnl
[0
Je 3t Z (t=05+1) = (05110 11) o 50511 QMEW((S) Ty
k=1
2— aT St (19
—I——Mﬁij(é)e nie at+i
(6]
o 2 _ o Keo?
< Ke %! [5+ Mﬁij((S)eo”nl} T MEU((S) "
e} —e L
2— aT — St b
—|——M£ij(5)e nie 2 e™it!
«
<

Kefgt |:5 + zMLij(5)6a7n1:|

af
e B I 2L ey
2— aT —2¢ Oé('fi+1)§
+EMLU(5)€ nie” 2'e*V
< Lij(é)efft.

Let w!', w? € ¢5. Then we get

[Te' () = Z(t,0)(6(0) ~n(0)

G
Z (t,0) /eASC’ (h(s,us) — h (s,us —w})) ds
0
G
Z(t,0) /eASD (9 (5:u30) = 9 (30700 — whysy ) ) ds
0
i it
#3020 [ AOIC (s, — b (s~ wh)) ds
k=1 Ch
i1 it
+ZZ (t,Ot1) / e Ak p (9 (s:y5)) — 9 (S’“W(s) - wi(S))) ds
k=i Ch

t
+/e—A(t—S)D (g (s,uﬂ{(s)) —g (s,uv(s) — wi(s))) ds,
i
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Z(t,0) (¢ (0) —n (0))

Ci
Z (t,0) /eASC’ (h(s,us) — h (s,us —w?)) ds
0

¢
0) /eASD (g (8,uy(5)) — 9 (5’“7(8) - wﬁs))) ds
0

Ch+1

i—1

+]2: 7 (t, 0k+1) / efA(0k+1fS)C (h (57Us) —h (57us — ’LU?)) ds
k=i Cr
-1 Crt1

+ZZ (t,Oks1) / e A0n=)p (9 (5:uy(5)) — 9 (S’“v(s) - wi@))) ds
k=i Cr

t
+/67A(t75)0 (h (S7u€) - h (S,US - wf)) ds
i

¢
+/e_A(t—s)D (g (S,Uy(s)) —g (S,U/'y(s) - wi(s))) ds,
G

Ci
= Z(t,0) /eASC’ (=h (s,us —wy) + h (s,us —w?)) ds

Ci
+ Z(t,0) /eASD (—g (Syu'\/(s) - w;(s)) +9g (S, Ury(s) — wgy(S))) ds
0
-1 Ck+1
_ 7 t 9k+1 / e*A(ekJrl*S)Ch (3, Ug — ’u)i) ds
k=1 C
-1 Ch+1
Y -
=i Ck
-1 Ch+1
— S Z(t.6e1) / e 4015 g (s, Us(s) — “’%)) ds
k=1 ¢
k
-1 Crt1
+ Z(t,011) / efA(ek-%—l*S)Dg (5, Un(s) — w?y(s)) ds
k=1
Ck
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t
n /e_A(t—s)C(_h(S Us — W, )+h(5 ué—w2))ds
¢
t
n /e—A(t—S)D (—g (3, Uny(s) — w},(s)) +g (S7U’Y(S) - wi(s))) ds.

G

Let us take into account condition (N6). Thus, we attain that

IN

Gi
Ke—at/chm sup [Jw! — w?||, ds
[0,00)
0

T - T @ 1

+K _O‘t/M‘DT’Lg bup Hw'y(s ’27(5) OdS
i1 Cht1
3 et [ TCT L sup ud ]
k=i 00
Cr
Crt1
+ZKe—at Ok+1) / M‘DT| L9 sup Hwy(s w’2v(s) OdS
k=i Cr
t
/M\CTW sup ot = ], o
/ |DT| LY sup way(s wls) OdS
Gi
< K [T+ DT 19) swp [t ) ()] s
[0,00)
0
i1 Cht1
+ZKe—a(t—9k+1) / M‘CT‘ Lh sup le(t) - wQ(t)H ds
k=i & )
i1 Chg1
3 e [T DT L sup [t (t) - (1) ds
£ : [0,00)

t
+/M(\0T|Lh+ IDT| 29) sup [ () — w? ()| ds
[0,00)
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Gi
< K/muwl_w?\ylds
0
j—1 Ch41
+ ZKe_a(t_e’““) / ML ||w1 — w2H1 ds
k=i &
t
+/ML le - w2H1 ds
G
77 |2 Zeaé 1 2
< ML (9(K+1)+Klea0> lw' —w Hl
< L <K+1+K26“9>euw1 |
- 1—el 1

— 1+ 2e20 \ _
< ML <1+K> 0 ||w" —w?|,.
1—e 8 1
Now we show that there is no other solution of the initial value problem. Consider first the interval [0, 6],
0y < 0 < 6y. Assume on this interval that u, v are two different solutions of the problem. Denote w = u — v,

m = fn%}i llw(t)]], ™ > 0. Then we have
0,61

¢o
u(t) = Z(t,0)¢(0) +Z(t,0)/e’A(<°’S) (Ch (s,us) + Dg (s,u¢,) + E) ds
0
t
—|—/e_A(t_s) (Ch(s,us)+ Dy (s,uc,) + E) ds,
¢o
Co
v(t) = Z(t,0)¢(0)+ Z(¢,0) /e_A(CO_S) (Ch(s,vs)+ Dg(s,ve,) + E)ds
0
t
—I—/e_A(t_S) (Ch(s,vs) + Dg(s,ve,) + E)ds,
¢o
Co
w(t) = Z(t,o)/e—A<<o—s>c<h (5,1s) — B (5, s — wy)) ds
0
)
+2(60) [N ID (g (s,u¢) g (5., — ) ds
0
t
Jr/eiA(H) (C(h(s,us) = h(s,us —ws)) + D(g(s,ug) —g(s,ug —we,)))ds.
¢o
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Thus, we have that

Co
lo @®)] = M/ch!||h<s,us>—h<s,us—ws>uds
0
Co
M [ D7 g (5,6 = (5, — ) s
0

t
+/ch| 1B (5, 1) = h (5,0 — w,)]| ds
Co

¢
+/M‘DT| llg (s,uc,) — g (s,ue, —we,)| ds
Co
o
M [ T(CT| Ll + D7 L7
0

IN

0) ds

t
+ [T (T 2 el + D7 29 o ) ds
Co

IN

¢o t
M/MLdS-i—/ML ||w]| ds
0 o

< ML(1+ M)60max||wl| ds
[0,64]
< ML(1+ M)om. (11)

(11) contradicts condition (NN5). Now, using induction, one can easily prove the uniqueness for all ¢t > 0. O
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