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Abstract: An open type mixed quadrature rule is constructed blending the anti-Gauss 3-point rule with Steffensen’s

4-point rule. The analytical convergence of the mixed rule is studied. An adaptive integration scheme is designed based

on the mixed quadrature rule. A comparative study of the mixed quadrature rule and the Gauss–Laguerre quadrature

rule is given by evaluating several improper integrals of the form
∞∫
0

e−xf(x)dx . The advantage of implementing mixed

quadrature rule in developing an efficient adaptive integration scheme is shown by evaluating some improper integrals.

Key words: Anti-Gaussian quadrature rule, mixed quadrature rule, adaptive integration scheme, improper integrals,
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1. Introduction

The numerical quadrature rules are broadly classified into two categories, namely closed type quadrature rules

and open type quadrature rules. A quadrature rule

b∫
a

f(x)dx ≈
n∑

k=1

wkf(xk), x1 < x2 < · · · < xn

is said to be of closed type if the function evaluation is needed at the end points of the interval [a, b] .

A quadrature rule is said to be of open type if both the end points are omitted from the evaluation of

function. Newton–Cotes quadrature rules and Lobatto quadrature rules are examples of closed type rules

whereas Steffensen’s quadrature rules, Gauss–Legendre quadrature rules, and anti-Gauss quadrature rules are

examples of open type rules. Open type quadrature rules are more useful for evaluation of singular integrals.

The idea of Gaussian quadrature is to give ourselves the freedom to choose not only the weighting

coefficients but also the location of the abscissas at which the function is to be evaluated: they will no longer

be equally spaced. Thus, we will have twice the number of degrees of freedom at our disposal; it will turn out

that we can achieve Gaussian quadrature formulae whose order is, essentially, twice that of the Newton–Cotes

formulae with the same number of function evaluations. High order is not the same as high accuracy. High order

translates to high accuracy only when the integrand is very smooth, in the sense of being “well-approximated

by a polynomial”.
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There is, however, one additional feature of Gaussian quadrature formulae that adds to their usefulness.

We can arrange the choice of weights and abscissas to make the integral exact for a class of integrands

“polynomial times some known function W (x)” rather than for the usual class of integrands “polynomials”.

The function W (x) can then be chosen to remove integrable singularities from the desired integral. For different

weight functions there are different Gaussian quadrature rules, like for weight function W (x) =
1√

1− x2
and

W (x) = e−x the corresponding Gaussian quadratures are referred to as Gauss–Chebyshev and Gauss–Laguerre

quadrature, respectively.

It is natural to take the challenge that if we have a task to integrate an improper integral numerically

over [0,∞) then what would be our initial approach; anybody can have the intuition that certainly it would

aim at Gauss–Laguerre quadrature. Let us discuss the problem follows.

Let us integrate f(x) =
1√
x

over [0,∞). Obviously this integral is an improper integral of both first and

second kind since f(x) is undefined at x = 0 and the upper limit of the integral is infinite. Now the important

thing is that if we are still looking to integrate this function then the following primary problems will arise:

(i) How could we remove the singularity?

(ii) Can we still take the continuous interval?

(iii) How can the integral be set to converge?

The answer to the first question is that if we can punch a weight on the integrand then we might be

able to remove the singularities, i.e. particularly for Gauss–Laguerre quadrature over [0,∞) we choose weight

function W (x) = e−x and then integrate W (x)f(x) = e−xf(x) over [0,∞).

The answer to the second question is, for a certain precision, instead of the continuous set of points we

look for a discrete set of points where we can approximate the integrand exactly with the help of a polynomial,

i.e.

∞∫
0

W (x)f(x)dx ≈
n∑

j=1

wjf(xj)

is exact if f(x) is a polynomial. As per everyone’s knowledge for Laguerre quadrature, the nodes are the zeros

of the Laguerre polynomial.

Now let us go back to our third question. The convergence of the integrand can only be set in force if

we can have a good choice of weight function, i.e. to say the convergence of the integral now depends upon the

convergence of the weight function W (x). Specifically for Laguerre quadrature we choose W (x) = e−x because

it is a rapidly decreasing function over [0,∞) and it helps f(x) to converge exponentially. Let us go back to our

first example, i.e. f(x) =
1√
x
. Now we draw the graphs of f(x) =

1√
x
, W (x) = e−x , and W (x)f(x) = e−x 1√

x

over [0, 1] first (shown in Figure 1).

This graph shows the behavior of the three functions in [0, 1]. Needless to say, these three graphs are

decreasing, but which one is the fastest? This probably better clarified in Figure 2 by increasing the domain to

[0, 10) and restricting range to [0, 1].
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Figure 1. Plotting of
1√
x
, e−x , and e−x 1√

x
over [0, 1] . Figure 2. Plotting of

1√
x
, e−x , and e−x 1√

x
over [0, 10] .

Figure 2 gives us a clear vision that the convergence of e−x 1√
x

is much much faster than the other two.

That is why we need a weight function that helps the integral to converge. The necessity of W (x) = e−x in

Laguerre quadrature now becomes distinct. Though
1√
x

is decaying, it is not defined at x = 0 and obviously

the integral becomes unbounded as x approaches ∞ .

Figure 3 shows the nodes and weights for several values of n of Laguerre quadrature. Since the domain

of integration [0,∞) is infinite, the quadrature nodes xj get larger and larger. As the nodes get larger, the

corresponding weights decay rapidly.

Figure 3. Nodes and weights of Gauss–Laguerre quadrature for various values of n . In each case, the location of

the vertical line indicates xj , while the height of the line shows log10 wj . Note that the horizontal axis is scaled

logarithmically. As n increases the quadrature rule includes larger and larger nodes to account for the infinite domain

of integration; however, the weights are exceptionally small for the larger nodes. For example, for n = 16, w16 ≈ 10−23 .

Another important thing to be stated here is that in every Gaussian quadrature we are approximating

through an orthogonal polynomial and in Laguerre quadrature we are taking the Laguerre polynomial, which

is also orthogonal. The reason behind this is whenever a function fails to give value at a certain point or has

holes in the specified domain then this orthogonal polynomial smoothens the function by making a bridge over

the holes and gives its own zeros as our nodes to evaluate our integrals. If we increase the order, the function

starts merging with the orthogonal polynomial, which can be seen in Figure 4.
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Figure 4. The function f(x) = e−
1
2
x2

and the representation of f(x) in an expansion of Laguerre polynomials of

order n .

The method of mixed quadrature is a new method of enhancing the precision of quadrature. This was

first coined by Das and Pradhan [7]. In this method a quadrature rule of higher precision is formed by taking the

linear/convex combination of two or more quadrature rules of equal lower precision. In the literature, precision

of quadrature rules was enhanced through either Richardson extrapolation or Kronrod extension. Richardson

extrapolation gives us a family of formulae of higher precision, taking into account a trapezoidal formula as the

base formula (refer to [1, 2, 13, 16]). On the other hand, [11, 15] presented quadrature rules of higher precision

by taking Gaussian quadrature as the base rule. These methods of precision enhancement, each having single

base rule, are very much cumbersome, but the enhancement of precision by mixed quadrature approach with

the aid of two rules is very simple and easy to handle. Das and Dash [4–6, 8] were the first to use the mixed

quadrature rule for approximation of real definite integrals in an adaptive environment.

For evaluation of improper integrals of the form

∞∫
0

e−xf(x)dx, (1.1)

usually Gauss–Laguerre type of rules are used, but the Gauss–Laguerre quadrature rules are not suitable for

adaptive integration schemes since they are used only when the interval of integration is [0,∞).

In this paper our attempt is to evaluate (1.1) efficiently in the adaptive integration scheme as described

in [3, 9] using an alternative mixed quadrature rule as the base rule.

As Steffensen’s 4-point rule and the anti-Gauss 3-point rule are of same precision (i.e. precision-3), we

have constructed a mixed quadrature rule of higher precision (i.e. precision-5) taking the convex combination

of these two rules. This mixed rule is called an open type rule as the two constituent rules are of open type.

To apply the quadrature/mixed quadrature rule for evaluation of
∞∫
0

e−xf(x)dx in adaptive integration

schemes we transform the interval of integration from [0,∞) to [0, 1] as
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∞∫
0

e−xf(x)dx =

1∫
0

f

(
ln

(
1

x

))
. (1.2)

Here we have designed a new adaptive integration scheme involving the above mixed quadrature rule

and its constituent rules. Using the scheme some improper test integrals have been evaluated and the results

are compared with the results obtained by the Gauss–Laguerre quadrature rules. For numerical computation in

respect to Gauss–Laguerre quadrature we have taken the nodes and corresponding weights from Table 1. The

results are reflected in Tables 2, 3, and 4. A comprehensive conclusion is given at the end.

Table 1. Nodes and weights for Gauss–Laguerre quadrature rules.

n Nodes xk Weights λk

1 0.5857864376 0.8535533906

3.4142135624 0.1464466094

2 0.4157745568 0.7110930099

2.2942803603 0.2785177336

6.2899450829 0.0103892565

3 0.3225476896 0.6031541043

1.7457611012 0.3574186924

4.5366202969 0.0388879085

9.3950709123 0.0005392947

4 0.2635603197 0.5217556106

1.4134030591 0.3986668111

3.5964257710 0.0759424497

7.0858100059 0.0036117587

12.6408008443 0.0000233700

4 0.2228466042 0.4589646740

1.1889321017 0.4170008308

2.9927363261 0.1133733821

5.7751435691 0.0103991975

9.8374674184 0.0002610172

15.9828739806 0.0000008985

2. Basic quadrature rules

The general problem of the numerical integration/quadrature rule is to find an approximate value of the integral

I(f) =

b∫
a

w(x)f(x)dx, (2.1)

where w(x) > 0 on [a, b] and w(x)f(x) is integrable in the Riemann sense in [a, b] . The quadrature rule (2.1)

can be written in the form
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I(f) =

b∫
a

w(x)f(x)dx ≈
n∑

i=0

wif(xi), (2.2)

where xi, i = 0(1)n are called the nodes distributed within the limits of integration.

wi, i = 0(1)n are called the weights of the quadrature rule. The error of approximation is given as

En(f) = I(f)−
n∑

i=0

wif(xi). (2.3)

2.1. Steffensen’s quadrature rules

Steffensen’s quadrature rules are of open type Newton–Cotes quadrature rules [13]. These rules may be used

when the function has singularity at the end points or the values of the function are known at the end points.

These rules are useful to solve differential equations numerically when the function values at the end points are

not available.

2.1.1. Steffensen’s 4-point rule

b∫
a

f(x)dx =
5h

24
[11f(a+ h) + f(a+ 2h) + f(a+ 3h) + 11(a+ 4h)] + E4 (2.4)

where h =
b− a

5

and E4 =
95

144
h5f (iv)(ξ), a < ξ < b. (2.5)

The degree of the precision of the rule (2.4) is 3.

2.2. Gauss–Laguerre quadrature rule

The Gauss–Laguerre quadrature rule [14] is a Gaussian quadrature over the interval [a, b] with the weight

function ψ(x) = e−x . The general form is

∞∫
0

e−xf(x)dx =
n∑

k=1

λkf(xi). (2.6)

The nodes x′is are the zeros of the Laguerre polynomial [1, 10, 14]

Ln(x) = (−1)nex
dn

dxn
(e−xxn), (2.7)

which satisfies the recurrence relation

xL′
n(x) = nLn(x)− nLn−1(x). (2.8)

The weights λi s are given by

λk =
1

xk[L′
n(xi)]

2
=

xk
(n+ 1)2[Ln+1(xk)]2

. (2.9)
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The error term is

E =
(n!)2

(2n)!
f (2n)(ξ), 0 < ξ <∞. (2.10)

2.3. Anti-Gaussian quadrature rule

Laurie [12] was the first to coin the idea of the anti-Gaussian quadrature rule. An anti-Gaussian n + 1 point

quadrature rule is a rule whose degree of precision is 2n− 1. It integrates polynomials of degree up to 2n+ 1

with an error equal in magnitude but of opposite sign to that of the n -point Gaussian rule.

Using this idea of Laurie, we construct an anti-Gauss 3-point rule of precision 3 from the Gauss–Legendre

2-point rule as follows.

The Gauss–Legendre 2-point rule is

1∫
−1

f(x)dx ≈ RGL2(f) = f

(
−1√
3

)
+ f

(
1√
3

)
. (2.11)

The anti-Gauss 3-point rule RaG3(f) is taken as

RaG3(f) =
2∑

i=0

wif(xi) = w0f(x0) + w1f(x1) + w2f(x2), (2.12)

where wi s are weights and xi s are the distinct points (nodes) in the interval [−1, 1].

The rule is so designed that the error associated with the anti-Gaussian 3-point rule is equal to the

negative of the error associated with Gauss–Legendre 2-point rule. That is,

I(f)−RaG3(f) = −(I(f)−RGL2(f)) (2.13)

or

RaG3(f) = 2I(f)−RGL2(f). (2.14)

The evaluation of the unknown weights and nodes is based on the following preconditions:

(i) The rule is exact for all polynomials of degree ≤ 3.

(ii) The rule integrates all polynomials of degree up to 5 with an error equal in magnitude and opposite

in sign to that of Gauss–Legendre 2-point rule.

Thus, we obtain a system of six equations having six unknowns, namely wi, xi (i = 1, 2, 3).

w0 + w1 + w2 = 2

w0x0 + w1x1 + w2x2 = 0

w0x
2
0 + w1x

2
1 + w2x

2
2 =

2

3

w0x
3
0 + w1x

3
1 + w2x

3
2 = 0

w0x
4
0 + w1x

4
1 + w2x

4
2 =

26

45

w0x
5
0 + w1x

5
1 + w2x

5
2 = 0
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Solving the system of equations we get, w0 =
5

13
= w2 , w1 =

16

13
, x0 = −

√
13

15
, x1 = 0, x2 =

√
13

15
.

Substituting these into equation (2.12), we get

1∫
−1

f(x)dx ≈ RaG3(f) =
1

13

[
5f

(
−
√

13

15

)
+ 16f(0) + 5f

(√
13

15

)]
. (2.15)

This is anti-Gauss 3-point rule. The error associated with the rule (2.15) is

EaG3(f) = − 1

135
f (iv)(ξ), −1 < ξ < 1. (2.16)

Hence, the degree of precision of the anti-Gauss 3-point rule is 3.

3. Construction of mixed quadrature rule of precision five

A mixed quadrature rule of precision five is constructed by using the following two quadrature rules:

(i) anti-Gauss 3-point rule (RaG3
(f));

(ii) Steffensen’s 4-point rule (RSt4(f)).

The anti-Gauss 3-point rule (RaG3(f)) is

I(f) =

∫ 1

−1

f(x)dx ≈ RaG3(f) =
1

13

[
5f

(
−
√

13

15

)
+ 16f(0) + 5f

(√
13

15

)]
. (3.1)

Steffensen’s 4-point rule (RSt4(f)) is

I(f) =

1∫
−1

f(x)dx ≈ RSt4(f)

=
1

12

[
11f

(
−3

5

)
+ f

(
−1

5

)
+ f

(
1

5

)
+ 11f

(
3

5

)]
.

(3.2)

Each of these rules, (3.1) and (3.2), is of precision 3. Let EaG3(f) and ESt4(f) denote the errors in approxi-

mating the integral I(f) by rules (3.1) and (3.2), respectively.

Then,

I(f) = RaG3(f) + EaG3(f), (3.3)

I(f) = RSt4(f) + ESt4(f). (3.4)

Assuming f(x) to be continuously differentiable in −1 ≤ x ≤ 1, and using Maclaurin’s expansion of function

f(x), we can express the errors associated with the quadrature rules under reference as

EaG3
(f) = − 1

135
f (iv)(0)− 1016

7!× 675
f (vi)(0)− · · · (3.5)

ESt4(f) =
38

5625
f (iv)(0) +

13136

7!× 9375
f (vi)(0) + · · · (3.6)
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Now multiplying equations (3.3) and (3.4) by
38

125
and

1

3
respectively, and then adding the results, we obtain

I(f) =
1

239
(114RaG3(f) + 125RSt4(f)) +

1

239
(114EaG3(f) + 125ESt4(f))

or I(f) = RaG3St4(f) + EaG3St4(f), (3.7)

where RaG3St4(f) =
1

239
(114RaG3(f) + 125RSt4(f)), (3.8)

EaG3St4(f) =
1

239
(114EaG3(f) + 125ESt4(f)). (3.9)

Equation (3.8) expresses the desired mixed quadrature rule for the approximate evaluation of I(f) and equation

(3.9) expresses the error generated in this approximation.

Substituting equations (3.5) and (3.6) into equation (3.9), we obtain

EaG3St4(f) =
32

7!× 2151
f (vi)(0) + · · · (3.10)

As the first term of EaG3St4(f) contains the sixth-order derivative of the integrand, the degree of precision of

the mixed quadrature rule is 5. It is called a mixed type rule as it is constructed from two different types of

rules of equal lower precision.

4. Error analysis of the mixed quadrature rule

An asymptotic error estimate and an error bound of the rule (3.8) are given in Theorems 4.1 and 4.2, respectively.

Theorem 4.1 Let f(x) be sufficiently differentiable function in the closed interval [−1, 1] . Then the error

EaG3St4(f) associated with the mixed quadrature rule is given by

|EaG3St4(f)| ≈
32

7!× 2151
|f (vi)(0)|.

Proof The proof follows from (3.10). 2

Theorem 4.2 The bound for the truncation error

EaG3St4(f) = I(f)−RaG3St4(f)

is given by

|EaG3St4(f)| ≤
38M

10755
|η2 − η1|, η1, η2 ∈ [−1, 1],

where M = max
−1≤x≤1

|f (v)(x)| .
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Proof We have

EaG3(f) ≈ − 1

135
f (iv)(η1), η1 ∈ [−1, 1];

ESt4(f) ≈
38

5625
f (iv)(η2), η2 ∈ [−1, 1].

Hence, EaG3St4(f) =
1

239
[114EaG3(f) + 125ESt4(f)]

≈ 38

10755

[
f (iv)(η2)− f (iv)(η1)

]
=

38

10755

η2∫
η1

f (v)(x)dx, (assuming η1 < η2).

From this we obtain |EaG3St4(f)| ≈

∣∣∣∣∣∣ 38

10755

η2∫
η1

f (v)(x)dx

∣∣∣∣∣∣
≤ 38

10755

η2∫
η1

|f (v)(x)|dx

or |EaG3St4(f)| ≤
38M

10755
|(η2 − η1)| ,

which gives only a theoretical error bound, as η1, η2 are unknown points in the interval [−1, 1]. It shows that

the error in the approximation will be less if the points η1, η2 are close to each other. 2

Corollary 4.1 The error bound for the truncation error EaG3St4(f) is given by

|EaG3St4(f)| ≤
76M

10755
.

Proof We know from Theorem 4.2 that

|EaG3St4(f)| ≤
38M

10755
|η2 − η1|, η1, η2 ∈ [−1, 1],

where M = max
−1≤x≤1

|f (v)(x)|.

Choosing |(η2 − η1)| ≤ 2, we have

|EaG3St4(f)| ≤
76M

10755
.

2

5. Algorithm for adaptive quadrature routine

Applying the constituent rules RaG3(f), RSt4(f) and the mixed quadrature rule (RaG3St4(f)), we have formed

a new adaptive integration scheme to evaluate improper integrals of the type (1.2). In this adaptive integration

scheme, the desired accuracy is sought by progressively subdividing the interval of integration according to the
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computed behavior of the integrand and applying the same formula over each subinterval. The algorithm for the

adaptive integration scheme is outlined using the mixed quadrature rule (RaG3St4(f)) in the following four steps.

Input: Function f : [a, b] → R and the prescribed tolerance ε .

Output: An approximation Q(f) to the integral I(f) =
b∫
a

f(x)dx such that |Q(f)− I(f)| ≤ ε .

Step 1: The mixed quadrature rule (RaG3St4(f)) is applied to approximate the integral I(f) =
b∫
a

f(x)dx .

The approximated value is denoted by (RaG3St4 [a, b]) .

Step 2: The interval of integration [a, b] is divided into two equal pieces, [a, c] and [c, b] . The mixed

quadrature rule (RaG3St4(f)) is applied to approximate the integral I1(f) =
c∫
a

f(x)dx and the approximated

value is denoted by (RaG3St4 [a, c]) . Similarly, the mixed quadrature rule (RaG3St4(f)) is applied to approximate

the integral I2(f) =
b∫
c

f(x)dx and the approximated value is denoted by (RaG3St4 [c, b]) .

Step 3: (RaG3St4 [a, c])+(RaG3St4 [c, b]) is compared with (RaG3St4 [a, b]) to estimate the error in

(RaG3St4 [a, c]) + (RaG3St4 [c, b]) .

Step 4: If | estimated error | ≤ ε

2
(termination criterion) then (RaG3St4 [a, c])+(RaG3St4 [c, b]) is accepted

Table 2. Numerical approximation of some improper integrals using Gauss–Laguerre 2-point, 3-point, and 4-point

quadrature rules (RGLag2(f)), (RGLag3(f)), (RGLag4(f)).

Approximate value (Q(f))
Integrals

Exact value I(f) RGLag2(f) RGLag3(f) RGLag4(f)

I1(f) =
∞∫
0

e−x

√
x
dx 1.77245385 1.94477 1.290822 1.350961

I2(f) =
∞∫
0

e−x cosxdx 0.5 0.570208 0.476520 0.502493

I3(f) =
∞∫
0

e−x sinx

x
dx 0.7853981634 0.794019 0.781780 0.785921

I4(f) =
∞∫
0

e−x

1 + x2
dx 0.62144962 0.647058 0.651006 0.636426

I5(f) =
∞∫
0

e−x
√
xdx 0.8862269254 0.923879 0.906440 0.8992802

I6(f) =
∞∫
0

e−x sinxdx 0.5 0.432459 0.496029 0.504879

I7(f) =
∞∫
0

e−x− 1
x dx 0.2797317636 0.264089 0.253158 0.260403

I8(f) =
∞∫
0

e−x log xdx –0.5772156649 –0.276651 –0.373671 –0.423307

I9(f) =
∞∫
1

e−x

x
dx 0.21938393439 0.210216 0.216399 0.218263

I10(f) =
∞∫
0

e−x log(1 + x)dx 0.5963473623 0.611005 0.5999141 0.597446
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as an approximation to I(f) =
b∫
a

f(x)dx . Otherwise, the same procedure is applied to [a, c] and [c, b] , allowing

each piece a tolerance of
ε

2
. If the termination criterion is not satisfied on one or more of the subintervals,

then those subintervals must be further subdivided and the entire process is repeated. When the process stops,

the addition of all accepted values yields the desired approximate value Q(f) of the integral I(f) such that

|Q(f)− I(f)| ≤ ε .

N.B. In this algorithm we can use any quadrature rule to evaluate real definite integrals in the adaptive

integration scheme.

6. Conclusion

(1) When results of the test integrals appearing in Tables 2 and 3 are compared with those of Table 4, one can

smartly derive the conclusion that the adaptive integration scheme of mixed quadrature in evaluation of

improper integrals using the mixed rule as the base rule is significantly a much better numerical quadrature

tool than Gauss–Laguerre quadrature rules.

(2) When results of Table 4 are analyzed, one can derive the conclusion that the adaptive integration scheme

having the mixed rule as the base rule is much better than the scheme having constituent rules (of mixed

Table 3. Comparative study of the quadrature/mixed quadrature rules RSt4(f) , RaG3(f) , and RaG3St4(f) for

approximating some improper integrals (as given in Table 2) in an adaptive environment.

Approximate value (Q(f)) by
Integrals

RSt4(f) #steps RaG3(f) # steps RaG3St4(f) #steps

I1(f) =
∞∫
0

e−x

√
x
dx 1.772452765 155 1.772455116 151 1.7724531660 81

I2(f) =
∞∫
0

e−x cosxdx 0.499999881 71 0.5000001008 71 0.499999841 31

I3(f) =
∞∫
0

e−x sinx

x
dx 0.785397034 49 0.78539947 49 0.78539671 19

I4(f) =
∞∫
0

e−x

1 + x2
dx 0.621449770 29 0.621449289 27 0.621449798 13

I5(f) =
∞∫
0

e−x
√
xdx 0.886226632 63 0.886227119 65 0.886226698 33

I6(f) =
∞∫
0

e−x sinxdx 0.4999999 103 0.5000000116 111 0.4999999701 41

I7(f) =
∞∫
0

e−x− 1
x dx 0.2797313121 37 0.2797321516 39 0.2797313572 17

I8(f) =
∞∫
0

e−x log xdx –0.577215394 97 –0.577215656 101 –0.577215475 49

I9(f) =
∞∫
1

e−x

x
dx 0.219384251 23 0.219383642 23 0.2193842303 13

I10(f) =
∞∫
0

e−x log(1 + x)dx 0.596346775 43 0.596347895 43 0.596347132 23

N.B. The prescribed tolerance is ε=0.000001. # steps: No. of steps.

All the computations are done using the ‘C’ program [5]. It is important to note that the results are corrected up to five

decimal places.
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quadrature RaG3St4(f)), Steffensen’s-4-point rule (RSt4(f), and the anti-Gauss 3-point rule (RaG3(f)) as

the base rules as far as the number of steps is concerned.

Table 4. Numerical approximation of some improper integrals (as given in Table 2) using Gauss–Laguerre 5-point and

6-point quadrature rules (RGLag5(f)), (RGLag6(f)).

Approximate value (Q(f))
Integrals

RGLag5(f) RGLag6(f)

I1(f) =
∞∫
0

e−x

√
x
dx 1.393054 1.424628

I2(f) =
∞∫
0

e−x cosxdx 0.500538 0.499737

I3(f) =
∞∫
0

e−x sinx

x
dx 0.785401 0.785379

I4(f) =
∞∫
0

e−x

1 + x2
dx 0.626377 0.621717

I5(f) =
∞∫
0

e−x
√
xdx 0.895537 0.893295

I6(f) =
∞∫
0

e−x sinxdx 0.498903 0.5000494

I7(f) =
∞∫
0

e−x− 1
x dx 0.268896 0.275142

I8(f) =
∞∫
0

e−x log xdx –0.453474 –0.473752

I9(f) =
∞∫
1

e−x

x
dx 0.218919 0.219176

I10(f) =
∞∫
0

e−x log(1 + x)dx 0.59674009 0.5965031

Finally, we conclude that the mixed rule adaptive integration scheme is a highly efficient scheme both

theoretically and practically.
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