# Reduction formula of a double binomial sum 

## Wenchang CHU*

School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, People's Republic of China

Received: 26.01.2017 • Accepted/Published Online: 09.05.2017 $\quad$ Final Version: 22.01 .2018


#### Abstract

A class of double sums with binomial coefficients are evaluated by combining finite differences with partial fraction decompositions.


Key words: Binomial coefficient, finite difference, partial fraction decomposition, telescoping method

## 1. Introduction and motivation

There has been always a constant interest in finding closed formulae of binomial sums, including double ones (for example, Chu [8]). In the process of evaluating the quadratic moments of binomial products (cf. Chu [9] and Miana-Romero[12]), we encountered the following double sum with the closed formula being detected by Mathematica commands:

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{2 m-2 j}{m-j} \sum_{i=0}^{j}\binom{2 m}{i}\binom{2 j-2 m}{j-i} \frac{(m-i)^{2 n+1}}{m-j}=0 \tag{1}
\end{equation*}
$$

where $m$ and $n$ are natural numbers with $m>n$ in order to avoid the appearance of zero in denominators.
For an integer $k$ and an indeterminate $\tau$, define the rising and falling factorials respectively by

$$
\begin{equation*}
(\tau)_{k}=\frac{\Gamma(\tau+k)}{\Gamma(\tau)} \quad \text { and } \quad\langle\tau\rangle_{k}=\frac{\Gamma(1+\tau)}{\Gamma(1+\tau-k)} \tag{2}
\end{equation*}
$$

Writing the binomial coefficients in terms of shifted factorials

$$
\begin{aligned}
& \binom{2 m-2 j}{m-j} \frac{1}{m-j}=\frac{(2 m-2 j)!}{(m-j)(m-j)!^{2}}=\frac{2\langle m\rangle_{j}^{2}}{\langle 2 m\rangle_{2 j+1}}\binom{2 m}{m} \\
& \binom{2 m}{i}=\frac{\langle 2 m\rangle_{i}}{i!},\binom{2 j-2 m}{j-i}=\frac{(-1)^{j-i}}{(j-i)!}\langle 2 m-i-j-1\rangle_{j-i}
\end{aligned}
$$

we can reformulate the following binomial product

[^0]\[

$$
\begin{aligned}
\frac{1}{m-j}\binom{2 m-2 j}{m-j}\binom{2 m}{i}\binom{2 j-2 m}{j-i} & =2(-1)^{j-i}\binom{2 m}{m} \frac{\langle m\rangle_{j}\langle m\rangle_{j}}{i!(j-i)!} \frac{\langle 2 m\rangle_{i}\langle 2 m-i-j-1\rangle_{j-i}}{\langle 2 m\rangle_{2 j+1}} \\
& =2(-1)^{j-i}\binom{2 m}{m} \frac{\langle m\rangle_{j}\langle m\rangle_{j}}{i!(j-i)!\langle 2 m-i\rangle_{j+1}} \\
& =2(-1)^{j-i}\binom{2 m}{m}\binom{m}{j}\binom{j}{i} \frac{\langle m\rangle_{j}}{\langle 2 m-i\rangle_{j+1}}
\end{aligned}
$$
\]

that can be used to express the double sum in question equivalently as

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{m}{j} \sum_{i=0}^{j}(-1)^{i}\binom{j}{i} \frac{\langle m\rangle_{j}}{\langle 2 m-i\rangle_{j+1}}(m-i)^{2 n+1}=0 \tag{3}
\end{equation*}
$$

Replacing further the integer parameter $m$ by an indeterminate $(-x)$ and introducing an extra integer parameter $\lambda$, we shall investigate the following double sum

$$
\begin{equation*}
\Omega(\lambda, n):=\sum_{j=0}^{n}\binom{x+j-1}{j} \sum_{i=0}^{j}(-1)^{i}\binom{j}{i} \frac{(x)_{j}}{(2 x+i)_{j+1}}(x+i)^{2 \lambda+1} \tag{4}
\end{equation*}
$$

It turns out that $\Omega(\lambda, n)$ is identical to zero for $0<\lambda \leq n$ and a polynomial in $x$ when $\lambda>n \geq 0$. This will be accomplished by combining finite differences (cf. Boole [1, Chapter 2]) with partial fraction decompositions (cf. Chu [4]).

## 2. Main theorem and proof

Rewriting the binomial coefficients

$$
\binom{x+j-1}{j}\binom{j}{i}=\binom{x+i-1}{i}\binom{x+j-1}{j-i}
$$

and interchanging the order of double sums, we can state $\Omega(\lambda, n)$ equivalently as

$$
\begin{align*}
\Omega(\lambda, n) & =\sum_{i=0}^{n}(-1)^{i}\binom{x+i-1}{i}(x+i)^{2 \lambda+1} \\
& \times \sum_{j=i}^{n}\binom{x+j-1}{j-i} \frac{(x)_{j}}{(2 x+i)_{j+1}} \tag{5}
\end{align*}
$$

For the sequence $\sigma_{j}$ defined below, it is trivial to check its difference

$$
\sigma_{j}=\frac{(x+i)_{j-i}(x)_{j}}{\Gamma(j-i)(2 x+i)_{j}} \text { and } \sigma_{j+1}-\sigma_{j}=(x+i)^{2}\binom{x+j-1}{j-i} \frac{(x)_{j}}{(2 x+i)_{j+1}}
$$

In view of the fact that " $\frac{1}{\Gamma(0)}=0$ ", the inner sum with respect to $j$ can be evaluated by telescoping (cf. [7, 13])

$$
\begin{aligned}
\sum_{j=i}^{n}\binom{x+j-1}{j-i} \frac{(x)_{j}}{(2 x+i)_{j+1}} & =\sum_{j=i}^{n} \frac{\sigma_{j+1}-\sigma_{j}}{(x+i)^{2}}=\frac{\sigma_{n+1}}{(x+i)^{2}} \\
& =\frac{(x+i)_{1+n-i}(x)_{n+1}}{(x+i)^{2}(n-i)!(2 x+i)_{n+1}}
\end{aligned}
$$

Substituting this equality into (5), we reduce it, after some simplification, to the following single sum.

Lemma 1 For the two natural numbers $\lambda$ and $n$, there holds the following identity:

$$
\Omega(\lambda, n)=\frac{(x)_{n+1}^{2}}{n!} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{(x+i)^{2 \lambda-1}}{(2 x+i)_{n+1}}
$$

Now we are in a position to prove the following interesting theorem, which confirms, in particular for $\lambda=n$, the double sum identities (1) and (3).

Theorem 2 Let $n$ and $\lambda$ be two natural numbers subject to $0<\lambda \leq n$. Then, for the double sum defined by (4), we have the following identity $\Omega(\lambda, n)=0$.

Proof For the rational function in the variable $i$, by decomposing it into partial fractions (cf. [2, 3])

$$
\begin{equation*}
\frac{(x+i)^{\lambda}}{(2 x+i)_{n+1}}=\frac{(-1)^{\lambda}}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{(x+j)^{\lambda}}{2 x+i+j} \tag{6}
\end{equation*}
$$

we can express the sum in Lemma 1 as the following double sums

$$
\begin{align*}
& \Omega(\lambda, n)=\frac{(x)_{n+1}^{2}}{(n!)^{2}} \sum_{i=0}^{n} \sum_{j=0}^{n}(-1)^{i+j+\lambda}\binom{n}{i}\binom{n}{j} \frac{(x+i)^{\lambda-1}(x+j)^{\lambda}}{2 x+i+j}  \tag{7}\\
& \Omega(\lambda, n)=\frac{(x)_{n+1}^{2}}{(n!)^{2}} \sum_{i=0}^{n} \sum_{j=0}^{n}(-1)^{i+j+\lambda}\binom{n}{i}\binom{n}{j} \frac{(x+i)^{\lambda}(x+j)^{\lambda-1}}{2 x+i+j} \tag{8}
\end{align*}
$$

where the last one is justified by interchanging the summation indices $i$ and $j$. Adding these two equalities together, we derive the following symmetric expression

$$
\begin{aligned}
2 \Omega(\lambda, n) & =\frac{(x)_{n+1}^{2}}{(n!)^{2}} \sum_{i=0}^{n} \sum_{j=0}^{n}(-1)^{i+j+\lambda}\binom{n}{i}\binom{n}{j}(x+i)^{\lambda-1}(x+j)^{\lambda-1} \\
& =(-1)^{\lambda} \frac{(x)_{n+1}^{2}}{(n!)^{2}}\left\{\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}(x+i)^{\lambda-1}\right\}^{2}
\end{aligned}
$$

The rightmost sum vanishes because it results in the $n$th differences of a polynomial with degree $\lambda-1$ less than $n$. This completes the proof of Theorem 2.

## 3. Convolution expression

When $\lambda=0$, the last sum can be evaluated by (6) as

$$
\sum_{i=0}^{n}\binom{n}{i} \frac{(-1)^{i}}{x+i}=\frac{n!}{(x)_{n+1}}
$$

From this formula, we can retrieve the respective particular case $\lambda=0$ for both Lemma 1 and Theorem 2

$$
\begin{align*}
& \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{1}{(x+i)(2 x+i)_{n+1}}=\frac{n!}{2(x)_{n+1}^{2}}  \tag{9}\\
& \sum_{j=0}^{n}\binom{x+j-1}{j} \sum_{i=0}^{j}(-1)^{i}\binom{j}{i} \frac{(x+i)(x)_{j}}{(2 x+i)_{j+1}}=\frac{1}{2} \tag{10}
\end{align*}
$$

When $\lambda>n$, we need the following equality, instead of (6)

$$
\frac{(x+i)^{n}}{(2 x+i)_{n+1}}=\frac{(-1)^{n}}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{(x+j)^{n}}{2 x+i+j} .
$$

Substituting this into the equation displayed in Lemma 1, we have

$$
\begin{aligned}
2 \Omega(\lambda, n) & =(-1)^{n} \frac{(x)_{n+1}^{2}}{(n!)^{2}} \sum_{i, j=0}^{n}(-1)^{i+j}\binom{n}{i}\binom{n}{j} \\
& \times \frac{(x+i)^{2 \lambda-n-1}(x+j)^{n}+(x+j)^{2 \lambda-n-1}(x+i)^{n}}{2 x+i+j} .
\end{aligned}
$$

Rewriting the last fraction by

$$
\begin{aligned}
& \frac{(x+i)^{2 \lambda-n-1}(x+j)^{n}+(x+j)^{2 \lambda-n-1}(x+i)^{n}}{2 x+i+j} \\
= & (x+i)^{n}(x+j)^{n} \frac{(x+i)^{2 \lambda-2 n-1}+(x+j)^{2 \lambda-2 n-1}}{(x+i)+(x+j)} \\
= & \sum_{k=1+n-\lambda}^{\lambda-n-1}(-1)^{\lambda-n-k-1}(x+i)^{\lambda+k-1}(x+j)^{\lambda-k-1},
\end{aligned}
$$

we derive the following polynomial expression.

Proposition 3 Let $n$ and $\lambda$ be two natural numbers subject to $\lambda>n$. Then for the double sum defined by (4), we have the following convolution formula

$$
\Omega(\lambda, n)=\frac{(x)_{n+1}^{2}}{2(n!)^{2}} \sum_{k=1+n-\lambda}^{\lambda-n-1}(-1)^{\lambda-k-1} P_{\lambda+k-1, n}(x) P_{\lambda-k-1, n}(x),
$$

where $P_{m, n}(x)$ is a polynomial defined by

$$
P_{m, n}(x)=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}(x+i)^{m} \quad \text { for } \quad m, n \in \mathbb{N} \quad \text { with } \quad m>n .
$$

Observing that $P_{m, n}(x)$ is essentially the $n$th differences of a monomial with the degree $m$ such that $m>n$, we assert (cf. [5, 6]) that $P_{m, n}(x)$ results in a polynomial of degree $m-n$ in $x$. In particular, we have $P_{m, n}(0)=n!S(m, n)$, where $S(m, n)$ is the Stirling number of the second kind (cf. [10, $\left.\S 5.1\right]$ and [11, $\left.\S 6.1\right]$ ).

According to Proposition 3, we can evaluate the double sum $\Omega(\lambda, n)$ for $\lambda>n$. The first three examples
are displayed below:

$$
\begin{align*}
\Omega(1+n, n)= & (-1)^{n} \frac{(x)_{n+1}^{2}}{2}  \tag{11}\\
\Omega(2+n, n)= & (-1)^{n} \frac{(n+1)(x)_{n+1}^{2}}{12}\left\{2 n^{2}+6 x n+n+6 x^{2}\right\}  \tag{12}\\
\Omega(3+n, n)= & (-1)^{n} \frac{(n+1)(n+2)(x)_{n+1}^{2}}{720}\left\{180 x^{2}(n+x)^{2}\right.  \tag{13}\\
& +120 n x(n+1)(n+x)+n(2 n+1)(2 n+3)(5 n-1)\}
\end{align*}
$$

In view of Lemma 1, they correspond to the following binomial identities:

$$
\begin{align*}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{(x+i)^{2 n+1}}{(2 x+i)_{n+1}}= & (-1)^{n} \frac{n!}{2},  \tag{14}\\
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{(x+i)^{2 n+3}}{(2 x+i)_{n+1}}= & (-1)^{n} \frac{(n+1)!}{12}\left\{2 n^{2}+6 x n+n+6 x^{2}\right\},  \tag{15}\\
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{(x+i)^{2 n+5}}{(2 x+i)_{n+1}}= & (-1)^{n} \frac{(n+2)!}{720}\{120 n x(n+1)(n+x)  \tag{16}\\
& \left.+180 x^{2}(n+x)^{2}+n(2 n+1)(2 n+3)(5 n-1)\right\} . \tag{17}
\end{align*}
$$

## Acknowledgement

The author is sincerely grateful to the anonymous referees for the careful reading and the valuable comments.

## References

[1] Boole G. A Treatise on the Calculus of Finite Differences. London, UK: Macmillan, 1872.
[2] Cao J, Chu W. Two transformations for a binomial sum. Math Commun 2016; 21: 219-225.
[3] Chu W. Partial-fraction decompositions and harmonic number identities. J Combin Math Combin Comput 2007; 60: 139-153.
[4] Chu W. Partial fraction decompositions and trigonometric sum identities. P Am Math Soc 2008; 136: 229-237.
[5] Chu W. Finite differences and determinant identities. Linear Algebra Appl 2009; 430: 215-228.
[6] Chu W. Finite differences and Dixon-like binomial sums. Integr Transf Spec F 2012; 23: 251-261.
[7] Chu W. Telescopic generalizations for two ${ }_{3} F_{2}$-series identities. Math Slovaca 2012; 62: 689-694.
[8] Chu W. Further double sums of Dunkl and Gasper. Results Math 2017; DOI 10.1007:s00025-016-0594-z.
[9] Chu W. Moments on quadratic binomial products. J Number Theory 2017; 178: 19-30.
[10] Comtet L. Advanced Combinatorics. Dordrecht, the Netherlands: Springer, 1974.
[11] Graham RL, Knuth DE, Patashnik O. Concrete Mathematics. Reading, MA, USA: Addison-Wesley Publ. Company, 1989.
[12] Miana PJ, Romero N. Moments of combinatorial and Catalan numbers. J Number Theory 2010; 130: 1876-1887.
[13] Zeilberger D. The method of creative telescoping. J Symb Comput 1991; 11: 195-204.


[^0]:    *Correspondence: chu.wenchang@unisalento.it
    2010 AMS Mathematics Subject Classification: Primary 05A10 and Secondary 11B65

