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Reduction formula of a double binomial sum
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Abstract: A class of double sums with binomial coefficients are evaluated by combining finite differences with partial

fraction decompositions.
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1. Introduction and motivation

There has been always a constant interest in finding closed formulae of binomial sums, including double ones
(for example, Chu [8]). In the process of evaluating the quadratic moments of binomial products (cf. Chu [9]
and Miana—Romero[12]), we encountered the following double sum with the closed formula being detected by

Mathematica commands:

SR ) »

j=0 i=0

where m and n are natural numbers with m > n in order to avoid the appearance of zero in denominators.
For an integer k£ and an indeterminate 7, define the rising and falling factorials respectively by
I(t+ k)

(T = W and (7)p =

r(1+7)
Frl+7—k)

Writing the binomial coefficients in terms of shifted factorials
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we can reformulate the following binomial product
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that can be used to express the double sum in question equivalently as

J= O i=

Replacing further the integer parameter m by an indeterminate (—z) and introducing an extra integer param-

eter A\, we shall investigate the following double sum

Q(\,n) = i <x e 1) i(—l)i (Z) (256(;6)@]%“@ + i) (4)

=0 J i=0

It turns out that Q(A,n) is identical to zero for 0 < A < n and a polynomial in  when A > n > 0. This will
be accomplished by combining finite differences (cf. Boole [1, Chapter 2]) with partial fraction decompositions
(cf. Chu [4]).

2. Main theorem and proof

Rewriting the binomial coefficients

(000

and interchanging the order of double sums, we can state Q(\, n) equivalently as

n

Z <x+2_1>(x+i)2’\+1

3 (‘” - ) @,
j:i -] —1 (QZ‘ + Z)j+1
For the sequence o defined below, it is trivial to check its difference

_ (x+1i);-i(x); and orer — o = (r 2 (TTI1 _ (@)
%G =)@ 1), T ( +)< j—i >(2x+i)j+1'

In view of the fact that ¢ ﬂ =07, the inner sum with respect to j can be evaluated by telescoping (cf. [7, 13])

S(rhi-1\ (@) N~ s
Z( Jj—1 )(2$+i)j+1 N Z (x+40)2  (x+1i)2

(4 9)14n—i(T)nt1
(x4 8)2(n — )22 + i)ns1

Substituting this equality into (5), we reduce it, after some simplification, to the following single sum.
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Lemma 1 For the two natural numbers X\ and n, there holds the following identity:

($)3L+1 n () (z+ i)2>‘*1
Q(\,n) = (=D ) ——.
i=0 <Z>

n! 2z 4+ 1)p41

Now we are in a position to prove the following interesting theorem, which confirms, in particular for
A = n, the double sum identities (1) and (3).

Theorem 2 Let n and A be two natural numbers subject to 0 < A < n. Then, for the double sum defined by
(4), we have the following identity Q(A,n) =0.
Proof For the rational function in the variable ¢, by decomposing it into partial fractions (cf. [2, 3])

(z+ 1) N < n\ (z+5)*
(2$+i)n+1 B JZ: ( )233—1-14-J (6)

we can express the sum in Lemma 1 as the following double sums

Q(\n) = "“ZZ Z““()(?)(H;f:ff;j)k’ ™)

=0 j=0

Q\, n+1 Z Z z+]+>\( > (;l) (z +;:ﬁ¢;)“ ’ ®)

1=0 j=0

where the last one is justified by interchanging the summation indices i and j. Adding these two equalities

together, we derive the following symmetric expression

20\, n) (fj‘);l Zn: zn:(—l)"““ (TZ) (?) (z+i) (@ + )™

i=0 j=0

Ol Sy (i)

=0

The rightmost sum vanishes because it results in the nth differences of a polynomial with degree A\ — 1 less

than n. This completes the proof of Theorem 2. O

3. Convolution expression

When A =0, the last sum can be evaluated by (6) as

i <n> (-1)*  nl
“\i)at+i (@)1

From this formula, we can retrieve the respective particular case A = 0 for both Lemma 1 and Theorem 2

n in 1 _ nl
2 (=1 () G ) O 2@y ©)

1=0
> () e () e -4
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When A > n, we need the following equality, instead of (6)

(x+29)"  _ (=" En:(—l)j <n> (x4 5)"

(22 4 i) 41 nl = Jj)2x+i+j
Substituting this into the equation displayed in Lemma 1, we have

v = e 3t (1) ()

(@+ )2 " a4 5)" + (@ + )P e +d)"
20 +1+ '

Rewriting the last fraction by

(z+ )P " a4 5)" + (@ + )P +6)"
2r 41473
(x+z')2)\72n71 4 (x+j)2)\72n71
(x41) + (z +j)

@+ i) @+ )"

A—n—1
— Z (_1))\7n7k71<x + i))\+k71($ _|_j))\fk71’
k=14+n—X
we derive the following polynomial expression.

Proposition 3 Let n and \ be two natural numbers subject to A\ > n. Then for the double sum defined by

(4), we have the following convolution formula

_2(7:';21 > DM P 1 (@) Paogo1 (),
: k=14+n—X\

where P, () is a polynomial defined by

Ppon(z) = Z(—l)"’i <TZL) (x+0)™ for m,meN with m>n.
i=0

Observing that P, ,(x) is essentially the nth differences of a monomial with the degree m such that
m > n, we assert (cf. [5, 6]) that P, ,(z) results in a polynomial of degree m —n in . In particular, we have

P, »(0) = n! S(m,n), where S(m,n) is the Stirling number of the second kind (cf. [10, §5.1] and [11, §6.1]).

According to Proposition 3, we can evaluate the double sum Q(A,n) for A > n. The first three examples
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are displayed below:

Q(l+n,n) = (_1)"%, (11)
Q2+n,n) = (7071%{27@2 + 62n +n + 627}, (12)
OB +nn) = (-1 (n+ 1)(n7;02)($)72z+1 {180$2(n +)? (13)

+120nz(n 4+ 1)(n + ) + n(2n +1)(2n + 3)(5n — 1)}

In view of Lemma 1, they correspond to the following binomial identities:

= n\ (z +i)*n+! n!
>0 (7)ol =1, (19

i=0
i )\ (x4 g)2nt3 n |
;(_1)1<Z‘> 52;9‘)1%—&-1 :(_1)n%{2n2+6xn+n+6x2}7 (15)
n In T i2n+5 n !
3 (1) gy =" {netn "
+18022(n + 2)% + n(2n + 1)(2n + 3)(5n — 1)}. (17)
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