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Abstract: The oscillation and nonoscillation theories for nonlinear systems have recently received a lot of attention. We

consider a two-dimensional time-scale system and find the oscillation criteria for solutions of the system by using some

improper integrals and inequalities. We also give a few examples in order to highlight our main results.
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1. Introduction

In this paper, motivated by [22], we deal with the system{
x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(t)) + c(t),
(1)

where a, b ∈ Crd ([t0,∞)T,R+) , c ∈ Crd ([t0,∞)T,R), and f and g are nondecreasing functions such that

uf(u) > 0, ug(u) > 0 for u ̸= 0 and g is continuously differentiable. A time scale T , a nonempty closed

subset of real numbers, was introduced by Stefan Hilger in his PhD thesis in 1988 in order to harmonize discrete

and continuous analyses to combine them in one comprehensive theory and eliminate obscurity from both.

The time-scale theory was published in a series of two books by Bohner and Peterson in 2001 and 2003; see

[3, 4]. Throughout this paper, we assume that T is unbounded above and whenever we write t ≥ t1 we mean

t ∈ [t1,∞)T := [t1,∞) ∩ T . Some oscillation and nonoscillation results for the nonlinear equation(
a(t)x∆(t)

)∆
+ b(t)g(xσ(t)) = c(t) (2)

and the system {
x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(xσ(t)) + c(t)
(3)

and for some variations of systems (1) and (3) are shown in [14, 15, 18, 22]. A solution (x, y) of system (1)

is called oscillatory if x and y have arbitrarily large zeros. System (1) is called oscillatory if all solutions are

oscillatory.

The set up of this paper is as follows: in Section 1, we give the preliminary lemmas and the time-scale

calculus used in our main results. In Section 2, we give our main results by using convergence/divergence of
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some certain improper integrals. In Section 3, we give an example in order to emphasize one of our main results.

Finally, we finish the last section by giving open problems and applications.

We give the following preliminaries in order to use them in our proofs. One can find details in [3, 16].

Proposition 1 (Comparison Theorem) [16, Theorem 4.2] Suppose h : R → R is nondecreasing and z1 :

T → R is such that h ◦ z1 is rd-continuous. Let p ≥ 0 be rd-continuous and α ∈ R. Then

z1(t) ≤ α+

∫ t

t0

p(τ)h(z1(τ))∆τ, t ≥ t0

implies z1(t) ≤ z2(t) , where z2 solves the initial value problem

z∆2 (t) = p(t)h(z2(t)), z2(t0) = z20 > α.

Proposition 2 (Quotient Rule) [3, Theorem 1.20 v] Assume h1, h2 : T → R are differentiable at t ∈ Tκ

and h2(t)h2(σ(t)) ̸= 0. Then h1

h2
is differentiable at t and(

h1

h2

)
(t) =

h∆
1 (t)h2(t)− h1(t)h

∆
2 (t)

h2(t)h2(σ(t))
.

Proposition 3 (Chain Rule) [3, Theorem 1.90] Let h1 : R → R be continuously differentiable and suppose

h2 : T → R is delta differentiable. Then h1 ◦ h2 : T → R is delta differentiable and the formula

(h1 ◦ h2)
∆(t) =

{∫ 1

0

h′
1(h2(t) + hµ(t)h∆

2 (t))dh

}
h∆
2 (t)

holds.

Proposition 4 (Integration by parts) [3, Theorem 1.77 vi] If a, b ∈ T and h1, h2 ∈ Crd, then∫ b

a

h1(t)h
∆
2 (t)∆t = (h1h2)(b)− (h1h2)(a)−

∫ b

a

h∆
1 (t)h2(σ(t))∆t

holds.

For the sake of simplicity in our proofs, let us set

A(t, s) =

∫ s

t

a(u)∆u, B(t, s) =

∫ s

t

b(u)∆u,

C(t, s) =

∫ s

t

|c(u)|∆u, D(t, s) =

∫ s

t

(
b(u)− c(u)

g(x(u))

)
∆u,

I(t, s) =

∫ s

t

yσ(u)x∆(u)
∫ 1

0

[
g′
(
x(u) + hµ(u)x∆(u)

)
dh

]
g(x(u))g(xσ(u))

∆u.

Since the following lemma was proved by Anderson [1] for the component functions x and y in the case

c(t) ≡ 0, we skip the proof because they are very similar.
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Lemma 1.1 Let (x, y) be a nonoscillatory solution of system (1). Then the component function x is also

nonoscillatory.

Lemma 1.2 Suppose that (x, y) is a nonoscillatory solution of system (1) and t1, t2 ∈ T . If there exists a

constant K > 0 such that

H(t) ≥ K, t ≥ t2, (4)

where H is defined as

H(t) = − y(t1)

g(x(t1)
+D(t1, t) + I(t1, t2), (5)

then y(t) ≤ −Kg(x(t2)), t ≥ t2.

Proof Suppose that (x, y) is a nonoscillatory solution of system (1). Then by Lemma 1.1 we have that x

is also nonoscillatory. Without loss of generality, assume that x(t) > 0 for t ≥ t1 ≥ t0 , where t1, t0 ∈ T .

Integrating the second equation of system (1) from t1 to t and Proposition 4 give us∫ t

t1

b(s)∆s =
y(t1)

g(x(t1))
− y(t)

g(x(t))
+

∫ t

t1

(
1

g(x(s))

)∆

yσ(s)∆s+

∫ t

t1

c(s)

g(x(s))
∆s. (6)

By applying Propositions 2 and 3 for equation (6), we have∫ t

t1

b(s)∆s =
y(t1)

g(x(t1))
− y(t)

g(x(t))
+

∫ t

t1

c(s)

g(x(s))
∆s− I(t1, t), t ≥ t1. (7)

Rewriting equation (7) gives us

− y(t)

g(x(t))
= D(t1, t)−

y(t1)

g(x(t1))
+ I(t1, t), t ≥ t1. (8)

Now by using (4) and (5), we get

− y(t)

g(x(t))
≥ K + I(t2, t), t ≥ t2 ≥ t1. (9)

Note that y(t) < 0 and x∆(t) < 0 for t ≥ t2 since y(t)x∆(t) = a(s)y(s)f(y(s)) > 0. Otherwise, we would have

−y(t)
g(x(t)) > 0, which is a contradiction. Let

−v(t)

g(x(t))
= K + I(t2, t), t ≥ t2. (10)

Then we have (
−v(t)

g(x(t))

)∆

=
yσ(t)x∆(t)

∫ 1

0

[
g′
(
x(t) + hµ(t)x∆(t)

)
dh

]
g(x(t)g(xσ(t))

> 0, t ≥ t2. (11)

Since x(t) > 0 and v(t) < 0 for t ≥ t2, it follows that −y(t)
g(x(t)) ≥ −v(t)

g(x(t)) , i.e. y(t) ≤ v(t) < 0 for t ≥ t2.

Therefore, we have by (11) that(
−v(t)

g(x(t))

)∆

≥
vσ(t)x∆(t)

∫ 1

0

[
g′
(
x(t) + hµ(t)x∆(t)

)
dh

]
g(x(t)g(xσ(t))

> 0, t ≥ t2
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since v(t) < 0 and x∆(t) < 0 for t ≥ t2. By setting

w(t)

g(x(t))
= K −

∫ t

t2

wσ(s)x∆(s)
∫ 1

0

[
g′
(
x(s) + hµ(s)x∆(s)

)
dh

]
g(x(s)g(xσ(s))

∆s (12)

and using (10), we have −v(t2)
g(x(t2))

= K = w(t2)
g(x(t2))

. Then setting z1 = v(t)
g(x(t)) , z2 = −w(t)

g(x(t)) , h(u) = uσ(t)
g(x(t)) in

Proposition 1, we have v(t) ≤ −w(t) and therefore y(t) ≤ −w(t) for t ≥ t2. We also have by Propositions 2

and 3 that (
w(t)

g(x(t))

)∆

=
w∆(t)

g(xσ(t))
−

wσ(t)x∆(t)
∫ 1

0
g′(x(t) + hµ(t)x∆(t))dh

g(x(t))g(xσ(t))
, t ≥ t2. (13)

Taking the derivative of (12) and comparing the resulting equation with (13) yield us

w∆(t)

g(xσ(t))
= 0, i.e. w∆(t) = 0, t ≥ t2.

Therefore, we have

w(t2) = K · g(x(t2)) = w(t), i.e. y(t) ≤ −w(t) = −K · g(x(t2)).

This proves the assertion. 2

2. Oscillation results

In this section, we give the oscillation criteria of system (1) by using our convergence/divergence of A(t0,∞),

B(t0,∞), and C(t0,∞).

Theorem 2.1 Suppose that A(t0,∞) = ∞, B(t0,∞) < ∞, C(t0,∞) < ∞. Suppose also that

f(u)f(v) ≤ f(uv) ≤ −f(u)f(−v) and (14)

∫ ∞

t0

x∆(s)

f(g(x(s)))
∆s < ∞. (15)

Then system (1) is oscillatory if ∫ ∞

t0

a(t)f (B(t,∞)− k · C(t,∞))∆t = ∞ (16)

for k ̸= 0 .

Proof Suppose that system (1) has a nonoscillatory solution (x, y) such that x > 0 eventually. Then there

exist t1 ≥ t0 and a constant k1 such that g(x(t)) ≥ k1 for t ≥ t1 by the monotonicity of g . Then by equation

(8), we have

y(t)

g(x(t))
=

y(t1)

g(x(t1))
−D(t1, t)− I(t1, t), t ≥ t1. (17)
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Note that I(t1, t) < ∞ . Otherwise, we have a contradiction to x(t) > 0 for t ≥ t1 by Lemma 1.1 since

A(t0,∞) = ∞ . Equality (17) can be rewritten as

y(t)

g(x(t))
= γ +D(t,∞) + I(t,∞), (18)

where γ = y(t1)
g(x(t1))

− D(t1,∞) − I(t1,∞), t ≥ t1. It can be shown that γ ≥ 0. Otherwise, we can choose a

large t2 such that B(t,∞) ≤ −γ , I(t2,∞) ≤ −γ
4 , and

∣∣∣∫∞
t

c(s)
g(x(s))∆s

∣∣∣ ≤ −γ
4 for t ≥ t2 . Then H(t) ≥ −γ

4 > 0

for t ≥ t2 . Then by setting K = −γ
4 in Lemma 1.1, we have y(t) ≤ −Kg(x(t2)) for t ≥ t2 . Integrating the

first equation of system (1) from t2 to ∞ and the monotonicity of f yield us

x(t) ≤ x(t2) + f(−Kg(x(t2)))

∫ t

t2

a(s)∆s, t ≥ t2.

Thus as t → ∞ , we have a contradiction to x > 0 eventually. Therefore, γ ≥ 0. Then, by equation (18), we

have

y(t) ≥ g(x(t))

[∫ ∞

t

b(s)∆s− 1

k1

∫ ∞

t

|c(s)|∆s

]
, t ≥ t2.

By the first equation of system (1), the monotonicity of f and equation (14), we have

x∆(t) ≥ a(t)f (g(x(t)))f

(∫ ∞

t

b(s)∆s− 1

k1

∫ ∞

t

|c(s)|∆s

)
, t ≥ t2. (19)

Then, by (19) and (15), we have

∫ t

t2

a(s)f

(∫ ∞

s

b(u)∆u− k

∫ ∞

s

|c(u)|∆u

)
≤

∫ t

t2

x∆(s)

f(g(x(s))
∆s < ∞,

where k = 1
k1
. However, this is contradiction to (16) as t → ∞. This completes the proof. (For x < 0 eventu-

ally, k can be considered a negative number and the proof can be shown similarly.) 2

Theorem 2.2 Suppose that A(t0,∞) = ∞, B(t0,∞) = ∞ , and C(t0,∞) < ∞ . Then system (1) is oscillatory.

Proof Proof is by a contradiction. Hence assume that there exists a nonoscillatory solution (x, y) of system

(1) such that x > 0 eventually. The case x < 0 eventually can be shown similarly. By the monotonicity of g ,

there exist t1 ≥ t0 and k1 > 0 such that g(x(t)) ≥ k1 for t ≥ t1 . Then, since C(t0,∞) < ∞ , we have that

there exists 0 < k2 < ∞ such that∣∣∣∣∫ t

t1

c(s)

g(x(s))
∆s

∣∣∣∣ ≤ 1

k1

∫ t

t1

|c(s)|∆s < k2, t ≥ t1. (20)

The first equation of system (1), Lemma 1.1 and the monotonicity of g give us that there exist K > 0 and

t2 ≥ t1 so large that

x∆(t) ≤ a(t)f(−Kg(x(t2))), t ≥ t2. (21)
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Integrating (21) from t2 to t yields

x(t) ≤ x(t2) + k3

∫ t

t2

a(s)∆s, where k3 = f(−Kg(x(t2))) < 0, t ≥ t2.

As t → ∞ , we have a contradiction to x(t) > 0 for t ≥ t2. This proves the assertion. 2

3. Examples

In this section, we give an example in one of the best-known time scales for Theorem 2.2. We not only focus

on showing the result of Theorem 2.2 but w ealso solve our dynamical system explicitly.

Example 1 Let T = 5Z+, a(t) = (t+4)
1
3 (2t+7)

5(t+1)
2
3 (t+6)

, b(t) = t5+t4+t3+t2+t+1
5(t+1)(t+4)(t+6)(t+9) , f(z) = z

1
3 , g(z) = z3, c(t) =

(−1)3t(−3t5−27t4−125t3−237t2−195t−59)
5(t+1)4(t+4)(t+6)(t+9) , and t = 5n , where n ∈ N. We show that A(t0,∞) = ∞, B(t0,∞) = ∞,

and C(t0,∞) < ∞ . Indeed,

A(5, T ) =

∫ T

5

(t+ 4)
1
3 (2t+ 7)

5(t+ 1)
2
3 (t+ 6)

∆t =
∑

t∈[5,T )5Z+

(t+ 4)
1
3 (2t+ 7)

(t+ 1)
2
3 (t+ 6)

.

Thus, as T → ∞ , we have

∞∑
n=1

(5n+ 4)
1
3 (10n+ 7)

(5n+ 1)
2
3 (5n+ 6)

= ∞ by the limit comparison test. Therefore, A(5,∞) = ∞.

Similarly,

B(5, T ) =

∫ T

5

t5 + t4 + t3 + t2 + t+ 1

5(t+ 1)(t+ 4)(t+ 6)(t+ 9)
∆t =

∑
t∈[5,T )5Z+

t5 + t4 + t3 + t2 + t+ 1

(t+ 1)(t+ 4)(t+ 6)(t+ 9)

≥
∑

t∈[5,T )5Z+

t5

(t+ 1)(t+ 4)(t+ 6)(t+ 9)
.

Taking the limit as T → ∞ gives us

B(5,∞) ≥ 625 ·
∞∑

n=1

n5

(5n+ 1)(5n+ 4)(5n+ 6)(5n+ 9)
= ∞

by the limit divergence test. Therefore, B(5,∞) = ∞ by the comparison test. Finally, we show C(t0,∞) < ∞ .

C(5, T ) =
∑

t∈[5,T )5Z+

3t5 + 27t4 + 125t3 + 237t2 + 195t+ 59

(t+ 1)4(t+ 4)(t+ 6)(t+ 9)

≤
∑

t∈[5,T )5Z+

3

t2
+

27

t3
+

125

t5
+

195

t6
+

59

t7
.
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ÖZTÜRK/Turk J Math

Hence, as T → ∞ , we have

C(5,∞) ≤
∞∑

n=1

3

n2
+

27

n3
+

125

n5
+

195

n6
+

59

n7
< ∞

by the geometric series. One can also show that

(
(−1)t+1

t+ 1
,

(−1)3t

(t+ 1)(t+ 4)

)
is an oscillatory solution of system


x∆(t) = (t+4)

1
3 (2t+7)

5(t+1)
2
3 (t+6)

y
1
3 (t)

y∆(t) = − t5+t4+t3+t2+t+1
5(t+1)(t+4)(t+6)(t+9)x

3(t) + (−1)3t(−3t5−27t4−125t3−237t2−195t−59)
5(t+1)4(t+4)(t+6)(t+9) ,

where we define h∆(t) =
h(σ(t))− h(t)

µ(t)
for σ(t) = t+ 5 and µ(t) = 5; see [3].

4. Open problems and applications

This paper deals with a very general nonlinear system and investigates the oscillation criteria. One can also

consider  x∆(t) = a(t)α |y(t)|
1
α sgny(t)

y∆(t) = −b(t) |xσ(t)|β sgnxσ(t),
(22)

where α, β > 0 and a, b ∈ Crd ([t0,∞)T,R+) and find the oscillation criteria. Note that system (22) is a special

case of system (3). By intuition, we can relax the monotonicity conditions on f and g . Since we waive the strict

assumptions on f and g , the results might be very interesting. System (22) is referred to as an Emden–Fowler

dynamic system and it has several applications such as in astrophysics, gas dynamics, and fluid mechanics (see

[19]), relativistic mechanics, nuclear physics, and chemically reacting systems (see [2, 7, 13, 20]). For example,

the fundamental problem in studying the stellar structure for gaseous dynamics in astrophysics was to look into

the equilibrium formation of the mass of spherical clouds of gas for the continuous case, proposed by Kelvin

and Lane; see [12, 21]. They considered the equation

1

t2
d

dt

(
t2
du

dt

)
+ un = 0 (23)

for n = 1.5 and n = 2.5. This equation is referred to as the Lane–Emden equation; see [5, 6]. Note that it is a

very special case of equation (2) for T = R. At that time, astrophysicists were interested in equation (23) for

initial conditions u(0) = 1 and u′(0) = 0. Special cases of (23) have explicit solutions when n = 0, 1, 5, namely

u1(t) =
sint

t
and u5(t) =

1√
1 + 1

3t2

for n = 1 and 5 respectively.

Note that u1 is an oscillatory solution while u5 is a nonoscillatory one. Much information about the solutions

of equation (23) was provided by Ritter (see [17]), in a series of eighteen papers published during 1878–1889.

The mathematical foundation for the study of such an equation was made by Fowler in a series of four papers

during 1914–1931; see [8–11].
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