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Abstract: Let k ≥ 3 and G = θn1,...,nk be a graph consisting of k paths that have common endpoints. In this paper,

we show that the projective dimension of R/I(G) equals bightI(G) or bightI(G)+1. For some special cases, we explain

depth(R/I(G)) in terms of invariants of graphs. Moreover, we prove the regularity of R/I(G) equals cG or cG + 1,

where cG is the maximum number of 3-disjoint edges in G .
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1. Introduction

Given a simple graph G with the vertex set V (G) = {x1, . . . , xn} and the edge set E(G), we can associate

to G the square-free monomial ideal I(G) in polynomial ring R = k[x1, . . . , xn] , which is generated by xixj

such that {xi, xj} ∈ E(G). Recently, one of the most important research topics is to establish a dictionary

between algebraic properties of I(G), most notably, the projective dimension and the Castelnuovo–Mumford

regularity of R/I(G), and combinatorial invariants of G . Let I be a monomial ideal in a polynomial ring

R = k[x1, . . . , xn] . Then we can associate to R/I a minimal graded free resolution of the form

0 → ⊕jR(−j)βl,j → ⊕jR(−j)βl−1,j → · · · → ⊕jR(−j)β1,j → R → R/I → 0,

where l ≤ n and R(−j) is the R -module obtained by shifting the degrees of R by j . The number βi,j is called

the ij th graded Betti number of R/I .

The regularity of R/I , denoted by reg(R/I), is defined by

reg(R/I) := max{j − i|βi,j(R/I) ̸= 0}.

The projective dimension of R/I , denoted by pd(R/I), is defined by

pd(R/I) := max{i|βi,j(R/I) ̸= 0 for some j}.

In [11], Zheng explained the regularity and projective dimension of tree graphs. He proved that if G is a

tree, then reg(R/I(G)) = cG , where cG is the maximum number of pairwise 3-disjoint edges in G . In [2],

H à and Van Tuyl extended it to chordal graphs. In [4], Kimura described the projective dimension of chordal
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graphs, which actually extended Zheng’ s work. Furthermore, Van Tuyl in [9] showed that if G is a sequentially

Cohen–Macaulay bipartite graph, then the relation reg(R/I(G)) = cG is satisfied.

Recall that if I is a squarefree monomial ideal, then the inequality

ht(I) ≤ bight(I) ≤ pd(R/I) ≤ ara(I) ≤ µ(I)

holds in general, where µ(I) is the minimum number of generators of the ideal I .

In [5], Khosh-Ahang and Moradi considered the class of C5 -free vertex decomposable graphs that contains

forest graphs and sequentially Cohen–Macaulay bipartite graphs. For the class of graphs, they proved that

reg(R/I(G)) = cG and pd(R/I(G)) = bightI(G). In [6], Mohammadi and Kiani investigated the graphs

consisting of some cycles and lines that have a common vertex. It is shown that the projective dimension

equals the arithmetical rank for all such graphs. A graph G is called an n-cyclic graph with a common

edge if G is a graph consisting of n cycles C3r1+1, . . . , C3rk1
+1, C3t1+2, . . . , C3tk2

+2, C3s1 , . . . , C3sk3
connected

through a common edge, where k1 + k2 + k3 = n ; see [12, Definition 2.4]. In [12], Zhu et al. proved that

pd(R/I(G)) = bightI(G) = ara(I(G)) for some special n -cyclic graphs with a common edge.

Motivated by the above-mentioned works, we look for the equalities pd(R/I(G)) = bightI(G) and

reg(R/I(G)) = cG in the case of the graphs G = θn1,...,nk
, by combining combinatorial methods with

homological techniques.

Suppose that min{n1, . . . , nk} = nt . One can consider the graph θn1,...,nk
as k − 1-cyclic graph with

common path Lnt consisting of k − 1 cycles of lengths ni + nt − 2 for any 1 ≤ i ̸= t ≤ k , which generalizes

the concept n -cyclic graphs with a common edge. For this class of graphs we describe the projective dimension

and depth of R/I(G) and show that pd(R/I(G)) = bightI(G) unless ni ≡ 0 (mod 3) for any 1 ≤ i ≤ k or

there exists exactly one nj such that nj ≡ 1 (mod 3) and for any 1 ≤ i ̸= j ≤ k we have ni ≡ 2 (mod 3);

then it yields pd(G) = bightI(G) + 1. Moreover, we deduce that reg(R/I(G) = cG for this class of graphs

unless ni ≡ 2 (mod 3) for any 1 ≤ i ≤ k or there exists exactly one nj such that nj ≡ 1 (mod 3) and for any

1 ≤ i ̸= j ≤ k we have ni ≡ 0 (mod 3); then it yields reg(G) = cG + 1.

2. Projective dimension and depth

Let k be an integer number and n1, . . . , nk be a sequence of positive integers. Let θn1,...,nk
be the graph

constructed by k paths with n1, . . . , nk vertices such that only their endpoints are in common. Since the

graphs are assumed simple, then at most one of n1, . . . , nk can be equal to 2. If k = 1 or 2, then θn1,...,nk

would be a path or a cycle and homological properties of these graphs are completely studied in [3]; hence in

this paper we suppose that k ≥ 3.

We present the following theorem of Terai that plays a fundamental role in the study of the projective

dimension and regularity of the graph θn1,...,nk
.

Theorem 2.1 (see [8]) Let I be a square-free monomial ideal. Then pd(I∨) = reg(R/I) .

The following lemma is frequently needed in the sequel:

Lemma 2.2 ([5], Corollary 2.2) Suppose that G is a graph, x ∈ V (G) and |NG(x)| = t . Let G′ = G \ {x}
and G′′ = G \NG[x] . Then
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1. pd(I(G)∨) ≤ max{pd(I(G′)∨), pd(I(G′′)∨) + 1} ;

2. reg(I(G)∨) ≤ max{reg(I(G′)∨) + 1, reg(I(G′′)∨) + t} .

The big height of I(G), denoted by bightI(G), is the maximum size of a minimal vertex cover of G .

Lemma 2.3 For any graph G , the following relations are satisfied:

1. (See [2, Theorem 6.5].) cG ≤ reg(R/I(G)) .

2. (See [7, Corollary 3.33].) bightI(G) ≤ pd(R/I(G)) .

Let G be a finite simple graph with the vertex set V (G) and the edge set E(G). Let e and e′ be two distinct

edges of G . The distance between e and e′ in G , denoted by distG(e, e
′), is defined by the minimum length

l among sequences e0 = e, e1, . . . , el = e′ with ei−1 ∩ ei ̸= ϕ , where ei ∈ EG . If there is no such sequence, we

define distG(e, e
′) = ∞ . We say that e and e′ are 3-disjoint in G if distG(e, e

′) ≥ 3. A subset E ⊂ EG is said

to be pairwise 3-disjoint if every pair of distinct edges e, e′ ∈ E are 3-disjoint in G ; see [2, Definitions 2.2 and

6.3].

The graph B with V (B) = {w, z1, . . . , zd} and E(B) = {{w, zi} : i = 1, . . . , d} (d ≥ 1) is called a

bouquet. Then the vertex w is called the root of B , the vertices zi flowers of B , and the edges {w, zi} stems

of B ; see [11, Definition 1.7]. Let B = {B1, B2, . . . , Bj} be a set of bouquets of G . We set

F (B) := {z ∈ VG : z is a flower of some bouquet in B},

R(B) := {w ∈ VG : w is a root of some bouquet in B},

S(B) := {s ∈ EG : s is a stem of some bouquet in B}.

The type of B is defined by (|F (B)|, |R(B)|); see [4].

Definition 2.4 ([4], Definition 2.1) A set B = {B1, B2, . . . , Bj} of bouquets of G is said to be strongly

disjoint in G if the following conditions are satisfied:

1. V (Bk) ∩ V (Bl) = ϕ for all k ̸= l .

2. For any 1 ≤ k ≤ j , there exists a stem sk in Bk such that {s1, s2, . . . , sj} are pairwise 3-disjoint in G .

Definition 2.5 ([4], Definition 5.1) A set B = {B1, B2, . . . , Bj} of bouquets of G is said to be semistrongly

disjoint in G if the following conditions are satisfied:

1. V (Bk) ∩ V (Bl) = ϕ for all k ̸= l .

2. Any two vertices belonging to R(B) are not adjacent in G .

In the sequel by G1 ⊔G2 we mean G1 intersects G2 only at one of its endpoints and by θn1,...,nk
\ Lni

we mean the graph obtained from θn1,...,nk
by removing all vertices and edges of Lni except its endpoints.

Throughout this paper, we assume that x and y are the common vertices.

Now we are ready to compute the projective dimension of the graph θn1,...,nk
. In any case, to obtain an

upper bound for pd(θn1,...,nk
), we use Theorem 2.1 and Lemma 2.2.

322



SEYYEDI and RAHMATI/Turk J Math

Theorem 2.6 Let G be the graph θn1,...,nk1
consisting of lines L3r1+1, . . . , L3rk1

+1 . Then

pd(G) = bightI(G) = 2

k1∑
i=1

ri =

k1∑
i=1

pd(L3ri+1).

Proof We have G′ = G \ {x} = L3r1 ⊔ . . .⊔L3rk1
and G′′ = G \N [x] = L3(r1−1)+2 ⊔ . . .⊔L3(rk1

−1)+2 . Using

[6, Theorem 2.6], we obtain that

pd(G′) =
2|VG′ |+ 1− k1

3
=

2(3r1 + . . .+ 3rk1 − (k1 − 1)) + 1− k1
3

=2

k1∑
i=1

ri − k1 + 1.

By [6, Theorem 2.5], we get

pd(G′′) =
2(|VG′′ | − 1) + k1

3
=

2(3(r1 − 1) + . . .+ 3(rk1 − 1) + k1 + 1− 1) + k1
3

=2

k1∑
i=1

ri − k1.

Hence, we have pd(G) ≤ max{2
∑k1

i=1 ri − k1 + 2, 2
∑k1

i=1 ri} . Since k1 ≥ 3, then 2− k1 < 0 and we conclude

that pd(G) ≤ 2
∑k1

i=1 ri .

On the other hand, by [1, Theorem 3.3] and Lemma 2.3, we have that d′G = bightI(G) ≤ pd(G). It suf-

fices to construct a semistrongly disjoint set B = {B1, B2, . . . , Bj} of bouquets of G with |F (B)| = 2
∑k1

i=1 ri .

Suppose that B1 = N [x] , B2 = N [y] and B3 = {B3, B4, . . . , Bj} are the semistrongly disjoint set of bouquets

of type (2, 1) on the disjoint lines L3r1+1−4, . . . , L3rk1
+1−4 , which can be expressed as 3ri + 1− 4 = 3(ri − 1)

for any 1 ≤ i ≤ k1 . Hence there exist ri − 1 bouquets with two flowers and one root in L3ri+1−4 for any

1 ≤ i ≤ k1 . Putting B = B1 ∪ B2 ∪ B3 , we obtain |F (B)| = 2
∑k1

i=1 ri ; then 2
∑k1

i=1 ri ≤ bightI(G) and

complete the proof. 2

Theorem 2.7 Let G be the graph θn1,...,nk2
consisting of lines L3t1+2, . . . , L3tk2

+2 . Then

pd(G) = bightI(G) = 2

k2∑
i=1

ti + 1 =

k2∑
i=1

pd(L3ti+2)− k2 + 1.

Proof We have G′ = G \ {x} = L3t1+1 ⊔ . . . ⊔ L3tk2
+1 and G′′ = G \ N [x] = L3t1 ⊔ . . . ⊔ L3tk2

. Using [6,

Corollary 2.8], we derive

pd(G′) =
2|VG′ | − 2

3
=

2(3t1 + . . .+ 3tk2
+ 1)− 2

3

=2

k2∑
i=1

ti.
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By [6, Theorem 2.6], we get

pd(G′′) =
2|VG′′ |+ 1− k2

3
=

2(3t1 + . . .+ 3tk2 − (k2 − 1)) + 1− k2
3

=2

k2∑
i=1

ti − k2 + 1.

Hence, it follows that pd(G) ≤ max{2
∑k2

i=1 ti + 1, 2
∑k2

i=1 ti + 1} = 2
∑k2

i=1 ti + 1. It suffices to construct

a semistrongly disjoint set B = {B1, B2, . . . , Bj} of bouquets of G with |F (B)| = 2
∑k2

i=1 ti + 1. Sup-

pose that B1 = N [x] and B2 = {B2, B3, . . . , Bj} are the semistrongly disjoint set of bouquets of the lines

L3t1+2−2, L3t2+2−3, . . . , L3tk2
+2−3 , where 3t1 + 2 − 2 = 3t1 , 3ti + 2 − 3 = 3(ti − 1) + 2 for any 2 ≤ i ≤ k2 .

Hence there exist t1 bouquets with two flowers and one root in L3t1+2−2 , ti− 1 bouquets with two flowers and

one root, and one bouquet with one flower and one root in L3ti+2−3 for any 2 ≤ i ≤ k2 . Putting B = B1∪B2 ,

we obtain |F (B)| = 2
∑k2

i=1 ti + 1; then 2
∑k2

i=1 ti + 1 ≤ bightI(G) and we conclude the desired equality. 2

Theorem 2.8 Let G be the graph θn1,...,nk1+k3
consisting of lines L3r1+1, . . . , L3rk1

+1, L3s1 , . . . , L3sk3
such

that k1, k3 > 0 . Then

pd(G) = bightI(G) = 2

k1∑
i=1

ri + 2

k3∑
i=1

si − k3 =

k1∑
i=1

pd(L3ri+1) +

k3∑
i=1

pd(L3si)− k3.

Proof We have G′ = G \ {x} = L3r1 ⊔ . . . ⊔ L3rk1
⊔ L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3

−1)+2 and G′′ = G \ N [x] =

L3(r1−1)+2 ⊔ . . . ⊔ L3(rk1
−1)+2 ⊔ L3(s1−1)+1 ⊔ . . . ⊔ L3(sk3

−1)+1 . By [6, Theorem 2.7], we obtain that

pd(G′) =
2|VG′ | − 2 + k3 − k1

3

=
2(3r1 + . . . , 3rk1 − k1 + 3(s1 − 1) + . . .+ 3(sk3 − 1) + (k3 − 1) + 2)− 2 + k3 − k1

3

=2

k1∑
i=1

ri + 2

k3∑
i=1

si − k1 − k3.

Using [6, Theorem 2.5] we get

pd(G′′) =
2|VG′′ | − 2 + k1

3

=
2(3(r1 − 1) + . . .+ 3(rk1 − 1) + k1 + 3(s1 − 1) + . . .+ 3(sk3 − 1) + 1)− 2 + k1

3

=2

k1∑
i=1

ri + 2

k3∑
i=1

si − k1 − 2k3.

Hence, we have pd(G) ≤ max{2
∑k1

i=1 ri+2
∑k3

i=1 si−k1−k3+1, 2
∑k1

i=1 ri+2
∑k3

i=1 si−k3} , since k1 > 0, then

1 − k1 ≤ 0 and hence pd(G) ≤ 2
∑k1

i=1 ri + 2
∑k3

i=1 si − k3 . Using similar arguments of the proof of Theorem

2.6, we derive 2
∑k1

i=1 ri + 2
∑k3

i=1 si − k3 ≤ bightI(G), which yields the asserted equality. 2
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Theorem 2.9 Let G be the graph θn1,...,nk2+k3
consisting of lines L3s1 , . . . , L3sk3

, L3t1+2, . . . , L3tk2
+2 such that

k2, k3 > 0 . Then

pd(G) = bightI(G) = 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k3 + 1 =

k2∑
i=1

pd(L3ti+2) +

k3∑
i=1

pd(L3si)− k2 − k3 + 1.

Proof We have G′ = G \ {x} = L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3
−1)+2 ⊔ L3t1+1 ⊔ . . . ⊔ L3tk2

+1 and G′′ = G \N [x] =

L3(s1−1)+1 ⊔ . . . ⊔ L3(sk3
−1)+1 ⊔ L3t1 ⊔ . . . ⊔ L3tk2

. By [6, Theorem 2.5] we get that

pd(G′) =
2|VG′ | − 2 + k3

3

=
2(3(s1 − 1) + . . .+ 3(sk3 − 1) + k3 + 3t1 + . . .+ 3tk2 + 1)− 2 + k3

3

=2

k3∑
i=1

si + 2

k2∑
i=1

ti − k3.

Using [6, Theorem 2.6], we obtain that

pd(G′′) =
2|VG′ |+ 1− k2

3

=
2(3(s1 − 1) + . . .+ 3(sk3 − 1) + 1 + 3t1 + . . .+ 3tk2 − k2) + 1− k2

3

=2

k3∑
i=1

si + 2

k2∑
i=1

ti − 2k3 − k2 + 1.

Therefore,

pd(G) ≤ max{2
k3∑
i=1

si + 2

k2∑
i=1

ti − k3 + 1, 2

k3∑
i=1

si + 2

k2∑
i=1

ti − k3 + 1} = 2

k3∑
i=1

si + 2

k2∑
i=1

ti − k3 + 1.

A similar argument as Theorem 2.7 shows that 2
∑k3

i=1 si + 2
∑k2

i=1 ti − k3 + 1 ≤ bightI(G), as required. 2

Theorem 2.10 Let G be the graph θn1,...,nk1+k2+k3
consisting of lines L3r1+1, . . . , L3rk1

+1, L3t1+2, . . . , L3tk2
+2,

L3s1 , . . . , L3sk3
such that k1, k2, k3 > 0 . Then

pd(G) = bightI(G) = 2

k1∑
i=1

ri + 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k3 =

k1∑
i=1

pd(L3ri+1) +

k2∑
i=1

pd(L3ti+2)

+

k3∑
i=1

pd(L3si)− k2 − k3.

Proof We have

G′ = G \ {x} = L3r1 ⊔ . . . ⊔ L3rk1
⊔ L3t1+1 ⊔ . . . ⊔ L3tk2

+1 ⊔ L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3
−1)+2
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and

G′′ = G \N [x] = L3(r1−1)+2 ⊔ . . . ⊔ L3(rk1
−1)+2 ⊔ L3t1 ⊔ . . . ⊔ L3tk2

⊔ L3(s1−1)+1 ⊔ . . . ⊔ L3(sk3
−1)+1.

By [6, Theorem 2.7], we obtain that

pd(G′) =
2|VG′ | − 2 + k3 − k1

3

=
2(3r1 + . . .+ 3rk1 − k1 + 3t1 + . . .+ 3tk2 + 1 + 3s1 + . . .+ 3sk3 − 2k3)− 2

3

+
k3 − k1

3
= 2

k1∑
i=1

ri + 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k1 − k3.

Moreover, by [6, Theorem 2.7] we get

pd(G′′) =
2|VG′′ | − 2 + k1 − k2

3

=
2(3r1 + . . .+ 3rk1 − 2k1 + 3t1 + . . .+ 3tk2 − k2 + 3s1 + . . .+ 3sk3 − 3k3 + 1)− 2

3

+
k1 − k2

3
= 2

k1∑
i=1

ri + 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k1 − k2 − 2k3.

Therefore, we have

pd(G) ≤ max{2
k1∑
i=1

ri + 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k1 − k3 + 1, 2

k1∑
i=1

ri + 2

k2∑
i=1

ti + 2

k3∑
i=1

si − k3}.

Since k1 > 0, then 1 − k1 ≤ 0 and we conclude pd(G) ≤ 2
∑k1

i=1 ri + 2
∑k2

i=1 ti + 2
∑k3

i=1 si − k3 . A similar

argument of the proof of Theorem 2.7 shows that 2
∑k1

i=1 ri + 2
∑k2

i=1 ti + 2
∑k3

i=1 si − k3 ≤ bightI(G), which

yields the asserted equality. 2

Theorem 2.11 Let G be the graph θn1,...,nk3
consisting of lines L3s1 , . . . , L3sk3

. Then

pd(G) = 2

k3∑
i=1

si − k3 + 1 =

k3∑
i=1

pd(L3si)− k3 + 1 = bightI(G) + 1.

Proof We have that G′ = G \ {x} = L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3
−1)+2 and G′′ = G \N [x] = L3(s1−1)+1 ⊔ . . . ⊔

L3(sk3
−1)+1 . By [6, Theorem 2.5], we obtain that

pd(G′) =
2|VG′ | − 2 + k3

3

=
2(3(s1 − 1) + . . .+ 3(sk3

− 1) + k3 + 1)− 2 + k3
3

=2

k3∑
i=1

si − k3.
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Using [6, Corollary 2.8], we derive

pd(G′′) =
2|VG′′ | − 2

3
=

2(3(s1 − 1) + . . .+ 3(sk3
− 1) + 1)− 2

3

=2

k3∑
i=1

si − 2k3.

Hence

pd(G) ≤ max{2
k3∑
i=1

si − k3 + 1, 2

k3∑
i=1

si − k3} = 2

k3∑
i=1

si − k3 + 1.

On the other hand, we can see that βi,|V (G)|(G) ̸= 0 if and only if i = 2
∑k3

i=1 si−k3+1; thus 2
∑k3

i=1 si−k3+1 ≤

pd(G). It follows that pd(G) = 2
∑k3

i=1 si − k3 + 1, as desired.

Now we show that bightI(G) = 2
∑k3

i=1 si − k3 . Suppose that B = {B1, B2, . . . , Bl} is a semistrongly

disjoint set of bouquets of G . Consider the following cases:

Case (1) : x, y /∈ R(B) ∪ F (B). We may find the maximum cardinality of F (B) in the disjoint lines

L3s1−2, . . . , L3sk3
−2 . Since 3si − 2 = 3(si − 1) + 1, then one can choose si − 1 bouquets with two flowers

and one root in L3si−2 for any 1 ≤ i ≤ k3 . Hence we obtain that |F (B)| = 2
∑k3

i=1 si − 2k3 .

Case (2): x, y ∈ F (B). Suppose that x and y lie in the bouquets with two flowers and one root.

i) If the bouquets containing x and y are in the same line, as L3s1 , then we have 3s1 − 6 = 3(s1 − 2) and

3si − 2 = 3(si − 1) + 1 for any 2 ≤ i ≤ k3 . Hence, there exist s1 − 2 bouquets with two flowers and one

root in L3s1−6 and si− 1 bouquets with two flowers and one root in L3si−2 for 2 ≤ i ≤ k3 . It follows that

|F (B)| = 2(s1 − 2) + 2
∑k3

i=2(si − 1) + 4 = 2
∑k3

i=1 si − 2k3 + 2.

ii) If the bouquets containing x and y are in different lines, as L3s1 and L3s2 , then we have 3s1 − 4 =

3(s1 − 2) + 2, 3s2 − 4 = 3(s2 − 2) + 2 and 3si − 2 = 3(si − 1) + 1 for any 3 ≤ i ≤ k3 . Hence, there exist

si−2 bouquets with two flowers and one root and one bouquet with one flower and one root in L3si−4 , for

i = 1, 2 and also there exist si − 1 bouquets with two flowers and one root in L3si−2 for any 3 ≤ i ≤ k3 .

Therefore, we obtain that |F (B)| = 2(s1 − 2) + 2(s1 − 2) + 2 + 2
∑k3

i=3(si − 1) + 4 = 2
∑k3

i=1 si − 2k3 + 2.

Case (3): x ∈ R(B) and y ∈ F (B). Assume that x lies in a bouquet with k3 flowers and one root and

y lies in a bouquet with two flowers and one root of L3s1 ; then we have 3s1 − 5 = 3(s1 − 2) + 1 and

3si − 3 = 3(si − 1) for 2 ≤ i ≤ k3 . Hence, there exist s1 − 2 bouquets with two flowers and one root

in L3s1−5 and si − 1 bouquets with two flowers and one root in L3si−3 for 2 ≤ i ≤ k3 . Thus we get

|F (B)| = 2(s1 − 2) + 2 + 2
∑k3

i=2(si − 1) + k3 = 2
∑k3

i=1 si − k3 .

Case (4): y /∈ F (B) ∪ R(B), but x ∈ F (B) ∪ R(B). Then there exist k3 lines of length 3si − 1 that have a

common vertex x . By [6, Theorem 2.5], we get

bightI(G) =
2|VG| − 2 + k3

3
= 2

k3∑
i=1

si − k3.
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Case (5): x, y ∈ R(B). Assume that x and y lie in the bouquets with k3 flowers and a root. Since

3si − 4 = 3(si − 2) + 2, then there exist si − 2 bouquets with two flowers and one root and one bouquet with

one flower and one root in L3si−4 for 1 ≤ i ≤ k3 . Hence, |F (B)| = 2k3 + k3 +2
∑k3

i=1(si − 2) = 2
∑k3

i=1 si − k3 .

One can easily check that in any of the above cases by our choice of other bouquets we have at most the

given amount of flowers. Since we want to find the maximum number of flowers of a semistrongly disjoint set

of bouquets of G , then by choosing any vertex z we try to consider the bouquets with the maximum number

of flowers containing z . Note that the described cases above are satisfied if we interchange x and y . It follows

that the maximum value for F (B) is equal to 2
∑k3

i=1 si − k3 , as desired. 2

Theorem 2.12 Let G be the graph θn1,...,nk1+k2
consisting of lines L3r1+1, . . . , L3rk1

+1, L3t1+2, . . . , L3tk2
+2 .

If k1 = 1 , then we have

pd(G) = 2r1 + 2

k2∑
i=1

ti + 1 = bightI(G) + 1 = pd(L3r1+1) +

k2∑
i=1

pd(L3ti+2)− k2 + 1,

and for k1 ≥ 2 , the following relation is satisfied:

pd(G) = bightI(G) = 2

k1∑
i=1

ri + 2

k2∑
i=1

ti =

k1∑
i=1

pd(L3ri+1) +

k2∑
i=1

pd(L3ti+2)− k2.

Proof We have

G′ = G \ {x} = L3r1 ⊔ . . . ⊔ L3rk1
⊔ L3t1+1 ⊔ . . . ⊔ L3tk2

+1

and

G′′ = G \N [x] = L3(r1−1)+2 ⊔ . . . ⊔ L3(rk1
−1)+2 ⊔ L3t1 ⊔ . . . ⊔ L3tk2

.

By [6, Theorem 2.6], we get that

pd(G′) =
2|VG′ |+ 1− k1

3

=
2(3r1 + . . .+ 3rk1 − k1 + 3t1 + . . .+ 3tk2 + 1) + 1− k1

3

=2

k1∑
i=1

ri + 2

k2∑
i=1

ti − k1 + 1.

Moreover, by [6, Theorem 2.7], we have

pd(G′′) =
2|VG′′ | − 2 + k1 − k2

3

=
2(3r1 + . . .+ 3rk1

− 2k1 + 3t1 + . . .+ 3tk2
− k2 + 1)− 2 + k1 − k2

3

=2

k1∑
i=1

ri + 2

k2∑
i=1

ti − k1 − k2.

328



SEYYEDI and RAHMATI/Turk J Math

Therefore, pd(G) ≤ max{2
∑k1

i=1 ri + 2
∑k2

i=1 ti − k1 + 2, 2
∑k1

i=1 ri + 2
∑k2

i=1 ti} . If k1 = 1, then pd(G) ≤

2r1 + 2
∑k2

i=1 ti + 1, and for k1 ≥ 2, since 2 − k1 ≤ 0, then it yields pd(G) ≤ 2
∑k1

i=1 ri + 2
∑k2

i=1 ti . In

the case k1 = 1, we can see that βi,|V (G)|(G) ̸= 0 if and only if i = 2r1 + 2
∑k2

i=1 ti + 1 . It follows that

2r1 + 2
∑k2

i=1 ti + 1 ≤ pd(G); then pd(G) = 2r1 + 2
∑k2

i=1 ti + 1.

Now suppose that k1 ≥ 2. In order to prove bightI(G) = pd(G), we use similar arguments of the proof

of Theorem 2.6; then we derive 2
∑k1

i=1 ri + 2
∑k2

i=1 ti ≤ bightI(G), which yields the asserted equality.

To complete the proof, it remains to prove bightI(G) = pd(G)− 1 = 2r1 +2
∑k2

i=1 ti for k1 = 1. Assume

that B = {B1, . . . , Bl} is the semistrongly disjoint set of bouquets of G . The same argument as in the proof

of Theorem 2.11 shows that the maximum value for |F (B)| is equal to 2r1 + 2
∑k2

i=1 ti , as desired. 2

Corollary 2.13 Let G be the graph θn1,...,nk
. Then we have bightI(G) = pd(G) unless ni ≡ 0 (mod 3) for

any 1 ≤ i ≤ k or there exists exactly one nj such that nj ≡ 1 (mod 3) and for any 1 ≤ i ̸= j ≤ k we have

ni ≡ 2 (mod 3) ; then it yields pd(G) = bightI(G) + 1 .

Theorem 2.14 Let G be the graph θn1,...,nk
. Unless in two cases ni ≡ 0 (mod 3) for any 1 ≤ i ≤ k or there

exists exactly one nj such that nj ≡ 1 (mod 3) and for any 1 ≤ i ̸= j ≤ k , ni ≡ 2 (mod 3) , we have

depth(R/I(G)) = min{|F | : F ⊆ V (G) is a maximal independent set in G}.

Moreover, R/I(G) is Cohen–Macaulay if and only if G is unmixed.

Proof Using Corollary 2.13 and the Auslander–Buchsbaum formula, we have depth(R/I(G)) = |V (G)| −
bightI(G). By definition of big height of I(G), there exists a minimal vertex cover S of G such that we have

|S| = bightI(G). Since the complement of S , V (G) \ S , is a maximal independent set of G having minimum

cardinality, then we get

depth(R/I(G)) = min{|F | : F ⊆ V (G) is a maximal independent set in G},

as desired. By [10, Corollary 5.3.11], we have

dim(R/I(G)) = max{|F | : F ⊆ V (G) is an independent set in G};

hence R/I(G) is Cohen–Macaulay if and only if all maximal independent sets of G have the same cardinality

or equivalently all minimal vertex covers of G have the same cardinality. This completes the proof. 2

3. Regularity

The aim of this section is to study the regularity of the graph θn1,...,nk
and investigate the equality in Lemma

2.3 (1) for this class of graphs. To obtain an appropriate upper bound for reg(θn1,...,nk
), we use Theorem 2.1

and Lemma 2.2.

Theorem 3.1 Let G be the graph θn1,...,nk1
consisting of lines L3r1+1, . . . , L3rk1

+1 . Then

reg(G) = cG =

k1∑
i=1

ri.
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Proof Assume that the edges of L3ri+1 are labeled by e
(i)
1 , e

(i)
2 , . . . , e

(i)
3ri

, where e
(i)
j = {x(i)

j , x
(i)
j+1} , x

(i)
1 = x ,

and x
(i)
3ri+1 = y . We consider the edges e

(i)
2 , e

(i)
5 , . . . , e

(i)
3ri−1 of L3ri+1 , for any 1 ≤ i ≤ k1 . It is seen that

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−1, . . . , e

(k1)
2 , e

(k1)
5 , . . . , e

(k1)
3rk1

−1} is pairwise 3-disjoint in G . Hence, it follows that
∑k1

i=1 ri ≤
cG .

To complete the proof, it suffices to detect an appropriate upper bound for reg(G′) and reg(G′′).

We have G′ = G \ {x} = L3r1 ⊔ . . . ⊔ L3rk1
and G′′ = G \ NG[x] = L3(r1−1)+2 ⊔ . . . ⊔ L3(rk1

−1)+2 . By

Lemma 2.2, reg(G′) ≤ max{reg(G′ \ {y}), reg(G′ \ NG′ [y]) + 1} , where G′ \ {y} is the disjoint union of

L3(r1−1)+2, . . . , L3(rk1
−1)+2 and G′\NG′ [y] is the disjoint union of L3(r1−1)+1, . . . , L3(rk1

−1)+1 . Then we obtain

reg(G′ \ {y}) =
∑k1

i=1 ri and reg(G′ \NG′ [y]) =
∑k1

i=1 ri − k1 . Hence, it follows that reg(G′) ≤
∑k1

i=1 ri .

Again, using Lemma 2.2, reg(G′′) ≤ max{reg(G′′\{y}), reg(G′′\NG′′ [y])+1} , where G′′\{y} is the dis-

joint union of L3(r1−1)+1, . . . , L3(rk1
−1)+1 and G′′\NG′′ [y] is the disjoint union of L3(r1−1), . . . , L3(rk1

−1) . Thus,

we get reg(G′′\{y}) =
∑k1

i=1 ri−k1 and reg(G′′\NG′′ [y]) =
∑k1

i=1 ri−k1 . Therefore, reg(G
′′) ≤

∑k1

i=1 ri−k1+1.

Since k1 ≥ 3, then it immediately yields that reg(G) ≤
∑k1

i=1 ri , as required. 2

Theorem 3.2 Let G be the graph θn1,...,nk2+k3
consisting of lines L3s1 , . . . , L3sk3

, L3t1+2, . . . , L3tk2
+2 such that

k2, k3 > 0 . Then

reg(G) = cG =

k2∑
i=1

ti +

k3∑
i=1

si − k3 + 1.

Proof Suppose that the edges of L3si are labeled by e
(i)
1 , . . . , e

(i)
3si−1 , where e

(i)
j = {x(i)

j , x
(i)
j+1} , x

(i)
1 = x

and x
(i)
3si

= y and the edges of L3ti+2 are labeled by e
(k3+i)
1 , . . . , e

(k3+i)
3ti+1 , where e

(k3+i)
j = {x(k3+i)

j , x
(k3+i)
j+1 } ,

x
(k3+i)
1 = x and x

(k3+i)
3ti+2 = y . Observe that

{e(1)1 , e
(1)
4 , . . . , e

(1)
3s1−2, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3s2−3, . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3sk3

−3, e
(k3+1)
3 ,

e
(k3+1)
6 , . . . , e

(k3+1)
3t1

, . . . , e
(k3+k2)
3 , e

(k3+k2)
6 , e

(k3+k2)
3tk2

}

is a pairwise 3-disjoint in G . Then we get
∑k2

i=1 ti +
∑k3

i=1 si − k3 + 1 ≤ cG . To complete the proof, we need

to achieve an upper bound for reg(G′) and reg(G′′). Using Lemma 2.2, one has

reg(G′) ≤ max{reg(G′ \ {y}), reg(G′ \NG′ [y]) + 1},

where G′ = G \ {x} = L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3
−1)+2 ⊔ L3t1+1 ⊔ . . . ⊔ L3tk2

+1 , G
′ \ {y} is the disjoint union of

L3(s1−1)+1, . . . , L3(sk3−1)+1, L3t1 , . . . , L3tk2
and G′\NG′ [y] is the disjoint union of L3(s1−1), . . . , L3(sk3−1), L3(t1−1)+2,

. . . , L3(tk2
−1)+2 . Hence, we obtain that

reg(G′ \ {y}) =
k3∑
i=1

(si − 1) +

k2∑
i=1

ti =

k3∑
i=1

si +

k2∑
i=1

ti − k3

and

reg(G′ \NG′ [y]) =

k3∑
i=1

(si − 1) +

k2∑
i=1

ti =

k3∑
i=1

si +

k2∑
i=1

ti − k3.
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It follows that

reg(G′) ≤
k3∑
i=1

(si − 1) +

k2∑
i=1

ti + 1 =

k3∑
i=1

si +

k2∑
i=1

ti − k3 + 1.

Again, using Lemma 2.2, we have reg(G′′) ≤ max{reg(G′′\{y}), reg(G′′\NG′′ [y])+1} , where G′′ = G\NG[x] =

L3(s1−1)+1⊔. . .⊔L3(sk3
−1)+1⊔L3t1⊔. . .⊔L3tk2

, G′′\{y} is the disjoint union of L3(s1−1), . . . , L3(sk3−1), L3(t1−1)+2,

. . . , L3(tk2
−1)+2 and G′′\NG′′ [y] is the disjoint union of L3(s1−2)+2, . . . , L3(sk3−2)+2, L3(t1−1)+1, . . . , L3(tk2

−1)+1 .

Then we obtain reg(G′′ \ {y}) =
∑k3

i=1 si +
∑k2

i=1 ti − k3 and reg(G′′ \NG′′ [y]) =
∑k3

i=1 si +
∑k2

i=1 ti − k3 − k2 .

Hence reg(G′′) ≤
∑k3

i=1 si+
∑k2

i=1 ti−k3 . One derives the equality reg(G) = cG =
∑k3

i=1 si+
∑k2

i=1 ti−k3+1. 2

Theorem 3.3 Let G be the graph θn1,...,nk1+k2
consisting of lines L3r1+1, . . . , L3rk1+1

, L3t1+2, . . . , L3tk2
+2 such

that k1, k2 > 0 . Then

reg(G) = cG =

k1∑
i=1

ri +

k2∑
i=1

ti.

Proof Suppose that the edges of L3ri+1 are labeled by e
(i)
1 , . . . , e

(i)
3ri

, where e
(i)
j = {x(i)

j , x
(i)
j+1} , x

(i)
1 = x

and x
(i)
3ri+1 = y and the edges of L3ti+2 are labeled by e

(k1+i)
1 , . . . , e

(k1+i)
3ti+1 , where e

(k1+i)
j = {x(k1+i)

j , x
(k1+i)
j+1 } ,

x
(k1+i)
1 = x and x

(k1+i)
3ti+2 = y . Since the set

{e(1)2 , e
(1)
5 , . . . ,e

(1)
3r1−1, e

(2)
2 , e

(2)
5 , . . . , e

(2)
3r2−4, e

(2)
3r2−1, . . . , e

(k1)
2 , e

(k1)
5 , . . . , e

(k1)
3rk1

−4,

e
(k1)
3rk1

−1, e
(k1+1)
2 , e

(k1+1)
5 , . . . , e

(k1+1)
3t1−1 , . . . , e

(k1+k2)
2 , e

(k1+k2)
5 , . . . , e

(k1+k2)
3tk2

−1 }

is pairwise 3-disjoint, then it follows that
∑k1

i=1 ri +
∑k2

i=1 ti ≤ cG . We have G′ = G \ {x} = L3r1 ⊔ . . .⊔L3rk1
⊔

L3t1+1 ⊔ . . .⊔L3tk2
+1 and G′′ = G \NG[x] = L3(r1−1)+2 ⊔ . . .⊔L3(rk1

−1)+2 ⊔L3t1 ⊔ . . .⊔L3tk2
. In order to use

Lemma 2.2 for reg(G′) and reg(G′′), we have to compute reg(G′ \ {y}), reg(G′ \NG′ [y]) + 1, reg(G′′ \ {y})
and reg(G′′ \NG′′ [y]) + 1, where G′ \ {y} is the disjoint union of L3(r1−1)+2, . . . , L3(rk1

−1)+2, L3t1 , . . . , L3tk2
,

G′ \NG′ [y] is the disjoint union of L3(r1−1)+1, . . . , L3(rk1−1)+1, L3(t1−1)+2, . . . , L3(tk2
−1)+2 , G

′′ \ {y} is the dis-

joint union of L3(r1−1)+1, . . . , L3(rk1−1)+1, L3(t1−1)+2, . . . , L3(tk2
−1)+2 , and G′′ \ NG′′ [y] is the disjoint union

of L3(r1−1), . . . , L3(rk1−1), L3(t1−1)+1, . . . , L3(tk2
−1)+1 . Hence, we obtain that reg(G′ \ {y}) =

∑k1

i=1 ri +∑k2

i=1 ti and reg(G′ \ NG′ [y]) =
∑k1

i=1 ti +
∑k2

i=1 ri − k1 . Thus reg(G′) ≤
∑k1

i=1 ri +
∑k2

i=1 ti . Moreover,

reg(G′′ \ {y}) =
∑k1

i=1 ri +
∑k2

i=1 ti − k1 and reg(G′′ \ NG′′ [y]) =
∑k1

i=1 ri +
∑k2

i=1 ti − k1 − k2 . Therefore,

reg(G′′) ≤
∑k1

i=1 ri +
∑k2

i=1 ti − k1 . Since 1− k1 ≤ 0, then reg(G) = cG =
∑k1

i=1 ri +
∑k2

i=1 ti , which proves the

required equality. 2

Theorem 3.4 Let G be the graph θn1,...,nk3
consisting of lines L3s1 , . . . , L3sk3

. Then

reg(G) = cG =

k3∑
i=1

si − k3 + 1.
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Proof Suppose that the edges of L3si are labeled by e
(i)
1 , . . . , e

(i)
3si−1 , where e

(i)
j = {x(i)

j , x
(i)
j+1} , x

(i)
1 = x and

x
(i)
3si

= y . Observe that

{e(1)1 , e
(1)
4 , . . . , e

(1)
3s1−2, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3s2−3, . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3sk3

−3}

is pairwise 3-disjoint in G ; hence
∑k3

i=1 si − k3 + 1 ≤ cG . Since G′ = G \ {x} = L3(s1−1)+2 ⊔ . . . ⊔ L3(sk3
−1)+2

and G′′ = G \NG[x] = L3(s1−1)+1 ⊔ . . . ⊔ L3(sk3
−1)+1 , then again using Lemma 2.2,

reg(G′) ≤ max{reg(G′ \ {y}), reg(G′ \NG′ [y]) + 1},

where G′ \ {y} is the disjoint union of L3(s1−1)+1, . . . , L3(sk3−1)+1 and G′ \ NG′ [y] is the disjoint union of

L3(s1−1), . . . , L3(sk3−1) . It follows that reg(G′ \ {y}) =
∑k3

i=1 si − k3 and reg(G′ \ NG′ [y]) =
∑k3

i=1 si − k3 .

Hence reg(G′) ≤
∑k3

i=1 si − k3 + 1. Since G′′ \ {y} is the disjoint union of L3(s1−1), . . . , L3(sk3−1) and

G′′ \NG′′ [y] is the disjoint union of L3(s1−2)+2, . . . , L3(sk3−2)+2 , then we obtain reg(G′′ \ {y}) =
∑k3

i=1 si − k3

and reg(G′′ \ NG′′ [y]) =
∑k3

i=1 si − k3 . Applying Lemma 2.2, we have reg(G′′) ≤
∑k3

i=1 si − k3 + 1. On the

other hand, the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3s1−3, . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3sk3

−3}

is pairwise 3-disjoint in G′′ and hence
∑k3

i=1 si − k3 ≤ cG′′ . We claim that reg(G′′) = cG′′ =
∑k3

i=1 si − k3 . To

prove the fact, consider the strongly disjoint set B = {B1, . . . , Bl} of bouquets in G′′ . Any of the following

cases may happen:

Case (1): y /∈ R(B) ∪ F (B). In this situation, the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3(s1−1), . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3(sk3

−1)}

is pairwise 3-disjoint.

Case (2): y ∈ F (B). Observe that the set

{e(1)4 , e
(1)
7 , . . . , e

(1)
3s1−2, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3(s2−1) . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3(sk3

−1)}

is pairwise 3-disjoint in G′′ .

Case (3): y ∈ R(B). In this case, the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3(s1−1), . . . , e

(k3)
3 , e

(k3)
6 , . . . , e

(k3)
3(sk3

−1)}

is pairwise 3-disjoint in G′′ .

It is easily checked that the considered sets have the maximum cardinality of a pairwise 3-disjoint set

in G′′ .

Altogether and by [11, Theorem 2.18], cG′′ = reg(G′′) =
∑k3

i=1 si − k3 , as claimed. Hence one derives

reg(G) ≤
∑k3

i=1 si − k3 + 1 and so the result holds. 2
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Theorem 3.5 Let G be the graph θn1,...,nk1+k2+k3
consisting of lines L3r1+1, . . . , L3rk1

+1, L3t1+2, . . . , L3tk2
+2,

L3s1 , . . . , L3sk3
such that k1, k2, k3 > 0 . Then

reg(G) = cG =

k1∑
i=1

ri +

k2∑
i=1

ti +

k3∑
i=1

si − k3.

Proof Suppose that the edges of G are labeled by e
(i)
j = {x(i)

j , x
(i)
j+1} such that x

(i)
1 = x for any i and

x
(l)
3rl+1 = x

(k1+m)
3tm+2 = x

(k1+k2+n)
3sn

= y for 1 ≤ l ≤ k1 , 1 ≤ m ≤ k2 and 1 ≤ n ≤ k3 . It is easily seen that the set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−1, . . . , e

(k1)
2 , e

(k1)
5 , . . . , e

(k1)
3rk1

−1, e
(k1+1)
2 , e

(k1+1)
5 , . . . , e

(k1+1)
3t1−1 , . . . ,

e
(k1+k2)
2 , e

(k1+k2)
5 , . . . , e

(k1+k2)
3tk2

−1 , e
(k1+k2+1)
2 , e

(k1+k2+1)
5 , . . . , e

(k1+k2+1)
3s1−4 , . . . , e

(k1+k2+k3)
2 ,

e
(k1+k2+k3)
5 , . . . , e

(k1+k2+k3)
3sk3

−4 }

is pairwise 3-disjoint in G . It follows that
∑k1

i=1 ri +
∑k2

i=1 ti +
∑k3

i=1 si − k3 ≤ cG . We have G′ = G \ {x} =

L3r1⊔. . .⊔L3rk1
⊔L3t1+1⊔. . .⊔L3tk2

+1⊔L3s1−1⊔. . .⊔L3sk3
−1 and G′′ = G\NG[x] = L3r1−1⊔. . .⊔L3rk1

−1⊔L3t1⊔
. . .⊔L3tk2

⊔L3s1−2⊔ . . .⊔L3sk3
−2 . Using Lemma 2.2, reg(G′) ≤ max{reg(G′\{y}), reg(G′\NG′ [y])+1} , where

G′\{y} is the disjoint union of L3(r1−1)+2, . . . , L3(rk1
−1)+2, L3t1 , . . . , L3tk2

, L3(s1−1)+1, . . . , L3(sk3
−1)+1 and G′\

NG′ [y] is the disjoint union of L3(r1−1)+1, . . . , L3(rk1−1)+1, L3(t1−1)+2, . . . , L3(tk2
−1)+2, L3(s1−1), . . . , L3(sk3

−1) .

This yields that reg(G′ \ {y}) =
∑k1

i=1 ri +
∑k2

i=1 ti +
∑k3

i=1 si − k3 and reg(G′ \NG′ [y]) =
∑k1

i=1 ri +
∑k2

i=1 ti +∑k3

i=1 si−k1−k3 . Since 1−k1 ≤ 0, then one obtains reg(G′) ≤
∑k1

i=1 ri+
∑k2

i=1 ti+
∑k3

i=1 si−k3 . On the other

hand, G′′ \ {y} is the disjoint union of L3(r1−1)+1, . . . , L3(rk1
−1)+1, L3(t1−1)+2, . . . , L3(tk2

−1)+2, L3(s1−1), . . . ,

L3(sk3
−1) and G′′\NG′′ [y] is the disjoint union of L3(r1−1), . . . , L3(rk1−1), L3(t1−1)+1, . . . , L3(tk2

−1)+1, L3(s1−2)+2,

. . . , L3(sk3
−1)+2 . One derives that reg(G′′\{y}) =

∑k1

i=1 ri+
∑k2

i=1 ti+
∑k3

i=1 si−k1−k3 and reg(G′′\NG′′ [y]) =∑k1

i=1 ri +
∑k2

i=1 ti +
∑k3

i=1 si − k1 − k2 − k3 . Since 1− k2 ≤ 0 we conclude that reg(G′′) ≤
∑k1

i=1 ri +
∑k2

i=1 ti +∑k3

i=1 si − k1 − k3 . Assumption k1 ≥ 1 forces reg(G) =
∑k1

i=1 ri +
∑k2

i=1 ti +
∑k3

i=1 si − k3 . 2

Theorem 3.6 Let G be the graph θn1,...,nk2
consisting of lines L3t1+2, . . . , L3tk2

+2 . Then

reg(G) =

k2∑
i=1

ti + 1 = cG + 1.

Proof Suppose that the edges of G are labeled by e
(i)
j = {x(i)

j , x
(i)
j+1} such that x

(i)
1 = x and x

(i)
3ti+2 = y . It

suffices to find an appropriate upper bound for reg(G′) and reg(G′′), where G′ = L3t1+1 ⊔ . . . ⊔ L3tk2
+1 and

G′′ = L3t1⊔. . .⊔L3tk2
. Since G′\{y} is the disjoint union of L3t1 , . . . , L3tk2

and G′\NG′ [y] is the disjoint union

of L3(t1−1)+2, . . . , L3(tk2
−1)+2 , then one concludes that reg(G′\{y}) =

∑k2

i=1 ti and reg(G′\NG′ [y]) =
∑k2

i=1 ti .

Again, using Lemma 2.2, we get reg(G′) ≤
∑k2

i=1 ti + 1.

Furthermore, G′′ \{y} is the disjoint union of L3(t1−1)+2, . . . , L3(tk2
−1)+2 and G′′ \NG′′ [y] is the disjoint

union of L3(t1−1)+1, . . . , L3(tk2
−1)+1 . Thus, reg(G′′ \ {y}) =

∑k2

i=1 ti and reg(G′′ \ NG′′ [y]) =
∑k2

i=1 ti − k2 .
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Since 1−k2 ≤ 0, then reg(G′′) ≤
∑k2

i=1 ti . Both facts and Lemma 2.2 imply reg(G) ≤
∑k2

i=1 ti+1. On the other

hand, we can see that β
2
∑k2

i=1 ti+1,|VG|(G) ̸= 0; therefore
∑k2

i=1 ti+1 ≤ reg(G) and hence reg(G) =
∑k2

i=1 ti+1,

as desired. It remains to prove cG =
∑k2

i=1 ti . In order to show this fact, consider the strongly disjoint set

B = {B1, . . . , Bl} of bouquets in G . Any of the following situations may happen:

Case (1) : x, y /∈ F (B) ∪R(B). Then there exist ti bouquets with two flowers and one root in any line. The

set {e(1)2 , e
(1)
5 , . . . , e

(1)
3t1−1, e

(k2)
2 , e

(k2)
5 , . . . , e

(k2)
3tk2

−1} is pairwise 3-disjoint in G .

Case (2) : x, y ∈ F (B).

i. If the bouquets containing x and y are in the same line, as L3t1+2 , then there exist t1 − 2 bouquets with

two flowers and one root and one bouquet with one flower and one root in L3t1+2 and for 2 ≤ i ≤ k2 there

exist ti bouquets with two flowers and one root in L3ti+2 . Observe that the set

{e(1)1 , e
(1)
4 , . . . , e

(1)
3t1−5, e

(1)
3t1

, e
(2)
3 , e

(2)
6 , . . . , e

(2)
3t2

, . . . , e
(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3tk2

}

is pairwise 3-disjoint in G .

ii. If the bouquets containing x and y are in different lines, as L3t1+2 and L3t2+2 , then one has ti bouquets

with two flowers and one root in L3ti+2 for 1 ≤ i ≤ k2 . It is seen that the set {e(1)1 , e
(1)
4 , . . . , e

(1)
3t1−2, e

(2)
3 , e

(2)
6 ,

. . . , e
(2)
3t2

, . . . , e
(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3tk2

} is pairwise 3-disjoint in G .

Case (3) : x ∈ R(B) and y /∈ F (B) ∪ R(B). Suppose that x is the root of a bouquet with k2 flowers.

Moreover, we have ti−1 bouquets with two flowers and one root and one bouquet with one flower and one root

in L3ti+2−3 for 1 ≤ i ≤ k2 . The set {e(1)3 , e
(1)
6 , . . . , e

(1)
3t1

, . . . , e
(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3tk2

} is pairwise 3-disjoint in G .

Case (4) : x ∈ F (B) and y /∈ F (B) ∪ R(B). Suppose that the bouquets containing x are in L3t1+2 ; then

there exist ti bouquets with two flowers and one root in L3ti+2 for 1 ≤ i ≤ k2 . Observe that

{e(1)1 , e
(1)
4 , . . . , e

(1)
3t1−2, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3t2

. . . , e
(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3tk2

}

is pairwise 3-disjoint in G .

Case (5) : x ∈ R(B) and y ∈ F (B). Suppose that x is the root of a bouquet with k2 flowers and the bouquet

containing y with two flowers and one root lies in L3t1+2 . Moreover, we have t1 − 1 other bouquets with two

flowers and one root in L3t1+2−5 and ti − 1 bouquets with two flowers and one root and one bouquet with one

flower and one root in L3ti+2−3 for 2 ≤ i ≤ k2 . It is seen that {e(1)3 , e
(1)
6 , . . . , e

(1)
3t1

, . . . , e
(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3tk2

} is

pairwise 3-disjoint in G .

Case (6) : x ∈ R(B) and y ∈ R(B). Suppose that x and y lie in bouquets with k2 flowers. Moreover, there

exist ti − 1 bouquets with two flowers and one root in L3ti+2−4 for 1 ≤ i ≤ k2 . Observe that

{e(1)1 , e
(1)
4 , . . . , e

(1)
3t1−2, e

(1)
3t1+1, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3t2−3, . . . , e

(k2)
3 , e

(k2)
6 , . . . , e

(k2)
3t2−3}

is pairwise 3-disjoint in G .
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It is easily seen that the considered sets have the maximum cardinality of a pairwise 3-disjoint set in

G . Note that the above described cases are satisfied if we interchange x and y . Furthermore, one can check

that the number of flowers of bouquets containing x or y as discussed above has no effect on the value of cG .

Altogether, one has cG =
∑k2

i=1 ti and so the result holds. 2

Theorem 3.7 Let G be the graph θn1,...,nk1+k3
consisting of lines L3r1+1, . . . , L3rk1

+1, L3s1 , . . . , L3sk3
such

that k1, k3 > 0 . If k1 = 1 then

reg(G) = cG + 1 = r1 +

k3∑
i=1

si − k3 + 1,

and for k1 ≥ 2 , the following relation is satisfied:

reg(G) = cG =

k1∑
i=1

ri +

k3∑
i=1

si − k3.

Proof Assume that the edges of L3ri+1 are labeled by e
(i)
j = {x(i)

j , x
(i)
j+1} such that x

(i)
1 = x and x

(i)
3ri+1 = y

for 1 ≤ i ≤ k1 and the edges of L3si are labeled by e
(k1+i)
j = {x(k1+i)

j , x
(k1+i)
j+1 } such that x

(k1+i)
1 = x and

x
(k1+i)
3si

= y for 1 ≤ i ≤ k3 . Let G′ = G \ {x} and G′′ = G \NG[x] . Using Lemma 2.2,

cG ≤ reg(G) ≤ max{reg(G′), reg(G′′) + 1},

where G′ = L3r1⊔. . .⊔L3rk1
⊔L3(s1−1)+2⊔. . .⊔L3(sk3

−1)+2 and G′′ = L3(r1−1)+2⊔. . .⊔L3(rk1
−1)+2⊔L3(s1−1)+1⊔

. . .⊔L3(s1−1)+1 . Since G′ \ {y} is the disjoint union of L3(r1−1)+2, . . . , L3(rk1
−1)+2, L3(s1−1)+1, . . . , L3(sk3

−1)+1

and G′\NG′ [y] is the disjoint union of L3(r1−1)+1, . . . , L3(rk1
−1)+1, L3(s1−1), . . . , L3(sk3

−1) , then we get reg(G′\

{y}) =
∑k1

i=1 ri +
∑k3

i=1 si − k3 and reg(G′ \NG′ [y]) =
∑k1

i=1 ri +
∑k3

i=1 si − k1 − k3 . According to 1− k1 ≤ 0

and using Lemma 2.2, one concludes that

reg(G′) ≤
k1∑
i=1

ri +

k3∑
i=1

si − k3.

Applying the same argument, G′′\{y} is the disjoint union of L3(r1−1)+1, . . . , L3(rk1
−1)+1, L3(s1−1), . . . , L3(sk3

−1)

and G′′ \NG′′ [y] is the disjoint union of L3(r1−1), . . . , L3(rk1
−1), L3(s1−2)+2, . . . , L3(sk3

−2)+2 . Hence, we obtain

that reg(G′′ \ {y}) =
∑k1

i=1 ri +
∑k3

i=1 si − k1 − k3 and reg(G′′ \NG′′ [y]) =
∑k1

i=1 ri +
∑k3

i=1 si − k1 − k3 . Then

reg(G′′) ≤
∑k1

i=1 ri +
∑k3

i=1 si − k1 − k3 + 1. Altogether, we conclude that

reg(G) ≤ max{
k1∑
i=1

ri +

k3∑
i=1

si − k3,

k1∑
i=1

ri +

k3∑
i=1

si − k1 − k3 + 2}.

If k1 = 1 then reg(G) ≤ r1+
∑k3

i=1 si−k3+1, while for k1 ≥ 2 it follows that reg(G) ≤
∑k1

i=1 ri+
∑k3

i=1 si−k3 .

We can see that β
2r1+2

∑k3
i=1 si−k3,|VG|(G) ̸= 0. In the case k1 = 1, one derives that r1+

∑k3

i=1 si−k3+1 ≤ reg(G)

and hence reg(G) = r1 +
∑k3

i=1 si − k3 + 1, as required.
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Now we want to clarify cG = r1 +
∑k3

i=1 si − k3 = reg(G) − 1. Consider the strongly disjoint set

B = {B1, . . . , Bl} of bouquets in G . Any of the following situations may happen:

Case (1) : x, y /∈ F (B) ∪ R(B). Then there exist r1 − 1 bouquets with two flowers and one root and one

bouquet with one flower and one root in L3r1+1 and si − 1 bouquets with two flowers and one root in L3si for

1 ≤ i ≤ k3 . The set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−1, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3s1−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

Case (2) : x, y ∈ F (B).

i) If bouquets containing x and y lie in the same line, as L3r1+1 , we can use the same argument as in the

previous case.

ii) If bouquets containing x and y lie in the same line, as L3s1 , then there exist r1 − 1 bouquets with two

flowers and one root and one bouquet with one flower and one root in L3r1+1−2 and s1 bouquets with two

flowers and one root in L3s1 and si − 1 bouquets with two flowers and one root in L3si−2 for 2 ≤ i ≤ k3 .

Hence, the set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−4, e

(2)
2 , e

(2)
5 , . . . , e

(2)
3s1−1, e

(3)
2 , e

(3)
5 , . . . ,e

(3)
3s2−4, . . . , e

(k3+1)
2 , e

(k3+1)
5 , . . . , e

(k3+1)
3sk3

−4}

is pairwise 3-disjoint in G .

iii) If bouquets containing x and y lie in the different lines, as L3r1+1 and L3s1 , then there exist r1 bouquets

with two flowers and one root in L3r1+1−1 and s1 − 1 bouquets with two flowers and one root and one

bouquet with one flower and one root in L3s1 and si− 1 bouquets with two flowers and one root in L3si−2

for 2 ≤ i ≤ k3 . Then the set

{e(1)1 , e
(1)
4 , . . . , e

(1)
3r1−2, e

(2)
4 , e

(2)
7 , . . . , e

(2)
3s1−2, e

(3)
3 , e

(3)
6 , . . . ,e

(3)
3s2−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

iv) If bouquets containing x and y lie in different lines, as L3s1 and L3s2 , then there exist r1 − 1 bouquets

with two flowers and one root and one bouquet with one flower and one root in L3r1+1−2 and s1 − 1

bouquets with two flowers and one root and one bouquet with one flower and one root in L3s1−1 , s2 − 1

bouquets with two flowers and one root and one bouquet with one flower and one root in L3s2−1 and si−1

bouquets with two flowers and one root in L3si−2 for 3 ≤ i ≤ k3 . Then the set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−4, e

(1)
3r1−1, e

(2)
2 , e

(2)
5 , . . . , e

(2)
3s1−4, e

(3)
4 , e

(3)
7 , . . . , e

(3)
3s2−2, e

(4)
2 , e

(4)
5 , . . . , e

(4)
3s3−4, . . . ,

e
(k3+1)
2 , e

(k3+1)
5 , . . . , e

(k3+1)
3sk3

−4}

is pairwise 3-disjoint in G .

Case (3) : x ∈ R(B) and y /∈ R(B) ∪ R(B). Suppose that x is the root of a bouquet with k3 + 1 flowers.

Then there exist r1 − 1 bouquets with two flowers and one root in L3r1+1−3 and si − 1 bouquets with two
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flowers and one root in L3si−3 for 1 ≤ i ≤ k3 . Then the set

{e(1)4 , e
(1)
7 , . . . , e

(1)
3r1−2, e

(2)
1 , e

(2)
4 , . . . , e

(2)
3s1−2, e

(3)
3 , e

(3)
6 , . . . ,e

(3)
3s2−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

Case (4) : x ∈ F (B) and y /∈ F (B) ∪R(B).

i) Assume that x lies in bouquets with two flowers and one root in L3r1+1 . Hence, there exist r1 bouquets

with two flowers and one root in L3r1 and si − 1 bouquets with two flowers and one root in L3si−2 for

1 ≤ i ≤ k3 . Then the set

{e(1)1 , e
(1)
4 , . . . , e

(1)
3r1−2, e

(2)
3 , e

(2)
6 , . . . , e

(2)
3s1−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

ii) Assume that x lies in bouquets with two flowers and one root in L3s1 . Hence, there exist r1 − 1 bouquets

with two flowers and one root and one bouquet with one flower and one root in L3r1+1−2 , s1 − 1 bouquets

with two flowers and one root and one bouquet with one flower and one root in L3s1−1 , and si−1 bouquets

with two flowers and one root in L3si−2 for 2 ≤ i ≤ k3 . Then the set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−4, e

(1)
3r1−1, e

(2)
2 , e

(2)
5 , . . . , e

(2)
3s1−4, . . . , e

(k3+1)
2 , e

(k3+1)
5 , . . . , e

(k3+1)
3sk3

−4}

is pairwise 3-disjoint in G .

Case (5) : x ∈ R(B) and y ∈ F (B). Assume that x is the root of a bouquet with k3 + 1 flowers.

i) If the bouquet containing y lies in L3r1+1 , then there exist r1 − 1 bouquets with two flowers and one root

and one bouquet with one flower and one root in L3r1+1−2 and si − 1 bouquets with two flowers and one

root in L3si−3 for 1 ≤ i ≤ k3 . Then the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3r1−3, e

(1)
3r1

, e
(2)
3 , e

(2)
6 , . . . , e

(2)
3s1−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

ii) If the bouquet containing y lies in L3s1 , then there exist r1 − 1 bouquets with two flowers and one root in

L3r1+1−3 , s1 − 1 bouquets with two flowers and one root in L3s1−2 , and si − 1 bouquets with two flowers

and one root in L3si−3 for 2 ≤ i ≤ k3 . Then the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3r1−3, e

(2)
1 , e

(2)
4 , . . . , e

(2)
3s1−2, e

(3)
3 , e

(3)
6 , . . . ,e

(3)
3s2−3 . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .

Case (6) : x, y ∈ R(B). Assume that x and y are the roots of the bouquets with k3 +1 flowers. Hence, there

exist r1 − 1 bouquets with two flowers and one root in L3r1+1−4 and si − 2 bouquets with two flowers and one

root and one bouquet with one flower and one root in L3si−4 for 1 ≤ i ≤ k3 . Then the set

{e(1)3 , e
(1)
6 , . . . , e

(1)
3r1−3, e

(1)
3r1

, e
(2)
3 , e

(2)
6 , . . . , e

(2)
3s2−3, . . . , e

(k3+1)
3 , e

(k3+1)
6 , . . . , e

(k3+1)
3sk3

−3}

is pairwise 3-disjoint in G .
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Thus, we can use the same argument as in the demonstration of the previous theorem and derive

cG = r1 +
∑k3

i=1 si − k3, as required.

Suppose that k1 ≥ 2. We intend to show
∑k1

i=1 ri +
∑k3

i=1 si − k3 ≤ cG . The set

{e(1)2 , e
(1)
5 , . . . , e

(1)
3r1−1, . . . , e

(k1)
2 , e

(k1)
5 , . . . , e

(k1)
3rk1

−1,e
(k1+1)
2 , e

(k1+1)
5 , . . . , e

(k1+1)
3s1−4 , . . . , e

(k1+k3)
2 , e

(k1+k3)
5 , . . . , e

(k1+k3)
3sk3

−4 }

is pairwise 3-disjoint in G and hence
∑k1

i=1 ri +
∑k3

i=1 si − k3 ≤ cG, as desired. 2

Corollary 3.8 Let G be the graph θn1,...,nk
. Then we have reg(G) = cG unless ni ≡ 2 (mod 3) for any

1 ≤ i ≤ k or there exists exactly one nj such that nj ≡ 1 (mod 3) and for any 1 ≤ i ̸= j ≤ k we have ni ≡ 0

(mod 3) ; then it yields reg(G) = cG + 1 .
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