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Abstract: Using the concept of the partial Hasse derivative, we introduce a generalization of the classical 2-dimensional

discrete Fourier transform, which will be called 2D-GDFT. Begining with the basic properties of 2D-GDFT, we proceed

to study its computational aspects as well as the inverse transform, which necessitate the development of a faster way

to calculate the 2D-GDFT. As an application, we will employ 2D-GDFT to construct a new family of quasi-cyclic linear

codes that can be assumed to be a generalization of Reed–Solomon codes.
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1. Introduction

The relationship between one- and two-dimensional Fourier transforms is similar in the discrete domain. Let ω

be an nth root of unity in the Galois field Fq , where q is a prime power pa . Recall that the discrete Fourier

transform (DFT) of an n -bit vector v = (v0, v1, · · · , vn−1) ∈ Fn
q , n coprime with p , is defined as follows:

F{(v0, v1, · · · , vn−1)} = (V0, V1, · · · , Vn−1),

where Vj =
n−1∑
i=0

viω
ij , j = 0, · · · , n− 1. The vector v is related to its spectrum V = F{v} by

vi =
1

n

n−1∑
j=0

Vjω
−ij , i = 0, · · · , n− 1,

where n is interpreted as an integer of the field.

Two-dimensional Fourier transform of an M × N -matrix A = [aij ] ∈ (Fq)
M×N , M and N relatively

prime to p , is similarly defined as an M ×N -matrix B = [bij ] by

Bkl =
M−1∑
i=0

N−1∑
j=0

Aijα
ikβjl, k = 0, · · · ,M − 1, l = 0, · · · , N − 1,

where α and β are respectively an M th root of unity and an N th root of unity in some (sufficiently large)
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extension of Fq . In this case, the inverse transform is given by

Aij =
1

MN

M−1∑
k=0

N−1∑
l=0

Bklα
−ikβ−jl.

The importance of two-dimensional DFT arises when we deal with the problem of evaluating the one-

dimensional DFT of a vector v having a large number of elements, on the hypothesis that the working memory

of the available processor is not sufficient to handle the vector as a whole. Such a situation can arise in several

applications [1,4,5,12], such as Fourier transform spectroscopy or musical sound analysis. In this case it is

convenient to fold v into a matrix A and apply the two-dimensional DFT on the corresponding matrix A .

Some generalizations of the concept of (one and two-dimensional) DFT were given by earlier authors. In

[3], (one and two-dimensional) generalized DFT (GFT) was introduced and some basic properties were derived.

In particular, it was shown that a given one-dimensional GFT on a vector v can be performed by means of an

infinite number of two-dimensional GFTs on a matrix A whose elements are the elements of v properly ordered.

In [6], multidimensional generalized DFT was introduced and its characteristics were investigated while some

general results were derived that included as particular cases the properties previously given in [3].

Here, the key point is that previously introduced two-dimensional GFTs have an inverse only if the

characteristic of the field structuring the alphabet was zero or coprime with both M and N , where M and

N denote the number of rows and columns of input matrices, respectively. To relax that condition, we shall

introduce a new kind of two-dimensional DFT, called the two-dimensional generalized DFT (2D-GDFT), which

in turn relies on the concept of the partial Hasse derivative of two-variable polynomials. We will show that

the 2D-GDFT enjoys all basic properties of DFT analogously. As an application, using the 2D-GDFT, we will

construct a family of linear codes, called quasi-cyclic Reed–Solomon codes.

2. Preliminaries

2.1. Linear codes

Linear codes are widely studied because of their algebraic structure, which makes them easier to describe than

nonlinear codes.

Let q = pa be a prime power and let Fq denote the finite field of order q . A linear code C of length n

over Fq is an Fq -vector subspace of Fn
q . The (Hamming) weight of a vector c ∈ (Fq)

n is the number w(c) of

its nonzero coordinates. For a linear code C , the distance d(C) is defined as the minimum weight of nonzero

words. The distance of a code C is important to determine the error correction capability of C (that is, the

number of errors that the code can correct) and its error detection capability (that is, the number of errors that

the code can detect).

We denote by T the standard shift operator on Fn
q . A (linear) code is said to be quasi-cyclic of index l

or l -quasi-cyclic if and only if it is invariant under T l .

2.2. (Partial) Hasse derivatives

Recall that the uth Hasse derivative (u = 0, 1, · · · ) of a polynomial f(x) =
∑
i

aix
i ∈ Fq[x] is defined as the

polynomial f [u](x) =
∑
i

(
i

u

)
aix

i−u . Analogously, for a bivariate polynomial f(x, y) =
∑
i,j

aijx
iyj ∈ Fq[x, y] ,
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the (u, v)th partial Hasse (partial mixed) derivative of f , denoted by f [u,v](x, y), is defined by

f [u,v](x, y) =
∑
i,j

(
i

u

)(
j

v

)
aijx

i−uyj−v.

Here we use a standard convention for binomial cofficients:
(
k
l

)
= 0 for all l > k , which guarantees that

the (u, v)th Hasse derivative is again a polynomial over Fq .

3. Two-dimensional generalized discrete Fourier transform

Let n = pam , where (m, p) = 1. When a ≥ 1, n is no longer relatively prime to p , so the classical theory of

discrete Fourier transform does not apply to Fq[x]/⟨xn − 1⟩ . However, Massey and Serconek [9] introduced a

generalized discrete Fourier transform (GDFT) as follows.

Let c =
n−1∑
i=0

cix
i ∈ Fq[x] , and let ζ be an mth root of unity in some (sufficiently large) extension of Fq .

For each 0 ≤ g ≤ pa − 1 and 0 ≤ h ≤ m− 1, let

ĉg,h =
n−1∑
i=0

(
i

g

)
ciζ

h(i−g).

Note that ĉg,h = c[g](ζh).

Then the GDFT of c can be described in terms of a matrix:

ĉ = [ĉg,h] =


ĉ0,0 ĉ0,1 · · · ĉ0,m−1

ĉ1,0 ĉ1,1 · · · ĉ1,m−1

...
ĉpa−1,0 ĉpa−1,1 · · · ĉpa−1,m−1

 .

Motivated by the above definition, we give the following generalization of two-dimensional DFT.

Definition 3.1 Let m = pam′ and n = pbn′ , m′ and n′ relatively prime to p , and assume that α and β

are the m′ th root of unity and n′ th root of unity in some (sufficiently large) extension of Fq , respectively.

Let c =

m−1∑
i=0

n−1∑
j=0

ci,jx
iyj ∈ Fq[x, y] . The two-dimensional generalized discrete Fourier transform (2D-GDFT,

for short) of the bivariate c(x, y) is a pa+b × m′n′ -matrix ĉ whose the rows are indexed by all pairs (g, h) ,

0 ≤ g ≤ pa − 1 and 0 ≤ h ≤ pb − 1 , the columns are indexed by all pairs (u, v) , 0 ≤ u ≤ m′ − 1 and

0 ≤ v ≤ n′ − 1 , and

ĉ(g,h),(u,v) = c[g,h](αu, βv)

=
m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)
ci,jα

u(i−g)βv(j−h).
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To be convenient, we assume that the rows and the columns of the matrix ĉ are ordered lexicographically.

Just as the DFT, the 2D-GDFT enjoys the modulation and translation properties as well as some other

nice relations.

Proposition 3.2 If c =

m−1∑
i=0

n−1∑
j=0

ci,jx
iyj ↔ ĉ = [ĉ(g,h),(u,v)] is a 2D-GDFT pair, then the following are 2D-

GDFT pairs:

(1)
m−1∑
i=0

n−1∑
j=0

αilci,jx
iyj ↔ [αglĉ(g,h),(l+u,v)],

(2)
m−1∑
i=0

n−1∑
j=0

βjkci,jx
iyj ↔ [βhk ĉ(g,h),(u,k+v)],

(3)

m−1∑
i=0

n−1∑
j=0

ci,j−lx
iyj ↔ [

l∑
k=0

(
l

k

)
βv(l−k)ĉ(g,h−k),(u,v)],

(4)

m−1∑
i=0

n−1∑
j=0

ci−l,jx
iyj ↔ [

l∑
k=0

(
l

k

)
αu(l−k)ĉ(g−k,h),(u,v)],

(5)
m−1∑
i=0

n−1∑
j=0

cl−i,jx
iyj ↔ [

l∑
k=0

g−k−1∑
r=0

(−1)g−k

(
l

k

)(
g − k − 1

r

)
αu(−2g+l+k)+r ĉ(g−k−r,h),(−u,v)],

where k, l ≥ 0 are integers and all indices are calculated modulo appropriate t ∈ {m,n, pa, pb} .

Proof Let c′ =
m−1∑
i=0

n−1∑
j=0

αilci,jx
iyj . Then

ĉ′(g,h),(u,v) =
m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)
αilci,jα

u(i−g)βv(j−h)

= αgl
m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)
ci,jα

(u+l)(i−g)βv(j−h)

= αglĉ(g,h),(u+l,v).

The proof of the second equality is similar to (1). To prove (3) (and similarly (4)), let s =
m−1∑
i=0

n−1∑
j=0

ci,j−lx
iyj .

Then

ŝ(g,h),(u,v) =

m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)
ci,j−lα

u(i−g)βv(j−h)

=

m−1∑
i=0

n−1∑
j=0

(
i

g

)( l∑
k=0

(
l

k

)(
j − l

h− k

))
ci,j−lα

u(i−g)βv(j−h)
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=
l∑

k=0

(
l

k

)(m−1∑
i=0

n−1∑
r=0

(
i

g

)(
r

h− k

)
ci,rα

u(i−g)βv(r+l−h)

)

=
l∑

k=0

(
l

k

)(m−1∑
i=0

n−1∑
r=0

(
i

g

)(
r

h− k

)
ci,rα

u(i−g)βv(r−(h−k))

)
βv(l−k)

=
l∑

k=0

(
l

k

)
βv(l−k)ĉ(g,h−k),(u,v),

showing that the translation property holds.

Finally, let w =
m−1∑
i=0

n−1∑
j=0

cl−i,jx
iyj . Then

ŵ(g,h),(u,v) =
∑
i,j

(
i

g

)(
j

h

)
cl−i,jα

u(i−g)βv(j−h)

=
∑
i,j

(
j

h

)
(

l∑
k=0

(
l

k

)(
i− l

g − k

)
)cl−i,jα

u(i−g)βv(j−h)

=

l∑
k=0

(
l

k

)∑
i,j

(
i− l

g − k

)(
j

h

)
cl−i,jα

u(i−g)βv(j−h)

=
l∑

k=0

(
l

k

)∑
s,j

(
−s

g − k

)(
j

h

)
cs,jα

u(l−s−g)βv(j−h)

=
l∑

k=0

(
l

k

)∑
s,j

(−1)g−k

(
s+ g − k − 1

g − k

)(
j

h

)
cs,jα

u(l−s−g)βv(j−h)

=
l∑

k=0

(−1)g−k

(
l

k

)∑
t,j

(
t

g − k

)(
j

h

)
ct−g+k+1,jα

u(l−t−k−1)βv(j−h)

=

l∑
k=0

(−1)g−k

(
l

k

)
αu(l−g−1)

∑
t,j

(
t

g − k

)(
j

h

)
ct−g+k+1,jα

−u(t−g+k)βv(j−h)

=

l∑
k=0

(−1)g−k

(
l

k

)
αu(l−g−1)

g−k−1∑
r=0

(
g − k − 1

r

)
α−u(g−k−1−r)ĉ(g−k−r,h),(−u,v)

=

l∑
k=0

g−k−1∑
r=0

(−1)g−k

(
l

k

)(
g − k − 1

r

)
αu(−2g+l+k)+r ĉ(g−k−r,h),(−u,v),

which proves (5). 2

Corollary 3.3 If c =

m−1∑
i=0

n−1∑
j=0

ci,jx
iyj ↔ ĉ = [ĉ(g,h),(u,v)] is a 2D-GDFT pair, then, for any l, k ≥ 0 , the

following is a 2D-GDFT pair:
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m−1∑
i=0

n−1∑
j=0

ci−l,j−kx
iyj ↔ [

l∑
r=0

k∑
s=0

(
l

r

)(
k

s

)
αu(l−r)βv(k−s)ĉ(g−r,h−s),(u,v)].

Let A = [aij ] and B = [bij ] be m × n -matrices over Fq . The convolution product A ⋆ B is defined as

an m× n -matrix C whose

Ci,j =

m−1∑
l=0

n−1∑
k=0

Ai−l,j−kBlk,

where the indices are calculated modulo appropriate t ∈ {m,n} . The following theorem describes what the

2D-GDFT will do with the convolution product.

Theorem 3.4 If c ↔ ĉ and d ↔ d̂ are 2D-GDFT pairs, then e = c ⋆ d ↔ ê is a 2D-GDFT pair, where for

each 0 ≤ g ≤ pa − 1 , 0 ≤ h ≤ pb − 1 , 0 ≤ u ≤ m′ − 1 , and 0 ≤ v ≤ n′ − 1 ,

ê(g,h),(u,v) =

g∑
r=0

h∑
s=0

ĉ(g−r,h−s),(u,v)d̂(r,s),(u,v).

Proof By definition, we have

ê(g,h),(u,v) =

m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)
ei,jα

u(i−g)βv(j−h)

=
m−1∑
i=0

n−1∑
j=0

(
i

g

)(
j

h

)(m−1∑
l=0

n−1∑
k=0

ci−l,j−kdl,k

)
αu(i−g)βv(j−h)

=
m−1∑
i=0

n−1∑
j=0

m−1∑
l=0

n−1∑
k=0

(
i

g

)(
j

h

)
ci−l,j−kdl,kα

u(i−g)βv(j−h)

=
∑
i,j,l,k

(
g∑

r=0

(
l

r

)(
i− l

g − r

))( h∑
s=0

(
k

s

)(
j − k

h− s

))
ci−l,j−kdl,kα

u(i−g)βv(j−h)

=
∑
l,k

∑
r,s

(
l

r

)(
k

s

)(∑
i,j

(
i− l

g − r

)(
j − k

h− s

)
ci−l,j−kα

u(i−l−g+r)βv(j−k+s−h)

)
dl,kα

u(l−r)βv(k−s)

=
m−1∑
l=0

g∑
r=0

n−1∑
k=0

h∑
s=0

(
l

r

)(
k

s

)
ĉ(g−r,h−s),(u,v)dl,kα

u(l−r)βv(k−s)

=

g∑
r=0

h∑
s=0

ĉ(g−r,h−s),(u,v)d̂(r,s),(u,v),

as we claimed. 2
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4. 2D-GDFT is invertible

In this section, we are going to describe the inverse 2D-GDFT clearly. For each 0 ≤ i ≤ pa−1 and 0 ≤ g ≤ pb−1,

let

c(i,g)(x, y) =

m′−1∑
r=0

n′−1∑
s=0

ci+rpa,g+spbXrY s.

Let λ = αpa

and µ = βpb

, so that λ and µ are again m′ th and n′ th roots of unity, respectively. By the

classical two-dimensional DFT (with λ and µ as the chosen m′ th and n′ th roots of unity), we have

ci+rpa,g+spb =
1

m′n′

m′−1∑
u=0

n′−1∑
v=0

c(i,g)(λ
u, µv)(λ−r)u(µ−s)v.

Definition 4.1 The partial Hasse matrix H(X,Y ) is the pa+b × pa+b -matrix whose rows and columns are

indexed (and ordered lexicographically) by all pairs (r, s) , 0 ≤ r ≤ pa − 1 and 0 ≤ s ≤ pb − 1 , and the

(i, g), (j, h) th entry is
(
j
i

)(
h
g

)
Xj−iY h−g (this is the (i, g) th partial Hasse derivative of the monomial XjY h in

Fq[X,Y ]).

By definition, we have

(
H(X,Y )H(−X,−Y )

)
(i,g),(j,h)

=

pa−1∑
k=0

pb−1∑
l=0

(
k

i

)(
l

g

)
Xk−iY l−g

(
j

k

)(
h

l

)
(−X)j−k(−Y )h−l

= Xj−iY h−g(
∑
k

(
k

i

)(
j

k

)
(−1)j−k)(

∑
l

(
l

g

)(
h

l

)
(−1)h−l)

=

(
j

i

)(
h

g

)
Xj−iY h−g(

∑
k

(−1)j−k

(
j − i

j − k

)
)(
∑
l

(−1)h−l

(
h− g

h− l

)
).

Now, from the binomial expansion

(1− 1)w =
∑
u≤v

(
w

u

)
(−1)u = 0,

applied to the off-diagonal terms in the product H(X,Y )H(−X,−Y ), we see that the inverse of the partial

Hasse matrix H(X,Y ) is H(−X,−Y ).

Before going on, we need the following simple lemma.

Lemma 4.2 Let q = pm be a prime power and Fq be a field of order q . For each i, a, b, c ≥ 0 we have(
a

i

)
=

(
a+ bpc

i

)
,

where
(
a
i

)
and

(
a+bpc

i

)
are interpreted as integers of the field Fq .
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Proof Just note that the field Fq has characteristics p . Hence, a + bpc equals a when all the quantities

involved are integers. Thus, the result is obvious. 2

Using the previous lemma, we can write

∑
j,h

(
j

i

)(
h

g

)
αu(j−i)βv(h−g)c(j,h)(λ

u, µv) =
∑
j,h

∑
r,s

(
j

i

)(
h

g

)
cj+rpa,h+spbαu(j+rpa−i)βv(h+spb−g)

=
∑
h,s

(∑
j,r

(
j + rpa

i

)
cj+rpa,h+spbαu(j+rpa−i)

)(
h

g

)
βv(h+spb−g)

=
∑
h,s

(
m−1∑
k=0

(
k

i

)
ck,h+spbαu(k−i)

)(
h

g

)
βv(h+spb−g)

=
m−1∑
k=0

(
k

i

)
αu(k−i)

(∑
h,s

(
h+ spb

g

)
ck,h+spbβv(h+spb−g)

)

=

m−1∑
k=0

(
k

i

)
αu(k−i)

(
n−1∑
l=0

(
l

g

)
ck,lβ

v(l−g)

)

=

m−1∑
k=0

n−1∑
l=0

(
k

i

)(
l

g

)
ck,lα

u(k−i)βv(l−g)

= ĉ(i,g),(u,v).

Hence, we have

H(αu, βv)



c(0,0)(λ
u, µv)

c(0,1)(λ
u, µv)

...
c(0,pb−1)(λ

u, µv)
c(1,0)(λ

u, µv)
c(1,1)(λ

u, µv)
...
c(1,pb−1)(λ

u, µv)
...
c(pa−1,0)(λ

u, µv)
c(pa−1,1)(λ

u, µv)
...
c(pa−1,pb−1)(λ

u, µv)



=



ĉ(0,0),(u,v)
ĉ(0,1),(u,v)
...
ĉ(0,pb−1),(u,v)

ĉ(1,0),(u,v)
...
ĉ(1,pb−1),(u,v)

...
ĉ(pa−1,0),(u,v)

ĉ(pa−1,1),(u,v)

...
ĉ(pa−1,pb−1),(u,v)



.

Since the partial Hasse matrix is invertible, the above equality can be rewritten as
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c(0,0)(λ
u, µv)

c(0,1)(λ
u, µv)

...
c(0,pb−1)(λ

u, µv)
c(1,0)(λ

u, µv)
c(1,1)(λ

u, µv)
...
c(1,pb−1)(λ

u, µv)
...
c(pa−1,0)(λ

u, µv)
c(pa−1,1)(λ

u, µv)
...
c(pa−1,pb−1)(λ

u, µv)



= H(−αu,−βv)



ĉ(0,0),(u,v)
ĉ(0,1),(u,v)
...
ĉ(0,pb−1),(u,v)

ĉ(1,0),(u,v)
...
ĉ(1,pb−1),(u,v)

...
ĉ(pa−1,0),(u,v)

ĉ(pa−1,1),(u,v)

...
ĉ(pa−1,pb−1),(u,v)



.

Consequently,

ci+rpa,g+spb =
1

m′n′

m′−1∑
u=0

n′−1∑
v=0

(
pa−1∑
j=0

pb−1∑
h=0

(
j

i

)(
h

g

)
(−αu)j−i(−βv)h−g ĉ(j,h),(u,v)

)
(λ−r)u(µ−s)v.

Therefore, the 2D-GDFT is invertible.

5. A family of quasi-cyclic codes

Reed–Solomon codes (RS codes) are a class of error-correcting cyclic codes proposed by Reed and Solomon in

their original paper [10]. RS codes have optimal parameters and can be efficiently decoded [7,11,13].

Considering a vector space of polynomials f such that f(m) = 0 for all m in the set B = {αr0 , αr0+1, · · · ,
αr0+n−k−1} , we can define an RS code of length n and dimension k over the finite field Fq . Here α can be

any element in Fq of multiplicative order at least n where n is a divisor of q − 1. The key point here is that

we can construct the RS codes from another fruitful method, the DFT approach ([2], Section 6), which enables

us to introduce our generalization of such codes.

Definition 5.1 Let d ≥ 2 , m = pam′ , and n = pbn′ , where a, b ≥ 0 are integers and m′, n′ are relatively

prime to p . Consider the subspace C⋆ consisting of all matrices c ∈ (Fq)
m×n whose ĉ(g,h),(u,v) = 0 for all

pairs (g, h) and (u, v) in which 0 ≤ v ≤ n′ − 2 . A generalized RS code C of block length mn over Fq , denoted

GRSm,n,d , will be defined as the set of all words c ∈ C⋆ whose ĉ(g,h),(u,n′−1) = 0 for all pairs (g, h) and all pairs

(u, n′−1) in which u belongs to a specified block of d−1 consecutive integers, denoted {z0, z0+1, ..., z0+d−2} ,
i.e. 0 ≤ z0 ≤ u ≤ z0 + d− 2 ≤ m′ − 1 .

Note that, by definition, we obtain a code whose elements are matrices, which can be viewed as vectors of

length mn , by reading them column by column. It is easy to verify that GRSm,n,d is an [mn, pa+b(m′−d+1)]-

linear code.

In the following, Bz0,d stands for the set

{(u, n′ − 1) | z0 ≤ u ≤ z0 + d− 2} ∪ {(u, v) | 0 ≤ u ≤ m′ − 1 , 0 ≤ v ≤ n′ − 2}

and will be called the defining set of the code GRSm,n,d .
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Proposition 5.2 The code GRSm,n,d is a quasi-cyclic code of index m .

Proof Suppose that c =

m−1∑
i=0

n−1∑
j=0

ci,jx
iyj is a word of GRSm,n,d . Hence, ĉ(g,h),(u,v) = 0 for all pairs (g, h)

and for each pair (u, v) ∈ Bd . Thus,

n−1∑
k=0

(
n− 1

k

)
βv(n−1−k)ĉ(g,h−k),(u,v) = 0

for all pairs (g, h) and for each pair (u, v) ∈ Bd . Therefore, by proposition 3.2(3), the 2D-GDFT of the word

c′ =
m−1∑
i=0

n−1∑
j=0

ci,j−1x
iyj is equal to zero in those columns (u, v) in which (u, v) ∈ Bd , proving that c′ is a word

of GRSm,n,d , as desired. 2

Next, the minimum distance of the code GRSm,n,d is going to be discussed.

Proposition 5.3 The minimum distance of the code GRSm,n,d satisfies

n′d ≤ dmin(GRSm,n,d) ≤ pa+b(m′n′ −m′ + d− 1) + 1.

Proof Without loss of generality, we can suppose z0 = m′ − d + 1. Otherwise, use proposition 3.2(1) to

translate the defining set Bz0,d to Bm′−d+1,d , thereby multiplying each codeword component by a power of

α , which does not change the weight of a codeword because components that were nonzero remain nonzero.

Suppose that c =

m−1∑
i=0

n−1∑
j=0

ci,jx
iyj is a nonzero word of GRSm,n,d . For any 0 ≤ i ≤ pa − 1 and 0 ≤ g ≤ pb − 1,

let

C(i,g)(x) =
m′−1∑
u=0

c(i,g)(λ
u, µn′−1)xu,

where c(i,g) , λ , and µ are defined as in Section 4. Recall that

c(i,g)(λ
u, µv) =

pa−1∑
k=0

pb−1∑
l=0

(
k

i

)(
l

g

)
(−αu)k−i(−βv)l−g ĉ(k,l),(u,v).

On the other hand, ĉ(k,l),(u,v) = 0 for all 0 ≤ k ≤ pa − 1, 0 ≤ l ≤ pb − 1, and (u, v) ∈ Bm′−d+1,d , showing

that c(i,g)(λ
u, µv) = 0 for each pair (u, v) ∈ Bm′−d+1,d . Therefore, the polynomial C(i,g)(x) is either zero or

has degree at most m′ − d . Since c ̸= 0, we can find a nonzero polynomial C(i,g)(x) for some 0 ≤ i ≤ pa − 1

and 0 ≤ g ≤ pb − 1. Some of the components of the codeword c are ci+rpa,g+spb = (µ−s)n
′−1

m′n′ C(i,g)(λ
−r),

r = 0, · · · ,m′ − 1, and s = 0, · · · , n′ − 1. Since C(i,g)(x) is a polynomial of degree at most m′ − d , it can

have at most m′ − d zeros. Hence, for any 0 ≤ s ≤ n′ − 1, there will be at least d index r such that

ci+rpa,g+spb ̸= 0. Consequently, w(c) ≥ td where t is the number of those pairs (i, g) whose C(i,g)(x) ̸= 0.

Thus, dmin(GRSm,n,d) ≥ m′n′ − (m′ − d)n′ = n′d . The right side of the inequality will be obtained from the

Singleton bound for linear codes. This completes the proof. 2
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Example 5.4 Let q = 4 , m = 6 , and n = 5 . Choosing α5 and α3 as the fifth and third roots of unity in the

Galois field F4 = {a0 + a1α + a2α
2 + a3α

3 | ai ∈ F2, α4 = α + 1} , the 2D-GDFT of a bivariate polynomial

c =
m−1∑
i=0

n−1∑
j=0

ci,jx
iyj is given by the matrix ĉ whose

ĉ(g,h),(u,v) = c[g,h](α5u, α3v)

=
5∑

i=0

4∑
j=0

(
i

g

)(
j

h

)
ci,jα

5u(i−g)+3v(j−h).

Now, let d = 1 . Then the code GRS6,5,1 is a linear [30, 9]-quasi-cyclic code of minimum distance 16

(http://www.codetables.de). This shows that good quasi-cyclic codes can be constructed via our algebraic ap-

proach, as in [9], where such codes have been constructed using integer linear programming and a heuristic

combinatorial optimization algorithm based on a greedy local search.

6. Conclusion

We generalized and studied the 2D-GDFT, which enables us to apply the powerful concept of 2D-DFT on

data matrices for which the number of rows or columns is not necessarily coprime with the field characteristic.

Our generalized 2D-DFT enjoys the basic properties of the original one. As an application, we introduced a

family of quasi-cyclic linear codes, denoted by GRSm,n,d , which are a natural generalization of the classical

Reed–Solomon codes, and the code parameters were described.

References

[1] Arazi B. Two-dimensional digital processing of one-dimensional signal. IEEE T Acoust Speech 1974; 22: 31-36.

[2] Blahut RE. Algebraic Codes for Data Transmission. New York, NY, USA: Cambridge University Press, 2003.

[3] Bongiovanni G, Corsini P, Frosini G. One-dimensional and two-dimensional generalized discrete Fourier transforms.

IEEE T Acoust Speech 1974; 24: 97-99.

[4] Brenner NM. Fast Fourier transform of externally stored data. IEEE T Acoust Speech 1963; 17: 128-132.

[5] Buijs HL. Fast Fourier transformation of large arrays of data. Appl Optimizat 1963; 8: 211-212.

[6] Corsini P, Frosini G. Properties of the multidimensional generalized discrete Fourier transform. IEEE T Comput

1979; C-28: 819-830.

[7] Gao S. A new algorithm for decoding Reed-Solomon codes. In: Bhargava VK, Poor HV, Tarokh V, Yoon S,

editors. Communications, Information and Network Security. The Springer International Series in Engineering and

Computer Science (Communications and Information Theory), Vol. 712. Boston, MA, USA: Springer, pp. 55-68.

[8] Gulliver TA, Bhargava VK. New good rate (m − 1)/pm ternary and quaternary quasi-cyclic codes. Design Code

Cryptogr 1996; 7: 223-233.

[9] Massey JL, Serconek S. Linear complexity of periodic sequences: a general theory. Lect Notes Comput Sc 1996;

1109: 358-371.

[10] Reed IS, Solomon G. Polynomial codes over certain finite fields. Siam J Appl Math 1960; 8: 300-304.

[11] Sarwate D, Shanbhag N. High-speed architectures for Reed-Solomon decoders. IEEE T VLSI Syst 2001; 9: 641-655.

[12] Singleton RC. A method for computing the fast Fourier transform with auxiliary memory and limited high-speed

storage. IEEE T Acoust Speech 1967; 16: 91-98.

[13] Wicker SB, Bhargava VK. Reed-Solomon Codes and Their Applications. New York, NY, USA: IEEE Press, 1994.

359

http://dx.doi.org/10.1017/CBO9780511800467
http://dx.doi.org/10.1109/TASSP.1976.1162764
http://dx.doi.org/10.1109/TASSP.1976.1162764
http://dx.doi.org/10.1109/TC.1979.1675262
http://dx.doi.org/10.1109/TC.1979.1675262
http://dx.doi.org/10.1023/A:1018090707115
http://dx.doi.org/10.1023/A:1018090707115
http://dx.doi.org/10.1007/3-540-68697-5_27
http://dx.doi.org/10.1007/3-540-68697-5_27
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1109/92.953498

	Introduction
	Preliminaries
	Linear codes
	(Partial) Hasse derivatives

	Two-dimensional generalized discrete Fourier transform
	2D-GDFT is invertible
	A family of quasi-cyclic codes
	Conclusion

