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Abstract: Let A be an algebra. A linear mapping d : A → A is called a derivation if d(ab) = d(a)b + ad(b) for each

a, b ∈ A . Given two derivations d and d′ on a C∗ -algebra A , we prove that there exists a derivation D on A such that

dd′ + d′d = D2 if and only if d and d′ are linearly dependent.
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1. Introduction

Let A be an algebra. A linear mapping d : A → A is called a derivation if it satisfies the Leibniz rule

d(ab) = d(a)b + ad(b) for each a, b ∈ A . When A is a ∗ -algebra, d is called a ∗-derivation if d(a∗) = d(a)∗

for each a ∈ A .

As a typical example of a nonzero derivation in a noncommutative algebra, we can consider the inner

derivation δa implemented by an element a ∈ A , which is defined as δa(x) = xa− ax for all x ∈ A . There are

known algebras A such that each derivation on A is inner, which is implemented by an element of the algebra

A or an algebra B containing A . For example, each derivation on a von Neumann algebra M is inner and is

implemented by an element of M . Moreover, each derivation on a C∗ -algebra A acting on a Hilbert space H
is inner and implemented by an element of the weak closure M of A in B(H) (see [4, 10]).

Even for an inner derivation δa on an algebra A , it is very probable that δ2a is not a derivation. In fact,

if d is a ∗ -derivation on a C∗ -algebra A , then d2 is a derivation if and only if d = 0. To see this, note that d2

is a derivation if and only if

d2(x)y + 2d(x)d(y) + xd2(y) = d2(xy) = d2(x)y + xd2(y).

The latter is equivalent to the fact that d(x)d(y) = 0 for each x, y ∈ A . Thus d(x)d(x)∗ = d(x)d(x∗) = 0 for

each x ∈ A . Hence ∥d(x)∥2 = ∥d(x)d(x)∗∥ = 0. This shows that d(x) = 0 for each x ∈ A .

These considerations show that the set of derivations on an algebra A is not in general closed under

product. There are various studies seeking some conditions under which the product of two derivations will be

again a derivation. Posner [9] was the first to study the product of two derivations on a prime ring. He showed

that if the product of two derivations on a prime ring, with characteristic not equal to 2, is a derivation then
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one of them must be equal to zero. The same question has been investigated by several authors on various

algebras; see for example [1–3, 5–8] and references therein. In the realm of C∗ -algebras, Mathieu [5] showed

that if the product of two derivations d and d′ on a C∗ -algebra is a derivation then dd′ = 0. The same result

was proved by Pedersen [8] for unbounded densely defined derivations on a C∗ -algebra.

Let A be a C∗ -algebra. In the present paper, we show that given two derivations d, d′ on A , there exists

a derivation D on A satisfying dd′ + d′d = D2 , if and only if d and d′ are linearly dependent. We prove the

main result in two steps; we first deal with derivations on the matrix algebra Mn(C), and in the final section

for derivations on an arbitrary C∗ -algebra, where the result is derived with similar techniques.

2. The equation for the case of matrix algebras

In this section we are mainly concerned with the structure of derivations on the matrix algebra Mn(C). We

commence with the next elementary technical lemma.

Lemma 2.1 Let A = [aij ], B = [bij ] ∈ Mn(C) . Then aikbℓj = bikaℓj for all 1 ⩽ i, k, ℓ, j ⩽ n if and only if

AXB = BXA for all X ∈ Mn(C).

Proof Let {Eij}1⩽i,j⩽n be the standard system of matrix units for Mn(C). If aikbℓj = bikaℓj for all

1 ⩽ i, k, ℓ, j ⩽ n then we can write

(EiiAEkℓ)(EℓℓBEjj) = aikbℓjEij = bikaℓjEij = (EiiBEkℓ)(EℓℓAEjj).

We thus have

(
n∑

i=1

Eii)AEkℓB(
n∑

j=1

Ejj) = (
n∑

i=1

Eii)BEkℓA(
n∑

j=1

Ejj).

This shows that AEkℓB = BEkℓA for each 1 ⩽ k, ℓ ⩽ n . We can therefore deduce that AXB = BXA for all

X ∈ Mn(C).
On the other hand, if AXB = BXA for all X ∈ Mn(C), then setting X = EjkEkk , we get

aijbkℓEiℓ = (EiiAEjk)(EkkBEℓℓ) = Eii(AEjkEkkB)Eℓℓ = (EiiBEjk)(EkkAEℓℓ) = bijakℓEiℓ.

2

Let A = [aij ] ∈ Mn(C). We denote the diagonal matrix whose diagonal entries are aii by AD .

Proposition 2.2 Let A = [aij ], B = [bij ] ∈ Mn(C). Then there exists a C = [cij ] ∈ Mn(C) such that

δAδB + δBδA = δC
2 if and only if αA = βB + rI for some α, β, r ∈ C with |α|+ |β| ̸= 0 .

Proof We can assume that a11 = b11 = c11 = 0. This is due to the fact that δA−a11I = δA , δB−b11I = δB ,

and δC−c11I = δC .

Let {Eij}1⩽i,j⩽n be the standard system of matrix units for Mn(C). Then δAδB + δBδA = δC
2 if and

only if

δA(δB(Ekℓ)) + δB(δA(Ekℓ)) = δC(δC(Ekℓ))

for each 1 ⩽ k, ℓ ⩽ n or equivalently

Ekℓ(AB +BA)− 2AEkℓB − 2BEkℓA+ (AB +BA)Ekℓ = EkℓC
2 − 2CEkℓC + C2Ekℓ,
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for each 1 ⩽ k, ℓ ⩽ n . This is equivalent to the fact that

Eii(Ekℓ(AB +BA)− 2AEkℓB − 2BEkℓA+ (AB +BA)Ekℓ)Ejj = Eii(EkℓC
2 − 2CEkℓC + C2Ekℓ)Ejj ,

for each 1 ⩽ i, j, k, ℓ ⩽ n . Now for i ̸= k and j ̸= ℓ we have, as in lemma 2.1

(aikbℓj + bikaℓj)Eij = (cikcℓj)Eij . (2.1)

Similarly, for i ̸= k and j = ℓ we have

(
− 2aikbℓℓ − 2bikaℓℓ +

n∑
m=1

(aimbmk + bimamk)
)
Eiℓ =

(
− 2cikcℓℓ +

n∑
m=1

cimcmk

)
Eiℓ. (2.2)

Moreover, for i = k and j ̸= ℓ we have

( n∑
m=1

(aℓmbmj + bℓmamj)− 2akkbℓj − 2bkkaℓj
)
Ekj =

( n∑
m=1

cℓmcmj − 2ckkcℓj
)
Ekj . (2.3)

Finally for i = k and j = ℓ we have

( n∑
m=1

(aℓmbmℓ + bℓmamℓ)− 2akkbℓℓ − 2bkkaℓℓ +
n∑

m=1

(akmbmk + bkmamk)
)
Ekℓ

=
( n∑
m=1

cℓmcmℓ − 2ckkcℓℓ +
n∑

m=1

ckmcmk

)
Ekℓ.

(2.4)

If k ̸= ℓ then putting i = ℓ and j = k in the equation (2.1) we have c2ℓk = 2aℓkbℓk . Thus for i ̸= k and

j ̸= ℓ we have (aikbℓj + bikaℓj)
2 = c2ikc

2
ℓj = 4aikbikaℓjbℓj . This implies that

aikbℓj = bikaℓj , for i ̸= k, j ̸= ℓ. (2.5)

Now, if bℓj ̸= 0 for some 1 ≤ ℓ, j ≤ n with ℓ ̸= j , then the equation

aik =
aℓj
bℓj

bik, for i ̸= k,

implies the existence of some α and β with |α|+ |β| ̸= 0 such that

α(A−AD) = β(B −BD). (2.6)

If bℓj = 0 for all 1 ≤ ℓ, j ≤ n with ℓ ̸= j , then B = BD and so the equation (2.6) holds for α = 0 and any

nonzero β ∈ C .

Putting ℓ = k in (2.4) we get

n∑
m=1

(akmbmk + bkmamk)− 2akkbkk =
n∑

m=1

ckmcmk − ckkckk.
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Thus it follows from (2.4) that

2aℓℓbℓℓ − 2akkbℓℓ − 2bkkaℓℓ + 2akkbkk = cℓℓcℓℓ − 2ckkcℓℓ + ckkckk,

or simply

2(aℓℓ − akk)(bℓℓ − bkk) = (cℓℓ − ckk)
2.

For ℓ = 1 we have

c2kk = 2akkbkk, for each 1 ≤ k ≤ n,

and then
akkbℓℓ + bkkaℓℓ = ckkcℓℓ. (2.7)

Thus for all 1 ≤ k, ℓ ≤ n we have (akkbℓℓ + bkkaℓℓ)
2 = c2kkc

2
ℓℓ = 4akkbkkaℓℓbℓℓ . This implies that

akkbℓℓ = bkkaℓℓ, for all 1 ≤ k, ℓ ≤ n. (2.8)

A similar argument as about the equation (2.5) implies the existence of some α′ and β′ with |α′| + |β′| ̸= 0

such that

α′AD = β′BD.

Returning to the fact that aimbmk = bimamk = 1
2cimcmk for m ̸= i, k , we have

n∑
m=1

m ̸=i,k

(aimbmk + bimamk) =
n∑

m=1
m̸=i,k

cimcmk, for i ̸= k. (2.9)

Thus letting ℓ = i in (2.2) we have

aik(bii − bkk) + bik(aii − akk) = cik(cii − ckk), for i ̸= k, (2.10)

and then

(aik(bii − bkk) + bik(aii − akk))
2 = c2ik(cii − ckk)

2

= 4aikbik(bii − bkk)(aii − akk), for i ̸= k.

This implies that

aik(bii − bkk) = bik(aii − akk), for i ̸= k. (2.11)

Using (2.11) and (2.8) we have

bjjaik(bii − bkk) = bikbjj(aii − akk) = bikajj(bii − bkk).

Now let BD /∈ CI . Then bii ̸= bkk for some i and k . This shows that bjjaik = ajjbik . Hence we have

α = α′ and β = β′ . By a similar argument we can say that if AD /∈ CI then α = α′ and β = β′ . We therefore

have

if AD /∈ CI or BD /∈ CI then αA = βB for some α and β with |α|+ |β| ̸= 0.

On the other hand, if AD = sI and BD = tI for some s, t ∈ C then

α′AD + α(A−AD) = s(α′ − α)I + αA,

24



EKRAMI and MIRZAVAZIRI/Turk J Math

and

β′BD + β(B −BD) = t(β′ − β)I + βB.

Therefore, s(α′ − α)I + αA = t(β′ − β)I + βB .

Summarizing these we can say that δAδB + δBδA = δC
2 implies αA = βB+ rI for some α, β, r ∈ C with

|α|+ |β| ̸= 0.

Conversely, suppose that αA = βB + rI for some α, β, r ∈ C with |α| + |β| ̸= 0. If α ̸= 0 put

C =
√
2βα−1B , and if β ̸= 0 put C =

√
2αβ−1A . Then it is easy to see that δAδB + δBδA = δC

2 . 2

Remark 2.3 The condition αA = βB + rI for some α, β, r ∈ C with |α|+ |β| ̸= 0 in Mn(C) is equivalent to

the fact that δA and δB are linearly dependent.

A natural question is the following: Is it true in general that dd′+d′d = D2 on an algebra A is equivalent

to d and d′ being linearly dependent? In this case we of course have D =
√
2λd =

√
2λ′d′ for some λ, λ′ ∈ C .

The following example shows that the answer is not affirmative in general.

Example 2.4 Let A be the subalgebra of M4(C) generated by E11 , E12 , E34 , and E44 . If d = δE12 and

d′ = δE34 , then for each X = xE11 + yE12 + zE34 + wE44 ∈ A we have

(dd′ + d′d)(X) = δE12(−wE34) + δE34(xE12) = 0.

Thus dd′ + d′d = δ20 . However, d and d′ are linearly independent.

Lemma 2.5 Let A be the subalgebra of M4(C) generated by E11 , E12 , E34 , and E44 . Then each derivation

on A is of the form d = δβE12−αE11−γE34+θE44 for some α, β, γ, θ ∈ C .

Proof Let d : A → A be a derivation. For each projection P ,

d(P ) = d(P 2) = d(P )P + Pd(P ). (2.12)

If d(E11) = αE11 + βE12 + γE34 + θE44 for some α, β, γ, θ ∈ C , we have from (2.12) that α = γ = θ = 0, so

that d(E11) = βE12 for some β ∈ C . Similarly, we get d(E44) = γE34 for some γ ∈ C . Therefore,

d(E12) = d(E11E12) = d(E11)E12 + E11d(E12) = E11d(E12),

so that d(E12) = λE11 + αE12 for some λ, α ∈ C . Then

0 = d(E12E11) = d(E12)E11 + E12d(E11) = d(E12)E11 = λE11.

Thus λ = 0 and so d(E12) = αE12 for some α ∈ C . Similarly, we get d(E34) = θE34 for some θ ∈ C .

For each X ∈ A we have

d(X) = d(xE11 + yE12 + zE34 + wE44) = xd(E11) + yd(E12) + zd(E34) + wd(E44)

= (βx+ αy)E12 + (θz + γw)E34 = δβE12−αE11−γE34+θE44(X).

Therefore, d = δβE12−αE11−γE34+θE44 for some α, β, γ, θ ∈ C . 2
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Remark 2.6 Let A be the subalgebra of M4(C) generated by E11 , E12 , E34 , and E44 and let d, d′ , and D be

derivations on A . By Lemma 2.5, we can assume that d = δβE12−αE11−γE34+θE44 , d
′ = δβ′E12−α′E11−γ′E34+θ′E44 ,

and D = δsE12−rE11−tE34+uE44 for some α, β, γ, θ, α′, β′, γ′, θ′, r, s, t, u ∈ C . Then dd′ + d′d = D2 if and only

if rs = αβ′ + α′β , tu = γθ′ + γ′θ , r2 = 2αα′ , and u2 = 2θθ′ .

3. Derivations on C∗ -algebras

In this section, let H be a Hilbert space with the orthonormal basis {ξi}i∈I . For a bounded operator T ∈ B(H),

let tij = ⟨Tξj , ξi⟩ for i, j ∈ I . We thus have Tξj =
∑

i∈I tijξi and we can write T = [tij ]i,j∈I . The latter is

called the matrix representation of the operator T ∈ B(H).

For i, j ∈ I , let Eij ∈ B(H) be the operator defined by Eijξj = ξi and Eijξk = 0 for k ̸= j . Then

EijEjk = Eik and EijEℓk = 0 for j ̸= ℓ . Using the fact that Eij(x) = ⟨x, ξj⟩ ξi for all x ∈ H , we get

T =
∑
p∈I

∑
q∈I

tqpEqp (3.1)

for every T ∈ B(H). Moreover, putting rij = ⟨Rξj , ξi⟩, sij = ⟨Sξj , ξi⟩ we have

RS =
∑
p∈I

∑
q∈I

∑
m∈I

rqmsmpEqp (3.2)

for every R,S ∈ B(H). It follows from (3.1) and (3.2) that

EijTEkℓ = tjkEiℓ, EijRSEkℓ =
∑
p∈I

rjpspkEiℓ (T,R, S ∈ B(H)).

Using these facts, we are ready to prove the next theorem.

Theorem 3.1 Let A be a C∗ -algebra and let d, d′ be two derivations on A . Then there exists a derivation D

on A such that dd′ + d′d = D2 if and only if d and d′ are linearly dependent.

Proof Let A act faithfully on the Hilbert space H with the orthonormal basis {ξi}i∈I . By the Kadison–Sakai

theorem [4, 10], d = δR, d
′ = δS , and D = δT for some R,S , and T in B(H).

Then dd′ + d′d = D2 if and only if (dd′ + d′d)(Ekℓ) = D2(Ekℓ) for each k, ℓ ∈ I , or equivalently

Ekℓ(RS + SR)− 2REkℓS − 2SEkℓR+ (RS + SR)Ekℓ = EkℓT
2 − 2TEkℓT + T 2Ekℓ,

for each k, ℓ ∈ I . This is equivalent to the fact that

Eii(Ekℓ(RS + SR)− 2REkℓS − 2SEkℓR+ (RS + SR)Ekℓ)Ejj = Eii(EkℓT
2 − 2TEkℓT + T 2Ekℓ)Ejj ,

for each i, j, k, ℓ ∈ I . Now for i ̸= k and j ̸= ℓ we have

riksℓj + sikrℓj = tiktℓj .

Similarly, for i ̸= k and j = ℓ we have

−2riksℓℓ − 2sikrℓℓ +
∑
p∈I

(ripspk + siprpk) = −2tiktℓℓ +
∑
p∈I

tiptpk.
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Furthermore, for i = k and j ̸= ℓ we have∑
p∈I

(rℓpspj + sℓprpj)− 2rkksℓj − 2skkrℓj =
∑
p∈I

tℓptpj − 2tkktℓj .

Finally for i = k and j = ℓ we have∑
p∈I

(rℓpspℓ + sℓprpℓ)− 2rkksℓℓ − 2skkrℓℓ +
∑
p∈I

(rkpspk + skprpk)

=
∑
p∈I

tℓptpℓ − 2tkktℓℓ +
∑
p∈I

tkptpk.

Now a similar verification as in Proposition 2.2 implies the result. 2

Remark 3.2 Note that the subalgebra A of M4(C) generated by E11 , E12 , E34 , and E44 is finite-dimensional

(being a subalgebra of M4(C)), and therefore it is complete with respect to the norm inherited from M4(C) .
Hence A is a Banach algebra. However, A is not a ∗-subalgebra of M4(C) , since X = E12 ∈ A , but

X∗ = E21 /∈ A . Therefore, A is not a C∗ -algebra and Example 2.4 does not contradict the statement of

Theorem 3.1.
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