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Abstract: We study positive C* functions z = f(z),z = (x1,--- , ) defined on the n-dimensional Euclidean space R™.
For © = (z1,--- ,zn) with nonzero numbers x1, - - - , 2, , we consider the rectangular domain I(z) = I(z1) X - X I(zs) C
R"™, where I(z;) = [0,z;] if ; > 0 and I(z;) = [2;,0] if ; < 0. We denote by V, S, (Zv,zv), and (ZTs,Zs) the
volume of the domain under the graph of z = f(x), the surface area S of the graph of z = f(z), the geometric centroid
of the domain under the graph of z = f(z), and the surface centroid of the graph itself over the rectangular domain
I(x), respectively. In this paper, first we show that among C? functions with isolated singularities, S = kV, k € R
characterizes the family of catenary rotation hypersurfaces f(z) = kcosh(r/k), r = |z|. Next we show that the equality
of n coordinates of (Zg,ZzZs) and (Tv,2Zv) for every rectangular domain I(x) characterizes the family of catenary

rotation hypersurfaces among C? functions with isolated singularities.

Key words: Centroid, surface centroid, volume, surface area, catenary rotation hypersurface

1. Introduction

Let us consider the catenary given by f(z) = kcosh((z — ¢)/k),x € R with a positive constant k. It is well
known that the ratio of the area under the curve to the arc length of the curve is independent of the interval
over which these quantities are concurrently measured. In other words, for a positive C! function f(z) defined
on an interval I and an interval [a,b] C I, we consider the area A(a,b) over the interval [a,b] and the arc
length L(a,b) of the graph of f(z). Then the function f(z) = kcosh((x — ¢)/k),k > 0 satisfies for every
interval [a,b] C I, A(a,b) = kL(a,b). This property characterizes the family of catenaries among nonconstant
C? functions as follows ([19]).

Proposition 1.1 For a nonconstant positive C? function f(x) defined on an interval I, the following are

equivalent.

(1) There exists a positive constant k such that for every interval [a,b] C I, A(a,b) = kL(a,b).

(2) The function f(x) satisfies f(x) =ky/1+ f'(z)?, where k is a positive constant.
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(8) For some k >0 and c € R,

£(z) = kcosh (m - c) .

When f(z) is a positive C! function defined on an interval I and [a,b] is an interval contained in the
interval I, we denote by (Za,54) = (Ta(a,b),7a(a,b)) and (Z1,71) = (Z1(a,b), §r(a,b)) the geometric centroid
of the area under the graph of f(x) and the centroid of the graph itself over the interval [a,b], respectively.

Then, for a catenary curve, we have the following ([19]).

Proposition 1.2 A catenary curve f(x) = kcosh((x — ¢)/k) satisfies the following.

(1) For every interval [a,b] C R, Zp(a,b) = Ta(a,b).

(2) For every interval [a,b] C R, gr(a,b) =2ga(a,b).

Conversely, in a recent paper [15], it was shown that one of Zj = T4 and 7, = 24 for every interval
[a,b] characterizes the family of catenaries among nonconstant positive C? functions. See also the recent paper
[1].

For hypersurfaces in the (n + 1)-dimensional Euclidean space R"*! given by the graph of a function

z= f(z),z = (z1, - ,x,) € R, it is quite natural to ask the following question:
Question “Which hypersurfaces z = f(z),z = (1, -+ ,2,) € R™ satisfy the above properties?”
In this paper, we study positive C* functions z = f(z),z = (x1,---,z,) defined on the n-dimensional

Euclidean space R™. We consider rectangular domains with a fixed end point, say the origin, as follows. For a

nonzero real number z, we denote by I(x) the interval defined by

if
Iy = { e e >0 (1.1)
[,0], ifz<O.
For nonzero real numbers 1, - , 2, , we put = (21, ,x,) and consider the rectangular domain defined by

We denote by V(x), S(z), (Zv(z),zv(x)) = (Z1v,  * ,Tnv, 2v), and (Ts(z),Zs(x)) = (T1s, -+ ,Tns, Zs) the
volume of the domain under the graph of z = f(z), the surface area of the graph of z = f(x), the geometric
centroid of the domain under the graph of z = f(x), and the surface centroid of the graph itself over the
rectangular domain I(x), respectively.

As a result, first of all, in Section 3 we prove the following characterization theorem.

Theorem 1.3 Suppose that z = f(x),x = (x1, -+ ,2,) denotes a positive C? function defined on R™ with

1solated singularities. Then the following are equivalent.

(1) There exists a positive constant k such that for every rectangular domain I(z), V(z) = kS(z).
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(2) By a Euclidean motion of R™ if necessary, we have

2 ... 2
f(z) = kcosh <:z:1+k+:1:n) .

Next, in Sections 4 and 5, we prove the following characterization theorem.

Theorem 1.4 Suppose that z = f(x),z = (x1,--+ ,z,) denotes a positive C? function defined on R™ with

isolated singularities. Then the following are equivalent.

(1) For every rectangular domain I(x), we have

(~f157 e 75'713) = (i‘IVa e 7i‘nv)
(2) There exists i € {1,2,--- ,n} such that for every rectangular domain I(x), we have
(Tiss o3 Tis, s Tns, Z5) = (T1ve -, Tiv, o, Tav, 227),

where ™ denotes a missing term.

(3) By a Euclidean motion of R™ if necessary, we have
24 ... 2
f(z) = k cosh (W) ,

Remark 1.5 For a positive constant k € R and £ € {1,2,--- ,n}, we put

2 2
Fos@rse - 2) = koosh <v++ | 13)

k

Then the function f = f, ¢ satisfies f = kw, where w is defined by w(z) = /1 + |V f(z)|2. Hence, for every

rectangular domain I(x), we have
V(z) =kS(z) and (Ts(x),Zs(z)) = (Tv(x),2z2v(z)).

Let us denote by C), the n-dimensional catenary rotation hypersurface given by the graph of the function
fnn in the (n+ 1)-dimensional Euclidean space R"™!. Then, for 1 < ¢ <n — 1, the graph of the function f,
is nothing but the product Cp x R"~* of the ¢-dimensional catenary rotation hypersurface C; C R*! and the
Euclidean space R"~*. Note that the functions f, , have isolated singularities only when £ = n.

In order to prove the above-mentioned main theorems, first of all we need the following (the main theorem
of [11]):

Proposition 1.6 Suppose that a C? function f : R"™ — R with isolated critical points satisfies |V f(x1,- - ,2,)| =
o(f(x1, -+ ,xy,)), where ¢ is a function. Then f is a function of either a distance function r = |p — o| from
a fizxed point o or a linear function. That is, the level sets are either concentric hyperspheres or parallel hyper-
planes.
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We proceed as follows. In Section 2, we prove some lemmas that are crucial in the proof of Theorem 1.4.
In particular, Lemma 2.1 establishes a sufficient and necessary condition for two positive C! functions to be
proportional. In Section 3, with the help of Proposition 1.6, we prove Theorem 1.3. Finally, in Sections 4 and
5, using Proposition 1.6 and the lemmas in Section 2, we prove Theorem 1.4.

Two higher dimensional generalizations of Proposition 1.1 were established in [2]. In [13], it was shown
that among C? functions f : R?> — R with isolated singularities, S = kV, k € R characterizes the family
of catenary rotation surfaces f(x,y) = kcosh(r/k), r = |(z,y)|, where V and S denote the volume and the
surface area of the graph of z = f(z,y) over a rectangular domain of the form [a,b] x [c,d].

To find the centroid of polygons, see [4]. For the perimeter centroid of a polygon, we refer to [3]. In
[17], mathematical definitions of the centroid of planar bounded domains were given. For various centroids of
higher dimensional simplexes, see [18]. The relationships between various centroids of a quadrangle were given
in [7, 14].

Archimedes proved the area properties of parabolic sections and then formulated the centroid of parabolic
sections [20]. Some characterizations of parabolas using these properties were given in [6, 10, 12]. Furthermore,
Archimedes also proved the volume properties of the region surrounded by a paraboloid of rotation and a plane
[20]. For characterizations of spheres, ellipsoids, elliptic paraboloids, or elliptic hyperboloids with respect to

these volume properties, we refer to [5, 8, 9, 16].

2. Some Lemmas
In this section, we prove some lemmas that are useful in the proof of Theorem 1.4 stated in Section 1.

The following lemma plays an important role in this paper.

Lemma 2.1 We denote by f(x) and g(z) two positive C1 functions defined on an interval I containing 0 € R.
Suppose that f(x) and g(x) satisfy the following:

Jo tfde [ tg(t)dt
jO,O Dt ﬁom (it xel,x#0. (2.1)

Then the ratio of f(x) and g(x) is constant. That is, for some constant k € R, we have f(x) = kg(z).
Proof Suppose that f(z) and g(x) satisfy (2.1). Then for all z € Iy = {x € I|z # 0} we get

/0 L) / £(1) (2.2)

/0 tg(t)dt = h(z) /O g()dt, (2.3)

and

where h(z) is a C? function defined on the open set Ij.

By differentiating (2.2) and (2.3) respectively with respect to the variable x, we obtain for all x € I

fl@)(o ~ b)) =) [ (0t (2.4)
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and
ole)o ha)) = (a) [ g0 (2.5)
We put
j@):x;£$W (2.6)

Then j(z) is a C! function on the open set I; defined by I; = {x € Iy|h/(z) # 0}, which satisfies

f(@)j(x) = / o (2.7)

and
o@)i@) = [ gty (28)
0
Differentiating (2.7) and (2.8) respectively with respect to the variable = yields for all x € I
(f(2)j(2)) = f(z) (2.9)
and
(9(2)j(x))" = g(x). (2.10)

It follows from (2.9) and (2.10) that on the open set I; the ratio k(z) = f(z)/g(x) satisfies
K (x)j(z) = 0. (2.11)

Now suppose that the open set Iy defined by Iy = {z € I1|k’(x) # 0} is nonempty. Then (2.11) shows
that on the open set Iy the function j(x) vanishes. Together with (2.9), this shows that the function f(z) also
vanishes on the open set I5. This contradiction implies that the open set Is must be empty. That is, on the
open set I; we have k'(z) = 0.

Finally, we claim that the open set I is dense in the interval I. Otherwise, choose a connected component
K of the nonempty interior of the complement I{ of the open set I;. Then, on the component K, we have
h'(x) = 0. Together with (2.4), this shows that h(z) = z. This contradiction completes the proof of the claim.

Since the open set I} = {x € Iy|h'(x) # 0} is dense in the interval I and k’(z) vanishes on the open set

I, by continuity k'(x) vanishes on the whole interval I. This completes the proof of Lemma 2.1. O

Now we consider a positive C! function f(x) and a positive continuous function w(z), which are defined
on an interval I containing 0 € R. Then we prove the following lemma, which is crucial in the proof of Theorem
1.4.

Lemma 2.2 We consider a positive C function f(x) and a positive continuous function w(x), which are

defined on an interval I containing 0 € R. Suppose that f(x) and w(z) satisfy the following:

/0 F(t)dt = k(z) /0 w(t)dt (2.12)
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and

/Ox f(t)2dt = k(x) /Om f(®)w(t)dt, (2.13)

where k(x) is a function defined on the open set Iy = I\ {0}. Then, on the open set I = {x € Iy|k'(x) # 0},
we have f'(z)=0.

Proof Suppose that f(z) and w(z) satisfy (2.12). Then the function k(x) is a C! function on the open set
Iy. By differentiating (2.12) and (2.13) with respect to the variable x, respectively, we obtain

F(z) — k(@)w(z) = k'(z) /0 " ()t (2.14)

and

f@){f(x) = k(z)w(x)} =K (2) /01c f@w(t)dt. (2.15)

Hence, on the open set I, for the function j(x) defined by

j(x) = BT E— (2.16)
we get
i(z) = /Oxw(t)dt (2.17)
and
i) = [ ot (2.18)

It follows from (2.17) that the function j(x) is a C' function on the open set I;. Differentiating (2.17)
and (2.18) with respect to the variable = gives

j'(x) = w(x) (2.19)

and

(@) f(2) = f@)w(x), (2.20)
respectively. Together with (2.19), (2.20) shows that
j(z)f'(z) =0. (2.21)

Suppose that the open set I defined by Ir = {z € I|f'(z) # 0} is nonempty. Then (2.21) implies that
on Iy j(x) vanishes, and hence j'(z) also vanishes there. Together with (2.19), this contradicts the positivity
of the function w(z). This contradiction shows that the open set Is must be empty. That is, f’(z) vanishes

on the open set I;. This completes the proof of Lemma 2.2. O
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3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 stated in Section 1.

We consider a positive C? function z = f(z),r = (x1,--- ,7,) defined on the n-dimensional Euclidean
space R™ with isolated singularities. Suppose that the function z = f(x),x = (x1,--- ,z,) satisfies for some
k>0 V(z)=kS(z) on every rectangular domain I(z). Then for all nonzero z1,--- ,z, € R, we have

1 Tn Z1 Tn
/ / f(tla"' 7tn)dt1dtn:k/ / w(tla"' 7tn)dt1"‘dtnv (31)
0 0 0 0

where w is a function defined by

w(zy, - xn) = V14 V(- z0)2 (3.2)
By differentiating (3.1) with respect to x1,- - , x, successively, the fundamental theorem of calculus gives
flz1, - zn) = kw(z1,- -+ ,x,) for all nonzero x1,--- ,x, € R. By continuity, f(z1,---,z,) = kw(z1, -+ ,2n)
for all (zq1,---,x,) € R™. That is, we get a partial differential equation
flar, o 2) =kV/1+ V(a1 2,) (3.3)
This shows that the function z = f(z1, - ,2,) satisfies

Vf )| = oS z), o) = Y (3.4)

Now it follows from Proposition 1.6 that by a Euclidean motion, if necessary, the function f(z1,---,z,)
is either a radial function f(z1, -+ ,x,) = h(r),r = |(z1,--- ,2,)| or a function f(x1,---,x,) = h(z1) of only
I .

We consider two cases as follows.

Case 1. f(x1,---,x,) = h(r). In this case, we have from (3.4)
W2 — k2
B (r)= iL, (3.5)
k
which shows that for some real number ¢ € R
r—ec
fzq, - ,xn):h(r):kcosh< ? ) (3.6)

Since the function f(z1,- - ,2,) hasisolated singularities and |V f(z1,- - ,2,)| = |[W'(r)| = |sinh ((r — ¢)/k) |
vanishes where r(z1,---,2,) = ¢, the constant ¢ must be nonpositive, but if ¢ is negative, the function
f(z1, - ,2,) cannot be differentiable at the origin. This implies that ¢ = 0, and hence

f(z1, - ,2n) = kcosh (%) , r=|(z1, - ,zn)l| (3.7)

Case 2. f(x1,---,x,) = h(z1). In this case, we have from (3.4)

R — 2 (3.8)

h/(ﬂfl) == k )
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which shows that for some real number ¢ € R

F(x1, -+ @) = h(z1) = kcosh (xlk_ C) . (3.9)

Since |V f(x1, - ,2,)| vanishes on the hyperplane x1 = ¢, this case is impossible.
Summarizing the above two cases, we see that (1) = (2).

Conversely, Remark 1.5 shows that (2) = (1). This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4: (1) = (3)
In this section, with the help of Lemmas in Section 2, we prove (1) = (3) of Theorem 1.4 stated in Section 1.

We consider a positive C? function z = f(x),z = (x1,--- ,2,) defined on the n-dimensional Euclidean

space R™ with isolated singularities.

First, suppose that the function z = f(z),z = (z1, -+ ,x,) satisfies T1g = Z1y on every rectangular
domain I(z). Then for all nonzero z1,--- ,z, € R, we have
o o ttow(ty, e ty)dty s cdty [ [ G f (G ) dt -y, (4.1)
0’51 e OT“" w(ty, - tp)dty -+~ dty, 0’51 e 0“3" flty, - ty)dty ---dt, ’

where we put

w(m1,~--,mn):\/1—|—|Vf(ac1,--~7mn)|2. (4.2)

For nonzero numbers xo,--- ,x, € R, we let

Fagew, (t1) :/ / ftr,ta, - ty)dta - dty, (4.3)
0 0

and
o Tn
1I]$2,..wn(t1) = / / w(t17t27~-~ ,tn)dtQ-“dtn. (44)
0 0

Then it follows from (4.1) that for every nonzero real number xz;

[t fagea, (t)dt [ e, (1) d

= = — . (4.5)
ozl fﬂlen (tl)dtl 011 Wgy- -z, (tl)dtl
Hence, Lemma 2.1 implies that for some constant ki = ki(z2, - ,z,) depending on the variables zq,--- ,z,
we have
Jazow, (t1) = k(@2 -+ n)Was.a, (1) (4.6)

Together with (4.3) and (4.4), this yields that

T2 Ty T2 Tn
/ / f(tr,ta, -+ tp)dty - - dty, = ki(za, - - 735”)/ / w(ty, to, - ty)dts - - - diy. (4.7)
0 0 0 0

By integrating from 0 to z1, we get from (4.7)
1 Tn 1 Tn
/ / f(tr,ta, -+ tp)dty - -~ dty, = ki(za, - - ,xn)/ / w(ty, to, - ty)dty - - diy. (4.8)
0 0 0 0
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Now suppose that for some i € {2,3,--- ,n} the function z = f(z),z = (x1,--- ,z,) satisfies T;s = T;v

on every rectangular domain I(x). Then, just as in the above discussions, we may prove the following:

T Yl Tn B
/ / / f(t1,t2,"',tn)dh"'dfi"'dtn
0 0 0

(4.9)
z1 i Tn .
=ki(@1, - iy ,mn)/ / / w(ty,ta, - ty)dty - dty - diy,
0 0 0
where k; = k;(21,--- , &4, ,2,) is a function depending on z1,---,%;, - ,x,. Hereafter ~ denotes a missing
term. By integrating from 0 to x;, we obtain from (4.9)
x1 T 1 T
/ / f(tlatQaatn)dtldtn:kl(mhai"u>xn)/ / w(t1>t27at’n)dtldtn
0 0 0 0

(4.10)
Finally, suppose that for all i € {1,2,--- ,n} the function z = f(x),x = (z1, -+ ,x,) satisfies T;s = ZT;v

on every rectangular domain I(x). Then it follows from (4.8) and (4.10) that for each i € {2,--- ,n — 1}

kl(an"' 71;11) - ki(xla"' s Lyttt )xn) = kn(x17"' axn—l)- (411)

This shows that the function ky = k1 (22, -+ ,2,) is nothing but a constant k. Thus, (4.8) implies that

T T ZT1 T
/ / flty,ta,--- 7tn)dt1~--cl1§n:k/ / w(ty,te, -+ tn)dty - - dty. (4.12)
0 0 0 0

By differentiating (4.12) with respect to x1,--- ,x, successively, we get for all nonzero x1, -+ ,x, € R
f(xl’... ’xn):kw(xh... ,wn). (413)
By continuity, (4.13) holds for all (z1,--- ,x,) € R™. Therefore, the same argument as in the proof of Theorem

1.3 completes the proof of (1) = (3).

5. Proof of Theorem 1.4: (2) = (3)
In this section, with the help of the lemmas in Section 2, we prove (2) = (3) of Theorem 1.4 stated in Section
1.

We consider a positive C? function z = f(x),z = (v1,--- ,2,) defined on the n-dimensional Euclidean

space R™ with isolated singularities. As before, we denote by w(z) the function defined by

w(x1,~--,xn):\/1—|—|Vf(x1,---,xn)|2, (5.1)

where Vf is the gradient vector of the function f.

First of all, we prove the following lemma.

Lemma 5.1 We consider a positive C? function z = f(x),x = (x1,--- ,x,) defined on the n-dimensional Eu-
clidean space R™. Suppose that the function z = f(x) satisfies (Tis,--- ,T(n-1)s,25) = (T1v, ** , T(n-1)v, 22v)
on every rectangular domain I(x). Then we have for all nonzero x1,--- ,x, € R
2% Tn
/0 flze, - yxp_1,ty)dt, = k(:ﬂn)/o w(T1, -, Tpo1,tn)dln, (5.2)
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where k(x) is a function defined on the open set Ry = R\ {0}. Furthermore, on the open set Ry = {t €
Ro|k'(t) # 0}, we have

of

F) (3517 Ly Tp— 17 )*0 T1, " yTn—1 GRO, tneRL (53)
Tp

Proof First, suppose that the function z = f(z),z = (x1,--- ,x,) satisfies Zg = 2Zy on every rectangular
domain I(z). Then for all nonzero z1,--- ,z, € R, we have

fo’“ e OI" fltr, - st )w(ty, - ty)dty - - dt, B Oxl .. .fozﬂ F(tr, - tn)2dty - - dty,

x Tn - T Tr l7 5.4
fol...fo UJ(t1,'-',tn)dt1"-dtn fol"'fo f(t1,"',tn)dt1"'dtn ( )
where the function w(z1,- -+, 2,) is defined in (5.1).

Now suppose that Tis = Z1y on every rectangular domain I(z). Then we have from (4.8)

/ / " fQtista o ty)dty - dtn = ki (22, 2 / / w(ty,ta - tn)dty - - dty, (5.5)
0 0

where kq(za, - ,2,) is a function of xzy,--- ,z,. Together with (5.4), this shows that

1 Ty T Tn
/ / f(tla"'7tn)2dt1"'dtn:kl(x27"'axn)/ / f(tla"'7tn)w(t17"'atn)dtl"'dtn-
0 0 0 0

(5.6)
Finally, suppose that Z;s = Z;y for all i € {2,--- ,n— 1} on every rectangular domain I(x). Then, just

as in the case of T15 = Z1y, we may show that

Xy Tp
/ . / f(tl,tg s ,tn)dtl ceedt, = ki(l‘l, e T / / tl,tg tn)dtl e dty,, (5.7)
0 0
/ / f(th,tn)zdtl dt k/’(ZC]_,,.’i'“7.'L'n)/ / f(t17atn)w(t177tn)dt1dtn
0 0 0 0

(5.8)
where k; = k;(z1,--- ,&;,--+ ,xp) is a function depending on x1,--- ,Z;,--- ,x,. Hence, it follows from (5.5)
and (5.7) that the functions k;,i = 1,2,--- ,n — 1 are all the same function and hence it is a function of x,

only. That is, we have k;(x) = k(x,),i = 1,2,--- ,n — 1 for some function k of x, . Together with (5.7) and
(5.8), this implies

Xy Tn
/ cee / fly,to - tp)dty -+ dty, = k(x, / / w(ty,ty - ty)dty - - dty, (5.9)
0 0
1 Ty Tl Tn
/ / fty, - ,tn)th”'dtn:k(SEn)/ / Fltr, - s to)w(ty, - ty)dty - - - dty, (5.10)
0 0 0 0

By differentiating (5.9) with respect to x1,--- , 2,1 successively, we get for all nonzero xy, -+, 2, € R
2% Tn
/ flze, - yxp_1,ty)dt, = k(mn)/ w(T,+ , Tp1,tn)dly,. (5.11)
0 0
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Successively differentiating (5.10) with respect to x1,--- ,z,_1 also gives for all nonzero zy,--- ,z, € R
Tn Tn
/ f(CCl,"' 7xn717tn)2dtn :k(xn)/ f(xla"' 7mnflatn)w($1)”' 7xn71)t’n)dtn' (512)
0 0

Now we use Lemma 2.2. Together with (5.11) and (5.12), Lemma 2.2 shows that for the open set
R; defined by Ry = {t € R|k'(t) # 0,t # 0} and for all nonzero z1, - ,2,-1 € R and t € Ry,
Of /0xp(x1,- -+ ,xn—_1,t) vanishes. This completes the proof of Lemma 5.1. O
Finally, we prove (2) = (3) of Theorem 1.4 as follows. Without loss of generality, we may assume that
the function z = f(z) satisfies (Z1s,--- ,Z(n-1)s,25) = (Z1v, -+ , T(n—1)v,22v) on every rectangular domain
I(x) because the other cases can be treated similarly. Then it follows from Lemma 5.1 that we have for all

nonzgero ri,--- ,T, € R

/ flze, -y xp_1,ty)dt, = k(mn)/ w(T1, -+, Tpo1,tn)dly, (5.13)
0 0

where k(x) is a function defined on the open set Ry = R\ {0}. Furthermore, for the open set Ry = {t €
Ro|k'(t) # 0}, we have

0
a%(ﬂh,'" ;xn—lvtn) =0, x1, ,Tp_1€ Ro, t, € Ry. (514)

We consider two cases as follows.

Case 1. Ry = {t € Ry|k/(t) # 0} = ¢. In this case, the function k(t) is a positive constant k. By differentiating
(5.13) with respect to the variable z,,, we get

f(xh to 7xn717$n) = kw(:cl, te >xn717$n)~ (515)

Hence, just as in the proof of Theorem 1.3, it follows from Proposition 1.6 that by a Euclidean motion if
necessary, the function z = f(x1,--+ ,x,) is given by

r

flxr, - xn) = k‘cosh(k

) =l wa)l. (5.16)

Case 2. Ry = {t € Ro|k/(t) # 0} # ¢. In this case, choose a connected component (a,b) of the nonempty
open set Ry. We may assume that a > 0 because the case of b < 0 can be treated similarly. When ¢ € (a,b),

from (5.3) we have
f(xlv"' 7xn717t):f(x17"' wxnfl) (517)

and hence we get

WXy, Tpo1,t) = \/1 +|Vf(z1, - xp_1)? =w(z1, - ,Tp_1). (5.18)

Thus, it follows from (5.2) that for ¢ € (a,b)
t t
(@1, Tpo1) +/ fley, - ena)de, = k(O{B(z1, -+ 2n1) +/ w(@1, -+, Tn—1)dan}, (5.19)
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where we put
a
o = Ck(.’l,'l,"' wxnfl) = / f(‘rh'" 7$n71,$n)d$n (520)
0
and
B:B(xh"' 7mn71) :/ w(xla"' 7xn717$n)d‘rn~ (521)
0
By integrating, we get from (5.19)
Oé(l‘l, e axn—l) + (t - a)f(xla e axn—l) = k(t){ﬁ(xla e 7xn—1) + (t - a)w(zla e 7xn—1)}a (522)

It follows from (5.22) that
o tf(@y, 1) F (@, Te)

k(t) = , 5.23
W= toan, as) + a1, ) (5.23)
where we put
’Y:a(xla"' 7xn—1)7af($1a"' axn—l) (524)
and
d=pB(x1,  ,xp-1) —aw(T1, -+, Tn_1). (5.25)
Note that (5.23) may be rewritten as
f y-9
kEt)=(—=)|1+ ——= 5.26
(t)=C( )1+ 55 ) (5.26)

where we let ¥ =v/f and 6 = 6 /w.
For each i € {1,--- ,n—1}, let us differentiate (5.26) with respect to x;. Then we obtain for all ¢ € (a,b)

and for each i =1,2,--- ,n—1

[
— (=)t t =0 5.27
S () et =0, (5.27)
where 1 and v are some functions of zy,--- ,x,_1. This implies that for each i =1,2,--- ,n — 1 the function

o(f/w)/0xi(x1,- -+ ,xpn_1,t) = 0 for all nonzero x1,--+ ,x,_1 and ¢ € (a,b). Together with (5.17) and (5.18),
this shows that the gradient of the ratio f/w vanishes on the open set R"~! x R; C R™.

On a fixed connected component K of the interior int(R§) of the complement R§ of the open set Ry,
the function k(t) is a constant kq. Hence, it follows from (5.13) that for all ¢t € K

¢ ¢
/ f(xlu"' 7xn717'rn)d$n = kO/ w(l’l,"' 7$n71,$n)d$n. (529)
0 0
By differentiating (5.29) with respect to the variable t, we get
f(xla"' 7xnflat):k0w(x17"' 7xn717t); te K. (530)

This implies that the gradient of the ratio f/w vanishes on the open set R"~1 x int(R).

Summarizing the above discussions, by continuity we see that the gradient of the ratio f/w vanishes on

the whole space R™. That is, f = kw for some positive constant k.
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Just as in the proof of Case 1, it follows from Proposition 1.6 that by a Euclidean motion, if necessary,

the function z = f(x1, - ,x,) is given by

f(z1, - ,2n) = kcosh (%) , r=|(z1, - ,zn)l| (5.31)

This completes the proof of (2) = (3).
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Conversely, Remark 1.5 shows that (3) = (1) and (2). This completes the proof of Theorem 1.4.
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