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Abstract: In this article we deal with modules with the property that all p -submodules are direct summands. In

contrast to CLS -modules, it is shown that the former property is closed under finite direct sums, but it is not inherited

by direct summands. Hence we focus on when the direct summands of aforementioned modules enjoy the property.

Moreover, we characterize the forenamed class of modules in terms of lifting homomorphisms.
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1. Introduction

In this paper, R and M will denote a ring with unity and a right R -module, respectively. Note that a submodule

K of M is called complement in M if K has no proper essential extension in M . Recall that a module M is

CS or extending if every submodule is essential in a direct summand equivalently, every complement submodule

is a direct summand [4, 10].

In recent studies, there are many generalizations of extending modules with respect to various sets of

submodules. A submodule N of M is called projection invariant if f(N) ⊆ N for all f2 = f ∈ End(MR).

Hence a module M is called π -extending [3], if every projection invariant submodule is essential in a direct

summand. Even though the class of π -extending modules is closed under direct sums, the former property is

not inherited by direct summands (see, [3, Example 5.5]). Recall from [10], a submodule N of M is called a

z-closed submodule of M if M/N is nonsingular. These submodules are named closed in [9] and complement

in [5]. A module M is a CLS -module [9], if every z-closed submodule of M is a direct summand of M .

In this paper, a submodule N of M is called a p-submodule if N is a projection invariant submodule

in M and M/N is nonsingular. We investigate some certain properties of p -submodules. Observe that the

class of p-submodules of M is a sublattice of the lattice of submodules of M . We explain the connections

between complements, p -submodules, and z-closed submodules. Moreover, we deal with lifting properties on

p -submodules. We call a module M a PD -module, if every p -submodule of M is a direct summand of M . We

obtain that PD -modules are generalizations of both CLS -modules and π -extending modules. Furthermore,

we provide examples that demonstrate the class of PD -modules is different from the classes of CLS -modules

and π -extending modules. Contrary to CLS -modules, we obtain that finite direct sums of PD -modules are

PD -modules. Additionally, we present an example that shows that any direct summand of PD -modules need

not be a PD -module. To this end, we determine when the PD condition is inherited by direct summands.

Finally, we characterize this class of modules using lifting homomorphisms.
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Let K ⊆ M . Then K ≤ M , K ≤e M , K ≤d M , K �p M , Z(M), End(MR) and Mn(R) denote K

is a submodule of M , K is an essential submodule of M , K is a direct summand of M , K is a projection

invariant submodule of M , the singular submodule of M , the endomorphism ring of MR , and the n-by-n full

matrix ring over R , respectively. Recall that a ring R is called Abelian if every idempotent of R is central. For

unknown terminology and notation, see [2, 4, 5, 10].

2. Lifting properties on p-submodules

In this section, we examine lifting properties on p -submodules. Let us begin with the basic results for p -

submodules.

Lemma 2.1 (i) Any intersection of p-submodules of MR is a p-submodule of MR .

(ii) Let Y1 and Y2 be submodules of MR such that Y1 ≤ Y2 . If Y1 is a p-submodule of Y2 and Y2 is a

p-submodule of MR , then Y1 is a p-submodule of MR .

Proof (i) Let N1 and N2 be p -submodules of M . Then N1, N2 �p M and Z(M/N1) = 0, Z(M/N2) = 0.

It is clear that N1 ∩N2 is projection invariant in M . Observe that (M/N1)⊕ (M/N2) ∼= M/(N1 ∩N2). Thus

M/(N1 ∩N2) is nonsingular, and hence N1 ∩N2 is a p-submodule of M .

(ii) Let Y1 be a p -submodule of Y2 and Y2 a p-submodule of M . Thus Y1 �p Y2 , Y2 �p M and

Z(Y2/Y1) = 0, Z(M/Y2) = 0. It is clear that Y1 �p M . Since (M/Y1)/(Y2/Y1) ∼= M/Y2 , Z(M/Y2) = 0 and

Z(Y2/Y1) = 0, it follows that Z(M/Y1) = 0. Hence Y1 is a p -submodule of M . 2

The following lemma explains the connections between p -submodules, complements, and z -closed sub-

modules.

Lemma 2.2 (i) Every p-submodule of MR is a complement in MR .

(ii) If MR is an indecomposable module, then p-submodules and z-closed submodules coincide.

Proof (i) Let B be a p -submodule of M . Then B �p M and Z(M/B) = 0. Assume that B ≤e T ≤ M for

some T ≤ M . Then T/B is singular, and hence T/B ≤ Z(M/B). Thus T = B and so B ≤c M .

(ii) Every submodule of an indecomposable module is projection invariant; hence we get the result. 2

The next example shows that there is a complement submodule that is not a p -submodule.

Example 2.3 ([9, Example, 2]) Let F be a field and VF be a vector space over the field F with dim(VF ) ≥ 2 .

Consider the commutative and indecomposable ring R =

[
F V
0 F

]
=

{[
f v
0 f

]
: f ∈ F, v ∈ V

}
. Let Iv =[

0 Fv
0 0

]
be the ideal of R for any v ∈ V . Now Iv is a complement submodule in RR but it is not a z-closed

submodule by [9, Example 2]. Thus Iv is not a p-submodule by Lemma 2.2(ii) .

Following the idea in [10], we call p -submodule N of M a p-lifting submodule for X in M , if for any

φ : N → X , there exists θ : M → X such that φ = θ|N for any modules XR and MR . Let P stand for

the collection of p -submodules of M . We denote the set of p -lifting submodules with PLiftX(M). Now we

investigate some certain module theoretical properties of the class of p -lifting submodules.

Proposition 2.4 Let M1,M2 ≤ M and M = M1 ⊕M2 . Then M1 ∈ PLiftX(M) .
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Proof Let X1 be a p -submodule of M1 and f : X1 → X a homomorphism. Thus X1 ⊕M2 is a projection

invariant submodule of M by [3, Lemma 4.13]. Note that M/(X1⊕M2) ∼= M1/X1 , which is nonsingular. Hence

X1⊕M2 is a p -submodule of M . Now let π : X1⊕M2 → X1 be the projection map and φ : X1⊕M2 → X de-

fined by φ = fπ . Observe that M ∈ PliftX(M). Therefore, there exists θ : M → X such that θ|X1⊕M2 = φ .

Now define γ : M1 → X such that γ = θι , where ι : M1 → M is an inclusion map. Let x1 ∈ X1 . Then

γ(x1) = θ(x1) = fπ(x1) = f(x1), and so γ|X1
= f . Thus M1 ∈ PLiftX(M). 2

Proposition 2.5 The class PLiftX(M) is closed under finite direct sums.

Proof Suppose that M1,M2 ∈ PliftX(M) and T = M1⊕M2 . Let K be a p -submodule of T and g : K → X

a homomorphism. Since K �p T , K = (K ∩M1)⊕ (K ∩M2) by [1, Proposition 3.1 (5)]. Note that Ki �p Mi

and Z(Mi/Ki) = 0, where Ki = N ∩Mi for i = 1, 2. Thus Ki is a p -submodule of Mi for i = 1, 2. Consider

the following maps. Let α1 : K1 → X be defined by α1 = gι1 and α2 : K2 → X be defined by α2 = gι2 , where

ι1 : K1 → K and ι2 : K2 → K are inclusion maps. Hence there exist θ1 : M1 → X and θ2 : M2 → X such that

θ1|K1 = α1 and θ2|K2 = α2 by hypothesis. Now define γ : T → X by γ = θ1π1 + θ2π2 , where πi : T → Mi is

the i -th projection map for i = 1, 2. Let k ∈ K . Thus k = k1 + k2 such that k1 ∈ K1 and k2 ∈ K2 . Hence

γ(k) = θ1π1(k) + θ2π2(k) = α1(k1) + α2(k2) = g(k1) + g(k2) = g(k). Therefore, g extends to γ , which yields

that T ∈ PLiftX(M). The proof follows from the induction argument. 2

3. PD modules

Now we focus on the class of modules whose p -submodules are direct summands. We obtain examples that

demonstrate the class of PD -modules differs from the classes of CLS -modules and π -extending modules. It is

proved that the class of PD -modules is closed under finite direct sums, but the aforementioned property is not

inherited by direct summands. Furthermore, there is a characterization for the class PD -modules using lifting

homomorphisms.

Observe that every singular module satisfies the PD condition, but the converse of this fact is not true:

let MZ = Z . Hence MZ is a PD -module that is nonsingular. Our first result gives the relations between the

classes of PD -modules, CLS -modules, and π -extending modules.

Proposition 3.1 Consider the following for a module MR ,

(1) M is a CS -module.

(2) M is a CLS -module.

(3) M is a π -extending module.

(4) M is a PD -module.

Then (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4) , but these implications are not reversible in general.

Proof (1) ⇒ (2) and (1) ⇒ (3). These implications are clear from [9, Corollary 5] and [3, Proposition 3.7],

respectively.

(2) ⇒ (4). It is obvious from definitions.

(3) ⇒ (4). Let V be a p -submodule of M . Thus V ≤e T ≤d M for some T ≤d M . Hence T/V is

singular and so T/V ≤ Z(M/V ). Then V = T . Consequently, M is a PD -module.
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(2) ⇏ (1) and (3) ⇏ (1). Let MZ = (Z/Zp) ⊕ (Z/Zp3) for any prime p . Then MZ is a CLS -module

that is not extending by [9, Example 6]. On the other hand, it is a π -extending module by [7, page 1814] and

[3, Proposition 3.7].

(4) ⇏ (2). Let R =

[
Z Z
0 Z

]
be the upper triangular matrix ring over Z . It is well known that RR is

π -extending and so it is a PD -module that is not CS . Since Z(RR) = 0, RR is not a CLS -module by [10,

Corollary 5.60].

(4) ⇏ (3). Let R be the ring in Example 2.3 with the dimension of VF being 2. Hence RR is not

uniform. Thus RR is not π -extending by [3, Proposition 3.8]. It can be easily seen that RR is the only

p -submodule of RR . Therefore it is a PD -module. 2

Lemma 3.2 CLS and PD conditions are equivalent for an indecomposable module.

Proof Clear from Lemma 2.2(ii). 2

We obtain that any submodule of a PD -module need not be a PD -module: Let R be a domain that is

not right Ore. Thus every nonzero ideal of R is essential in R . Note that RR is an indecomposable module

that is not uniform. Hence RR is not extending and so it is not CLS by [10, Corollary 5.60]. Therefore, RR is

not a PD -module by Lemma 3.2. However, E(RR), the injective hull of RR , is a PD -module by Proposition

3.1.

The next result explains when the aforementioned property is inherited by submodules.

Proposition 3.3 If MR is a PD -module, then every p-submodule A of MR is a PD -module.

Proof Let Y be a p-submodule of A and A be a p -submodule of M . Hence Y is a p -submodule of M

by Lemma 2.1(ii). Therefore, Y is a direct summand of M . Thus M = Y ⊕ Y ′ for some submodule Y ′ of

M . It follows that A = A ∩ (Y ⊕ Y ′) = Y ⊕ (A ∩ Y ′). Then Y is a direct summand of A . Thereupon A is a

PD -module. 2

It is shown in [10, page 269] that CLS -modules are not closed under direct sums. Contrary to CLS -

modules, PD -modules enjoy the direct sums property.

Theorem 3.4 Let M = M1 ⊕ ...⊕Mk for some submodules M1, ...,Mk of M . If Mi is a PD -module for all

1 ≤ i ≤ k , then M is a PD -module.

Proof It is sufficient to prove the result for the case k = 2. Let M = M1 ⊕ M2 and Y be a p -

submodule of M . Thus Y is a projection invariant submodule in M and M/Y is nonsingular. Hence

Y = (Y ∩ M1) ⊕ (Y ∩ M2), where Y ∩ M1 �p M1 and Y ∩ M2 �p M2 by [1, Proposition 3.1 (5)]. Ob-

serve that M1/(Y ∩M1) ∼= (M1+Y )/Y , which is nonsingular. Thus Y ∩M1 is a p -submodule of M1 . Thereby

Y ∩M1 is a direct summand of M1 . Hence M1 = (Y ∩M1) ⊕ T1 for some T1 ≤ M1 . Following the previous

steps, Y ∩ M2 is also a direct summand of M2 . Thus M2 = (Y ∩ M2) ⊕ T2 for some T2 ≤ M2 . Therefore,

we obtain M = M1 ⊕ M2 = (Y ∩ M1) ⊕ (Y ∩ M2) ⊕ T1 ⊕ T2 = Y ⊕ T , where T = T1 ⊕ T2 . Hence M is a

PD -module. Now we get the proof to apply the induction argument on k . 2

It is proven in [10, Lemma 5.61] that any direct summand of CLS -modules is a CLS -module. PD -

modules do not behave the same as CLS -modules with respect to direct summand property.
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Example 3.5 ([3, Example 5.5] or [8, Example 4]) Let S be the polynomial ring R[x1, x2, ..., xn] , where R
is the real field and n ≥ 3 is an odd integer. Consider the ring R = S/Ss for s = (

∑n
i=1 x

2
i ) − 1 . Hence

MR = ⊕n
i=1R is a free PD -module such that MR has a direct summand that does not have PD condition.

Proof R is a commutative Noetherian domain and so RR is a PD -module. Thus MR = ⊕n
i=1R is a PD -

module by Theorem 3.4. However, M has an indecomposable direct summand K with the dimension n−1 ≥ 2.

Hence KR is not an extending module by [3, Proposition 3.8]. Suppose that KR is a PD -module. Thus KR

satisfies the CLS condition by Lemma 3.2. Furthermore, KR is nonsingular. Therefore, KR is an extending

module by [10, Corollary 5.60], a contradiction. Hence KR is not a PD -module. 2

Now we concentrate on when the direct summand of PD -modules is a PD -module.

Proposition 3.6 Let M1,M2 ≤ M and M = M1 ⊕ M2 be a PD -module. If M1 is a projection invariant

submodule of M , then M1 and M2 are PD -modules.

Proof Let M = M1 ⊕M2 be a PD -module and M1 a projection invariant submodule of M . Let X1 be a

p -submodule of M1 . Then X1 �p M1 and M1/X1 is nonsingular. Hence X1 �p M and M/X1 is nonsingular

by [5, Proposition 1.22]. Thus X1 is a p -submodule of M and so X1 is a direct summand of M . Then X1 is a

direct summand of M1 . Hence M1 is a PD -module. Now let X2 be a p -submodule of M2 . Further M1 ⊕X2

is a projection invariant in M by [3, Lemma 4.11]. Observe that M/(M1⊕X2) ∼= M2/X2 is nonsingular. Hence

M1 ⊕X2 is a p -submodule of M . Thus M1 ⊕X2 is a direct summand of M and so X2 is a direct summand

of M2 . Hence M2 is a PD -module. 2

Corollary 3.7 Let M be a PD -module with an Abelian endomorphism ring. Then every direct summand of

M is a PD -module.

Proof Since M has an Abelian endomorphism ring, every direct summand of M is projection invariant.

Hence apply Proposition 3.6 to get the proof. 2

Consider the free module MR in Example 3.5. Although M is a PD -module, it has a direct summand

that is not a PD -module. Observe that End(MR) ∼= Mn(R). Hence the endomorphism ring of MR is not

Abelian. It shows that we cannot remove the condition of Abelian in Corollary 3.7.

Theorem 3.8 Suppose MR has an Abelian endomorphism ring and M = M1⊕M2⊕ ...⊕Mn for modules Mk

where 1 ≤ k ≤ n . Then M is a PD -module if and only if Mk is a PD -module for each 1 ≤ k ≤ n .

Proof Apply Theorem 3.4 and Corollary 3.7 to get the proof. 2

One might ask whether the essential extension of a PD -module is a PD -module or not. However, the

following example explains this question in a negative way.

Example 3.9 Let R be a principal ideal ring, but not a complete discrete valuation ring. Hence there exists an

indecomposable torsion-free R -module L of rank 2 by [6, Theorem 19]. Hence N1⊕N2 ≤e L for some uniform

submodules N1 and N2 of L . It follows that N1 ⊕N2 is a PD -module by Theorem 3.4. However, LR is not

a PD -module by [10, Corollary 5.60] and Lemma 3.2.

Finally we characterize PD -modules using lifting homomorphisms from p -submodules to the module.

Proposition 3.10 Let P be a nonempty set of all p-submodules of MR . Then the following statements are

equivalent.
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(1) MR is a PD -module.

(2) P ⊆ PLiftY (M) for all YR .

(3) P ⊆ PLiftY (M) for all Y ∈ P .

Proof (1) ⇒ (2). Let M be a PD -module and K ∈ P . Then K is a direct summand of M . Let f : K → Y

be a homomorphism. Define g : M → Y by g = fπ , where π : M → K is projection map. Hence g|K = f and

so K ∈ PLiftY (M).

(2) ⇒ (3). Clear.

(3) ⇒ (1). Let K be a p -submodule of M . Then K ∈ PLiftY (M) for all Y ∈ P . Hence ι : K → K

identity map can be extended to g : M → K . Therefore, M = K ⊕ ker g . Consequently, MR is a PD -module.
2

Open Problem. Whether Theorem 3.4 is true for any number of modules or not?
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