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Abstract:We classify semisymmetric contact metric manifolds M2n+1(φ, ξ, η, g), n ≥ 2 with ξ -parallel tensor h , where

2h denotes the Lie derivative of the structure tensor φ in the direction of the characteristic vector field ξ .

Key words: Contact manifolds, semisymmetric spaces, conformally flat manifolds

1. Introduction

Cartan initiated the study of Riemannian symmetric spaces and he introduced the notion of locally symmetric

space, that is, a Riemannian manifold for which the Riemannian curvature tensor R is parallel [10]. Levy [12]

showed that in these spaces the sectional curvature of every plane remains invariant under parallel transport of

the plane along any curve. Semisymmetric spaces, as a direct generalization of the locally symmetric spaces, are

the Riemannian manifolds that satisfy the condition R(X,Y ).R = 0, where X,Y ∈ X(M) and R(X,Y ) acts

as a derivation on R . Haesen and Verstraelen proved that in these spaces the sectional curvature of every plane

is invariant under parallel transport around any infinitesimal coordinate parallelogram [11]. The classification

of semisymmetric manifolds was described by Szabó [15, 16].

Obviously locally symmetric spaces are semisymmetric, but in any dimension greater than two there are

examples of semisymmetric spaces that are not locally symmetric [7]. Takahashi [17] studied semisymmetric

Sasakian manifolds and he proved such manifolds have constant sectional curvature 1. In dimensions greater than

three, semisymmetric contact metric manifolds with ξ ∈ (κ, µ)-nullity distribution were studied by Papantoniou

[13]. In 1992, Perrone classified 3-dimensional semisymmetric contact metric manifolds with R(ξ, .)ξ = −kφ2

[14]. Perrone also proved that every 3-dimensional semisymmetric contact metric manifold having ξ -parallel

tensor h is either flat or of constant curvature [14]. On the other hand, Blair and Sharma [5] proved that

every locally symmetric contact metric three-manifold has constant curvature 0 or 1. In 2006, Boeckx and Cho

showed that every locally symmetric contact metric manifold is locally isometric to S2n+1(1) or En+1 × Sn(4)

[6]. The results that had been proven in 3 dimensions in [5, 13, 14] were extended by Calvaruso and Perrone

[9]. They proved every semisymmetric contact metric three-manifold having constant Ricci curvature along the

characteristic flow is locally symmetric.

In this paper we study semisymmetric contact metric manifolds of dim ≥ 5 and we prove the following

theorems:
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Theorem 1 Let (M2n+1, g), n ≥ 2 be an irreducible semisymmetric contact metric manifold. If the tensor h

is ξ -parallel, then M is locally isometric to S2n+1(1) .

Theorem 2 Every 5-dimensional semisymmetric contact metric manifold having ξ -parallel tensor h is locally

isometric to either E3 × S2(4) or S5(1) .

2. Preliminaries

A contact manifold is an odd-dimensional C∞ manifold M2n+1 equipped with a global 1-form η such that

η ∧ (dη)n ̸= 0 everywhere. Since dη is of rank 2n , there exists a unique vector field ξ on M2n+1 satisfying

η(ξ) = 1 and dη(ξ,X) = 0 for any X ∈ X(M) is called the Reeb vector field or characteristic vector field of η .

A Riemannian metric g is said to be an associated metric if there exists a (1, 1)-tensor field φ such that

dη(X,Y ) = g(X,φY ), η(X) = g(X, ξ), φ2 = −I + η ⊗ ξ. (1)

The structure (φ, ξ, η, g) is called a contact metric structure and a manifold M2n+1 with a contact metric

structure is said to be a contact metric manifold. We define a (1, 1)-tensor field h by h = (1/2)Lξφ , where L
denotes Lie differentiation. It is shown that h is a symmetric operator and anticommutes with φ [3]. Hence,

if λ is an eigenvalue of h with eigenvector X then −λ is also an eigenvalue of h with eigenvector φX .

The following formulas hold on contact metric manifolds [2, 3]:

∇Xξ = −φX − φhX, hφ = −φh, (2)

1

2
(RξXξ − ϕRξφXξ) = h2X + φ2X, (3)

(∇ξh)X = φX − h2φX − φRXξξ, (4)

(∇Xφ)Y + (∇φXφ)φY = 2g(X,Y )ξ − η(Y )(X + hX + η(X)ξ), (5)

Ric(ξ, ξ) = 2n− trh2. (6)

Theorem 3 [4] Let M2n+1 be a contact metric manifold and suppose that RX,Y ξ = 0 for all vector fields

X and Y . Then M2n+1 is locally the Riemannian product of a flat (n + 1)-dimensional manifold and an

n-dimensional manifold of positive constant curvature 4 .

Theorem 4 [6] A locally symmetric contact metric manifold is locally isometric to S2n+1(1) or En+1×Sn(4) .

Szabó proved the local structure of a semisymmetric space [15].

Theorem 5 For every semisymmetric space, there exists an open dense subset U of M such that around every

point of U the manifold is locally isometric to a Riemannian product of type

Rk ×M1 × ...×Mr, (7)
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where k ≥ 0 , r ≥ 0 , and each Mi is either a symmetric space, a two-dimensional manifold, a real cone, a

K ählerian cone, or a Riemannian space foliated by Euclidean leaves of codimension two.

He arrived at this result by the study of the nullity distribution for the curvature.

Definition 1 The nullity vector space of the curvature tensor at a point p of a Riemannian manifold (M, g)

is given by

E0p = {X ∈ TpM | R(X,Y )Z = 0 for all Y, Z ∈ TpM}.

The index of nullity and conullity at p are the numbers ν(p) = dimE0p and u(p) = dimM − ν(p) , respectively.

In the local decomposition theorem, a different irreducible factor corresponds to different possible values for

ν(p) and u(p).

Theorem 6 [15] Let (M, g) be an n-dimensional locally irreducible semisymmetric space and p a point of a

dense open subset U of M . Then M is locally isometric to one of the following spaces:

(1) a symmetric space when ν(p) = 0 and u(p) > 2 ,

(2) a real cone when ν(p) = 1 and u(p) = n− 1 > 2 ,

(3) a K ählerian cone when ν(p) = 2 and u(p) = n− 2 > 2 ,

(4) a Riemannian manifold foliated by Euclidean leaves of codimension two or a two-dimensional manifold

(in the case n = 2) when ν(p) = n− 2 and u(p) = 2 .

Lemma 1 [8] Let (M, g) be a Riemannian manifold, locally isometric to a Riemannian product M1× ...×Mr .

Then, at any point p = (p1, ..., pr) of M , we have

ν(p) = ν(p1) + ...+ ν(pr).

3. Irreducible semisymmetric contact metric manifolds of dim ≥ 5

Definition 2 A Riemannian manifold (M, g) is said to be conformally flat if for any point p ∈ M there exist

a neighborhood U of p and a smooth function f defined on U such that (U, e2fg) is flat (i.e. the curvature of

e2fg vanishes on U ). The function f need not be defined on all of M .

Let (Mm, g), m > 2, be a Riemannian manifold, p ∈ M and {e1, ..., em} be an orthonormal basis of the

tangent space TpM . Let Rijkℓ and Ricik be the components of R and Ric with respect to {e1, ..., em} . For a
conformally flat Riemannian manifold of dimension m ⩾ 4 we have

Rijkℓ = 1
m−2 (giℓRicjk + gjkRiciℓ − gikRicjℓ − gjℓRicik)

− τ
(m−1)(m−2) (giℓgjk − gikgjℓ),

(8)

where τ denotes the scalar curvature of M . For 3-dimensional conformally flat spaces we have the condition

∇iRicjk −∇jRicik =
1

2(m− 1)
(gjk∇iτ − gik∇jτ). (9)

Calvaruso proved that the nullity index that appears in conformally flat semisymmetric manifolds can only

attain some special values.
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Theorem 7 [8] Let (M, g) be a Riemannian manifold satisfying (8), of dimension m ≥ 3 (that is, either

dimM = 3 or M is conformally flat). Then, at each point p of M , the index of nullity is either ν(p) =

0, 1 or m .

If the nullity index is constant and equal to m (respectively, to 0), then the space is flat (respectively, locally

symmetric). Now let ν(p) = 1 and {e0, e1, ..., em−1} be an orthonormal basis of TpM . If e0 ∈ E0p , the Ricci

tensor at p is described by [8]: {
Ricij =

τ
m−1 if i = j ≥ 1

Ricij = 0 in all the other cases.
(10)

We note that every semisymmetric real cone is a conformally flat Riemannian manifold and never locally

symmetric [8].

Conformally flat contact metric manifolds were studied by many authors. Bang proved the next important

theorem.

Theorem 8 [1] In dimension ≥ 5 there are no conformally flat contact metric structures with R(., ξ)ξ = 0 .

Now we are ready to prove Theorem 1.

Proof of Theorem 1 According to Szabó’s classification theorem, M2n+1 is locally isometric to either a

symmetric space, a real cone, a Kählerian cone, or a space foliated by Euclidean leaves of codimension two. We

study these possibilities one by one.

Symmetric spaces In these cases (M2n+1, g) is locally symmetric and from Theorem 4 it is locally

isometric to either S2n+1(1) or En+1 × Sn(4). However, since M is irreducible, the case En+1 × Sn(4) is not

acceptable.

Kȧhlerian cones Since Kählerian cones are even-dimensional [7] and (M2n+1, g) is odd-dimensional, this

possibility cannot occur.

Real cones In this case M is conformally flat [7, 8] and at each point p of M , ν(p) = 1. Let

{ξ, e1, φe1, ..., en, φen} be an orthonormal basis of smooth eigenvectors of h and hei = λiei, i = 1, ..., n , where

λi is a nonvanishing smooth function, which we suppose to be positive. Then the equation hφ = −φh yields

hφei = −λiφei and the spectrum of h is given by the set {0, λ1,−λ1, λ2,−λ2, ..., λn,−λn} . If ξ ∈ E0p then

R(X,Y )ξ = 0 for all X and Y , and Theorem 3 implies M5 is locally reducible, contrary to the assumption.

Now without losing generality, let e1 ∈ E0p . Then from (4) and ∇ξh = 0 we have 0 = R(e1, ξ)ξ = (1− λ2
1)e1 .

Since for i = 1, ..., n , λi > 0 then λ1 = 1 and the spectrum of h reduces to {0,+1,−1, λ2,−λ2, ..., λn,−λn} .
Putting ej = ek = ξ and ei = eℓ, i = 2, ..., n in (8), we have

1− λ2
i =

Ric(ξ, ξ)

2n− 1
+

Ric(ei, ei)

2n− 1
− τ

2n(2n− 1)
. (11)

From (10) and (11), it follows that

Ric(ξ, ξ) = (2n− 1)(1− λ2
i ). (12)

By virtue of (10) and (12) at each point p of M , we have

τ = 2n(2n− 1)(1− λ2
i ) for all i = 2, ..., n. (13)
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Then λ2 = ... = λn . On the other hand, (6) and (12) imply

(2n− 1)(1− λ2
i ) = 2n− trh2 = 2n− 2

n∑
j=0

λ2
j = 2n− 2(1 + λ2

2 + ...+ λ2
n) = 2n− 2− 2(n− 1)λ2

i .

Hence, for all i = 2, .., n , λi = 1 and R(ei, ξ)ξ = (1− λ2
i )ei = 0, which is impossible by Theorem 8.

Foliated spaces In this case M is an irreducible semisymmetric space with nullity index 2n − 1.

Then either ξ ∈ E0p or without losing generality we suppose e1, ..., en, φe1, ..., φen−1 ∈ E0p . In two cases,

R(X,Y )ξ = 0 for all X and Y . Thus, from Theorem 3, M5 ≃ En+1 × Sn(4), contrary to the assumption. 2

4. Reducible 5-dimensional semisymmetric contact metric manifolds

Let M5 be a semisymmetric contact metric manifold and ∇ξh = 0. Let {e0 = ξ, e1, e2 = φe1, e3, e4 = φe3} be

a local orthonormal basis of smooth eigenvectors of h and he1 = λe1 , he3 = µe3 where λ and µ are smooth

functions, which we suppose to be positive. Then from (2) we get he2 = −λe2 and he4 = −µe4 .

Using (4), (1), and ∇ξh = 0 we have

RXξξ = X − η(X)ξ − h2X. (14)

Lemma 2 The Levi-Civita connection of M satisfies the following relations:

∇e1ξ = −(1 + λ)e2, ∇e2ξ = (1− λ)e1,
∇e3ξ = −(1 + µ)e4, ∇e4ξ = (1− µ)e3,
∇ξe1 = ae2 + be3 + ce4, ∇ξe2 = −ae1 − ce3 + be4,
∇ξe3 = −be1 + ce2 + de4, ∇ξe4 = −ce1 − be2 − de3,
∇e1e1 = a2e2 + a3e3 + a4e4,
∇e2e1 = (λ− 1)ξ + b2e2 + b3e3 + b4e4,
∇e1e2 = (1 + λ)ξ − a2e1 + c3e3 + c4e4,
∇e3e4 = (1 + µ)ξ − f4e1 − u4e2 − p4e3,
∇e3e1 = f2e2 + f3e3 + f4e4, ∇e1e3 = −a3e1 − c3e2 + h4e4,
∇e4e1 = k2e2 + k3e3 + k4e4, ∇e1e4 = −a4e1 − c4e2 − h4e3,
∇e4e2 = −k2e1 +m3e3 +m4e4, ∇e2e4 = −b4e1 − d4e2 + n3e3,
∇e3e2 = −f2e1 + u3e3 + u4e4, ∇e2e3 = −b3e1 − d3e2 − n3e4,
∇e3e3 = −f3e1 − u3e2 + p4e4, ∇e4e3 = (µ− 1)ξ − k3e1 −m3e2 + q4e4,
∇e2e2 = −b2e1 + d3e3 + d4e4, ∇e4e4 = −k4e1 −m4e2 − q4e3,

(15)

where all coefficients are smooth functions on M and

a4 + c3 − b3 + d4 = 0,
a3 − c4 + b4 + d3 = 0,
f4 + u3 − k3 +m4 = 0,
f3 − u4 + k4 +m3 = 0.

(16)

Proof Straightforward computations and using (2) yield (15). Putting X = Y = ei, i = 1, 3 in (5) and

applying (15), we get (16). 2
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By direct computations we have

R(e1, ξ)ξ = ∇e1∇ξξ −∇ξ∇e1ξ −∇[e1,ξ]ξ
= (1− λ2 − 2aλ)e1 + ξ(λ)e2 − c(λ+ µ)e3 + b(λ− µ)e4,

(17)

R(e3, ξ)ξ = ∇e3∇ξξ −∇ξ∇e3ξ −∇[e3,ξ]ξ
= −c(λ+ µ)e1 + b(λ− µ)e2 + (1− µ2 − 2dµ)e3 + ξ(µ)e4.

(18)

On the other hand, (14) gives

R(ei, ξ)ξ =

{
(1− λ2)ei i = 1, 2
(1− µ2)ei i = 3, 4.

(19)

Then the functions a, b, c, d, λ , and µ must satisfy in the system

ξ(λ) = ξ(µ) = 0, aλ = 0, dµ = 0, c(λ+ µ) = 0, b(λ− µ) = 0. (20)

Proposition 1 Let (M5, g) be a reducible semisymmetric contact metric manifold with ∇ξh = 0 and at each

point p of M5 the index of nullity is ν(p) > 0 . Then the eigenvalues of the tensor field h cannot be ±1 with

multiplicity 1 and 0 with multiplicity 3 .

Proof Suppose for contradiction that the spectrum of h is given by the set {0,+1,−1} with ±1 as simple

eigenvalues and 0 with multiplicity 3. Since ν(p) > 0, there is X ∈ E0p . If X = ξ , then R(ei, ξ)ξ = 0 and

(19) implies sp(h) = {0,+1,−1} where 0 is a simple eigenvalue, which is a contradiction.

Without losing generality suppose X = e1 . Then λ = 1, µ = 0, and system (20) implies a = b = c = 0.

From R(e1, ei)ξ = 0 for i = 2, 3, 4, using (15), we have

a2 = b2 = 0, 2d3 − c4 + b4 = 0, 2d4 + c3 − b3 = 0, (21)

a4 = 2f2, c4 = 2a3, 2u3 = −f4, 2u4 = f3, (22)

a3 = −2k2, c3 = −2a4, 2m3 = −k4, 2m4 = k3. (23)

By virtue of (16), (21), (22), and (23), it follows that

a3 = d3, b4 = 0, a4 = d4, b3 = 0. (24)

Then (24) and (16) give

u3 = −m4, f4 = k3, u4 = m3, f3 = −k4. (25)

Applying the above equations in R(e1, ξ)ei = 0, i = 1, 2 implies

ξ(d3) = da4, ξ(d4) = −da3, (26)

ξ(c3) = 2d3 + dc4, ξ(c4) = 2d4 − dc3. (27)
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By the second Bianchi identity

(∇ξR)(e1, e2)ξ + (∇e1R)(e2, ξ)ξ + (∇e2R)(ξ, e1)ξ = 0, (28)

(22), and (24), we get

ξ(d4) = −(1 + d)a3. (29)

Comparing (26) and (29) and using the above equations, we have

a3 = c4 = d3 = k2 = 0. (30)

Hence, by (26), 0 = ξ(d3) = da4 . In view of (23), (24), and (27), it follows that

0 = ξ(c4) = 2d4 − dc3 = 2a4 + 2da4 = 2a4.

Then from (22), (23), and (24), we obtain

d4 = c3 = f2 = 0. (31)

Equation R(e1, e3)ei = 0 for i = 1, 2 together with (22), (23), and (25) yields

e1(m3)− 2m4h4 + 2m2
4 + 2m2

3 = 0,

e1(m3)− 2m4h4 + 2 + 2m2
3 + 2m2

4 = 0.

Subtracting the two last equations gives 2 = 0, which is a contradiction. This completes the proof. 2

Proposition 2 Let (M5, g) be a reducible semisymmetric contact metric manifold with ∇ξh = 0 and at each

point p of M5 the index of nullity is ν(p) > 0 . Then the eigenvalues of the tensor field h are ±1 with

multiplicity 2 and 0 with multiplicity 1 .

Proof Since ν(p) > 0, there is X ∈ E0p . If X = ξ then R(ei, ξ)ξ = 0 and from (19) one can easily get the

result. Now, without losing generality, let ξ ̸= X = e1 . Then λ = 1. Suppose for contradiction µ ̸= 1. Then

the system (20) provides a = b = c = d = 0, ξ(µ) = 0. From R(e1, ei)ξ = 0 for i = 2, 3, 4 and (15), we have

a2 = b2 = 0, 2d3 − (1− µ)(c4 − b4) = 0, (32)

2d4 + (1 + µ)(c3 − b3) = 0, (33)

a4 =
2f2
1 + µ

, 2u3 + 2µh4 + (1− µ)f4 = 0, (34)

e1(µ) = 2u4 − (1 + µ)f3, c4 =
2a3
1 + µ

, (35)

a3 =
−2k2
1− µ

, 2m4 − 2µh4 − (1 + µ)k3 = 0, (36)
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e1(µ) = 2m3 + (1− µ)k4, c3 =
−2a4
1− µ

. (37)

Using (16) in (32) and (33), we get

a3 =
1 + µ

1− µ
d3, (38)

a4 =
1− µ

1 + µ
d4, (39)

respectively. Applying (35) and (38) in (32) and (37) and (39) in (33) gives

b3 = b4 = 0. (40)

By R(e1, ξ)e1 = 0 we have ξ(ai) = 0, i = 3 = 4. Differentiating (38) and (39) with respect to ξ , using

ξ(µ) = 0, shows that ξ(di) = 0, i = 3 = 4. On the other hand, (28) implies

ξ(di) =
−1

2
(1− µ2)ci, i = 3, 4. (41)

Then we get

c3 = c4 = a3 = a4 = d3 = d4 = f2 = k2 = 0.

From R(ei, ξ)e1 = 0 for i = 3, 4 we obtain

ξ(fi) = (1 + µ)ki, ξ(ki) = (µ− 1)fi. (42)

Subtracting (35) and (37) and using (16) yields

f3 =
1 + µ

µ− 1
k4. (43)

Taking the derivative of (43) with respect to ξ and using ξ(µ) = 0, (42), and (16), it follows that

f4 = k3, u3 = −m4. (44)

Applying (44) in (34) and summing the resulting equation by (36), one can get f4 = k3 = 0. Then (42) provides

f3 = k4 = 0 and from (16) m3 = u4 .

Equation R(e1, ei)e2 = 0, i = 3, 4 together with the above equations implies

e1(m3)− 2m4h4 − 2(1− µ) = 0, (45)

e1(m3)− 2m4h4 + 2(1 + µ) = 0. (46)

Subtracting the two last equations gives 2 = 0, which is a contradiction. 2

Proposition 3 The eigenvector of the tensor field h with eigenvalue +1 cannot be a member of the nullity

vector space.
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Proof Assume for contradiction e1 ∈ E0p . Since λ = µ = 1, (20) implies a = d = c = 0. From R(e1, ei)ξ = 0

for i = 2, 3, 4 and (16) we have

a2 = b2 = d3 = a4 = 0, (47)

f2 = 0, c4 = a3, h4 = −u3, u4 = f3, (48)

k2 = 0, m3 = 0, m4 − h4 − k3 = 0. (49)

Applying (47), (48), and (49) in (16) gives

f4 = 0, b4 = 0, k4 = 0. (50)

Using the above equations in R(e1, ξ)ei = 0, i = 1, 2, yields

bc3 = 0, bh4 = 0, e1(b)− ξ(a3) + 2b3 + bf3 = 0, (51)

2bh4 + ξ(c3) = 0, e1(b)− ξ(c4) + 2d4 + bu4 = 0. (52)

Subtracting (51) and (52) and using (48) and (16), it follows that

b3 = d4, c3 = 0. (53)

Also from R(e1, e3)ei = 0, i = 1, 2, one can see

e1(f3)− e3(a3) + a23 − h4k3 + f2
3 = 0, (54)

f3h4 − a3p4 = 0, a3u3 = 0, (55)

e1(u3) + c4p4 + f3u3 − u4h4 = 0, (56)

u3h4 + 4− e3(c4) + a3c4 − h4m4 + f3u4 + e1(u4) = 0. (57)

Subtracting (54) and (57) and using (48) and (49) implies

h2
4 = 2. (58)

Then in view of (51), (54), (55), (48), and (49), we get

b = 0, a3 = c4 = 0, f3 = u4 = 0, b3 = d4 = 0, k3 = 0, m4 = h4. (59)

Using the above equations in R(e1, e4)e2 = 0 gives h2
4 = 0, which is a contradiction.

Now let e3 ∈ E0p . Equation R(e3, ei)ξ = 0 for i = 1, 2, 4 yields

f2 = a4, a3 = c4, u3 = −h4, u4 = f3, (60)

b4 = 0, n3 = 0, u3 = 0, d4 − b3 + f2 = 0, (61)
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k4 = 0, q4 = 0, p4 = 0, m4 + f4 − k3 = 0. (62)

By virtue of the above equations and (16), we have

b4 = −d3, m3 = 0, h4 = 0, c3 = 0. (63)

Using the above equations in R(e3, ξ)ei = 0 for i = 3, 4 implies

−e3(b) + ξ(f3)− 2k3 + ba3 = 0, bf2 = 0, bf4 = 0, (64)

−e3(b) + ξ(u4)− 2m4 + bc4 = 0, ξ(f4) + ba4 = 0. (65)

Subtracting the two last equations and using (60) and (16) gives k3 = m4 and f4 = 0. Equation R(e3, e1)ei = 0

for i = 3, 4 provides

−e3(a3) + e1(f3) + f2
3 + a23 + b3f2 = 0, (66)

a2f3 − a3f2 = 0, f3a4 = 0, (67)

−e3(c4) + 4 + e1(u4) + f3u4 + a3c4 + f2d4 − a4f2 = 0, (68)

−e3(a4) + c4f2 − u4a2 + a3a4 = 0, a3f3 = 0. (69)

Subtracting (66) and (69), using (60) and (61), gives

a24 = f2
2 = 2. (70)

Then in view of (64), (67), (65), and (66) we obtain

b = 0, f3 = u4 = 0, a3 = c4 = 0, m4 = 0, k3 = 0, b3 = 0.

Using the above equations in R(e3, e2)e4 = 0 yields a24 = 0, which is a contradiction. This completes the proof.
2

Proposition 4 Let (M5, g) be a reducible semisymmetric contact metric manifold and the tensor h is ξ -

parallel. Then ν(p) ̸= 1

Proof Suppose for contradiction that M5 is a semisymmetric contact metric manifold with ν(p) = 1.

Then there is X ∈ E0p . If X = ξ , for all vector fields X and Y , R(X,Y )ξ = 0 and from Theorem 3,

M5 ≃ E3 × S2(4). Then ν(p) = 3, which is a contradiction. Since from Proposition 3 for i = 1, 3, ei /∈ E0p

and then either X = e2 or X = e4 . Without losing generality let e2 ∈ E0p .

Using (15), (16), and R(e2, ei)ξ = 0, i = 1, 3, 4 we get

a2 = a4 = 0, b2 = 0, d3 = 0, (71)

b4 = 0, n3 = 0, u3 = 0, c3 = f2 a3 = c4, (72)
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k2 = 0, m3 = 0. (73)

Applying (72) in R(e2, e1)e2 = 0 gives

c3 = f2 = 0, d4 = b3, d4h4 = 0, e2(c4)− e1(d4)− u4b3 + c4m4 + 2b = 0. (74)

By R(e2, ξ)ei = 0 and R(ej , ξ)e2 = 0 for i = 1, 2, 3, j = 1, 3 we have

bk4 = 0, bk3 = bm4, bq4 = 0, (75)

bh4 = 0, e1(b)− ξ(c4) + 2d4 + bu4 = 0, (76)

bp4 = 0, e3(b)− ξ(u4) + 2m4 − bc4 = 0, bf4 = 0. (77)

The proof proceeds via the following steps:

Step 1: The smooth function b on M is zero.

Proof Let b ̸= 0. A direct computation of R(ei, ej)ξ , using (16) gives

R(e1, e3)ξ = 2h4e3 + 2(u4 − f3)e4,
R(e1, e4)ξ = 2(m4 − h4 − k3)e4,
R(e3, e4)ξ = −2k4e1 − 2q4e3 − 2p4e4.

(78)

In view of (75), (76), (77), and (16), it follows that

k4 = q4 = h4 = p4 = f4 = 0, k3 = m4, f3 = u4.

Then for all vector fields X and Y , R(X,Y )ξ = 0 and from Theorem 3, ν(p) = 3; that is a contradiction. 2

Step 2: The smooth functions b3 and d4 on M are zero.

Proof By virtue of R(e2, e1)e1 = 0, R(e2, ei)e1 = 0, i = 3, 4 and R(e2, ei)e2 = 0, i = 3, 4 we have

e2(a3)− e1(b3)− b3f3 + c4k3 = 0, − b3h4 − b3f4 + c4k4 = 0, (79)

f4d4 = 0, e2(f3)− e3(b3) + b3a3 + u4k3 = 0, e2(f4)− b3p4 + u4k4 = 0, (80)

d4k4 = 0, e2(k3)− e4(b3) + d24 +m4k3 = 0, e2(k4)− b3q4 +m4k4 = 0, (81)

d4p4 = 0, e2(u4)− e3(d4) + b3c4 + u4m4 = 0, (82)

d4q4 = 0, e2(m4)− e4(d4) + d24 +m2
4 = 0. (83)

If d4 = b3 ̸= 0, the above equations and (16) yield

k4 = q4 = h4 = p4 = f4 = 0, k3 = m4, f3 = u4.

Hence, for all vector fields X and Y , R(X,Y )ξ = 0 and M5 ≃ En+1×Sn(4). Then ν(p) = 3, a contradiction.
2
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Equations (15), (16), (77), and (78) and the second Bianchi identity

(∇ξR)(e1, e3)ξ + (∇e1R)(e3, ξ)ξ + (∇e3R)(ξ, e1)ξ = 0,

imply

ξ(f3) = 2(m4 + h4 + f4). (84)

Also from
(∇e1R)(e1, e3)ξ + (∇e2R)(e3, e1)ξ + (∇e3R)(e1, e2)ξ = 0,

(15), (80), and (82) we have

−p4c4 + u4h4 = 0. (85)

Using R(e1, e4)e2 = 0 and (15), it follows that

e1(m4)− e4(c4) + u4h4 + u4k3 + k4m4 = 0, (86)

−m4h4 + c4q4 = 0. (87)

Step 3: The smooth functions a3 and c4 on M are zero.

Proof Let a3 = c4 ̸= 0. Subtracting (74) and (79) using (16) we obtain

k4 = 0, f4 = 0, m4 = k3, f3 = u4. (88)

From (88) and (84), it follows that

ξ(u4) = 2(m4 + h4).

Also b = 0 and (77) give ξ(u4) = 2m4 . Comparing the two last equations yields h4 = 0. Using the above

equations in R(e2, e1)e4 = 0 and (85), we get q4 = 0 and p4 = 0, respectively. Then, in view of (78) for all

vector fields X and Y , R(X,Y )ξ = 0 and M5 ≃ E3 × S2(4). Thus, ν(p) = 3, which is a contradiction. 2

A direct computation of R(e3, ei)e2 = 0, i = 1, 4 shows that

e3(m4)− e4(u4) + p4u4 + q4m4 = 0,
u4k4 −m4f4 = 0,
u4q4 −m4p4 = 0,

(89)

e1(u4) + 4−m4h4 +m4f4 + f3u4 = 0, u4h4 = 0. (90)

Step 4: The smooth function h4 on M is zero.

Proof Equation (87) gives m4h4 = 0 and then h4 = 0. If m4 = 0, equation (90) reduces to

e1(u4) + 4 + f3u4 = 0, u4h4 = 0,

but u4 ̸= 0, because otherwise the above equation yields 4 = 0, which is a contradiction. Then h4 = 0. 2

Step 5:u4 ̸= 0.

Proof By virtue of (89) and h = 0, (90) reduces to e1(u4)+ 4+u4k4 + f3u4 = 0. If u4 = 0 we obtain 4 = 0,

which is a contradiction. 2
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Step 6: m4k4 = f4u4 .

Proof From R(e4, ξ)e2 = 0 we have ξ(m4) = 0. By the second Bianchi identity

(∇ξR)(e1, e4)ξ + (∇e1R)(e4, ξ)ξ + (∇e4R)(ξ, e1)ξ = 0,

one can see ξ(k3) = 0. Taking the derivative of (16) with respect to ξ and using (77) and (84) gives

ξ(f4) = 0, ξ(k4) = −2f4. (91)

Applying (16), (81), and (91) in

(∇ξR)(e2, e3)e1 + (∇e2R)(e3, ξ)e1 + (∇e3R)(ξ, e2)e1 = 0

implies

m4k4 − f4u4 = 0. (92)

2

Step 7: The smooth functions f4 and k4 on M are zero and f3 = u4,m4 = k3.

Proof Differentiating (92) with respect to ξ and using (91), (77), and ξ(m4) = 0 we get m4f4 = 0. Thus,

from (89) and u4 ̸= 0 it follows that k4 = 0. Hence, (92) and u4 ̸= 0 yield f4 = 0. From (16) one can easily

get f3 = u4, m4 = k3 . 2

The second Bianchi identity,

(∇Y R)(e3, e4)ξ + (∇e3R)(e4, Y )ξ + (∇e4R)(Y, e3)ξ = 0,

for Y = ξ, e1 together with (78) and (86) gives

ξ(p4) = 0, (93)

e1(p4) = −f3p4. (94)

Step 8: The smooth functions p4 and q4 on M are zero.

Proof Applying (84), (86), (89), (90), (93), and (94) in the second Bianchi identity

(∇e1R)(e2, e3)e3 + (∇e2R)(e3, e1)e3 + (∇e3R)(e1, e2)e3 = 0,

we get

e1(q4) =
4q4 − u2

4q4
u4

. (95)

Using (86), (90), (94), and (95) in

(∇e1R)(e3, e4)e2 + (∇e3R)(e4, e1)e2 + (∇e4R)(e1, e3)e2 = 0

provides p4 = q4 = 0. 2

In view of these eight steps and (78) for all vector fields X and Y , R(X,Y )ξ = 0. Then M5 ≃ E3×S2(4)

and ν(p) = 3, which is a contradiction, and this complete the proof. 2
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Proposition 5 Let (M5, g) be a reducible semisymmetric contact metric manifold and the tensor h is ξ -

parallel. Then M is locally isometric to E3 × S2(4) .

Proof Let M5 is a reducible semisymmetric contact metric manifold. Then, from Theorem 5, there exists

an open dense subset U of M such that around every point p of U the manifold is locally isometric to a

Riemannian product of type (7) and from Lemma 1, ν(p) = ν(p1) + ... + ν(pr). According to Propositions 3

and 4, ν(p) = 0, 2, or 3.

If ν(p) = 0 then for all i = 1, ..., r , ν(pi) = 0 and all Mi in (7) are locally symmetric. Since

the Riemannian product of locally symmetric manifolds is locally symmetric then from Theorem 4, M5 ≃
E3 × S2(4). Hence, ν(p) = 3, which is a contradiction.

Let ν(p) = 2. If ξ ∈ E0p then Theorem 4 implies M5 ≃ E3 × S2(4), i.e. ν(p) = 3, which is a

contradiction. Then in view of Proposition 3, e2, e4 ∈ E0p . According to the proof of Proposition 4 from

e2 ∈ E0p we have M5 ≃ E3 × S2(4). Then ν(p) = 3, which is a contradiction.

If ν(p) = 3, since for i = 1, 3, ei /∈ E0p and then ξ, e2, e4 ∈ E0p . Hence, for all vector fields X and Y ,

R(X,Y )ξ = 0 and from Theorem 3, M5 ≃ E3 × S2(4). 2

Proof of Theorem 2 It follows from Theorem 1 and Proposition 5. 2
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