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Abstract: This paper deals with the infinite dimensional Hamiltonian operator with unbounded entries. Using the core

of its entries, we obtain the conditions under which the numerical range of such an operator is symmetric with respect

to the imaginary axis. Based on the symmetry above, a necessary and sufficient condition for generating C0 semigroups

is further given.
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1. Introduction

The infinite dimensional Hamiltonian operator naturally arises from Hamiltonian systems and plays an im-

portant role in lots of areas such as mechanics and optimal control theory (cf. [7, 13]). In these areas, the

spectral properties of the corresponding Hamiltonian operator are of great significance on which many authors

are attracted to focus (see, e.g., [1, 2, 8, 12]).

As we know, the Hamiltonian matrix H is symplectic symmetric in X ⊕ X , i.e. (JH)H = JH with

J =
(

0 I
−I 0

)
, where X is a finite dimensional Hilbert space, I is the identity matrix, and the symbol H denotes

the conjugate transpose operation. Then it is easy to see that the numerical range W (H) of H is symmetric

with respect to the imaginary axis, since J is an unitary matrix [4]. However, the same property may not be

true for an unbounded infinite dimensional Hamiltonian operator. One of our main purposes is to give certain

natural conditions such that the analogous symmetry holds true in the general unbounded case.

The location of the numerical range determines the semigroup generation property for a densely defined

closed linear operator. It is well known that the system of linear evolution equations is well posed if and only

if the corresponding operator matrix is the generator of a C0 semigroup on underlying spaces [3]. Therefore,

based on the symmetry of the numerical range, we consider the semigroup generation of infinite dimensional

Hamiltonian operators. The classical results for operator matrices to generate C0 semigroups are discussed

in the diagonal domain by means of standard perturbation theorems, under the assumption that the diagonal
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elements generate semigroups [9, 10]. Note that we are concerned with the Hamiltonian operator with an

off-diagonal domain and discuss the core of its off-diagonal elements.

2. Preliminaries

Let T be an (linear) operator between Hilbert spaces; then the domain, nullspace, and range of T are denoted

by D(T ), N (T ), and R(T ), respectively. Throughout this paper, X always denotes an infinite dimensional

Hilbert space.

Definition 2.1 Let H =
(
A B
C −A∗

)
be a densely defined closed operator in X ⊕X . Then H is called an infinite

dimensional Hamiltonian operator, if A is closed and B,C are self-adjoint, where the symbol ∗ denotes the

adjoint operation. In addition, H is said to be symplectic self-adjoint, if (JH)∗ = JH , where J =
(

0 I
−I 0

)
with

I being the identity operator on X .

In what follows, we give a simple example to illustrate that the numerical range of the infinite dimensional

Hamiltonian operator is not symmetric with respect to the imaginary axis in general.

Example 2.1 Let X = L2(0,∞). Consider the infinite dimensional Hamiltonian operator H =
(
A 0
0 −A∗

)
with

Af = f ′ , D(A) = H1
0(0,∞), and A∗g = −g′ , D(A∗) = H1(0,∞). Although H is symplectic self-adjoint, its

numerical range W (H) is not symmetric with respect to the imaginary axis.

We claim that

W (H) = W (H) = {λ ∈ C : Reλ ≤ 0},

where Reλ is the real part of the complex number λ . Indeed, for v = (f g)t ∈ D(H), we have

(Hv, v) = (Af, f)− (A∗g, g)

=

∫ ∞

0

f ′(x)f(x)dx+

∫ ∞

0

g′(x)g(x)dx

=

∫ ∞

0

((f(x)f(x))′ − f(x)f ′(x))dx+

∫ ∞

0

((g(x)g(x))′ − g(x)g′(x))dx

= −|g(0)|2 −
∫ ∞

0

f(x)f ′(x)dx−
∫ ∞

0

g(x)g′(x)dx

= −|g(0)|2 − (f,Af) + (g,A∗g)

= −|g(0)|2 − (v,Hv).

Hence, Re(Hv, v) = − 1
2 |g(0)|

2 , and the claim follows.

Definition 2.2 [6] Let E , F be Banach spaces, and let T : D(T ) ⊂ E → F be a closed operator. If

S : D(S) ⊂ E → F is closable and S = T , then D(S) is called the core of T .

Lemma 2.1 [2] Let H =
(
A B
C −A∗

)
be a symplectic self-adjoint infinite dimensional Hamiltonian operator. Then

σ(H), σp(H) ∪ σr(H) and σc(H) are symmetric with respect to the imaginary axis, respectively. Here σ(H),

σp(H), σr(H), and σc(H) are the spectrum, point spectrum, residual spectrum, and continuous spectrum of

H , respectively.
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Lemma 2.2 [12] If T is a densely defined closed operator, then σapp(T ) ⊂ W (T ), where σapp(T ) is the

approximate point spectrum of T .

Lemma 2.3 Let H =
(
A B
C −A∗

)
: D(H) := D1⊕D2 → X ⊕X be an infinite dimensional Hamiltonian operator.

Then

(i) W 2(H) ⊂ W (H),

(ii) W (Ã) ∪W (−Ã∗) ⊂ W 2(H),

where W (H) is the numerical range of H , i.e. W (H) = {(Hv, v) : v ∈ D(H), ∥v∥ = 1} , W 2(H) is the

quadratic numerical range of H [11], and Ã := A|D1 and Ã∗ := A∗|D2 , respectively, denote the corresponding

restrictions to D1 and D2 .

Proof According to [11, Theorems 2.5.3, 2.5.4], the results hold immediately since X is an infinite dimensional

Hilbert space. 2

Lemma 2.4 Let H =
(
A B
C −A∗

)
: D(H) ⊂ X ⊕ X → X ⊕ X be an infinite dimensional Hamiltonian operator.

Then H is symplectic self-adjoint, if one of the following statements holds:

(i) A is C -bounded with relative bound 0, and D(B) ⊂ D(A∗),

(ii) A∗ is B -bounded with relative bound 0, and D(C) ⊂ D(A).

Proof The result follows from [5, Corollary 3.2] immediately. 2

3. Main results

To begin with, we consider the symmetry of the numerical range of infinite dimensional Hamiltonian operators

with off-diagonal domain.

Theorem 3.1 Let H =
(
A B
C −A∗

)
: D(C) ⊕ D(B) → X ⊕ X be an infinite dimensional Hamiltonian operator.

Then W (H) is symmetric with respect to the imaginary axis, if D(B) ∩ D(C) is a core of B and C .

Proof Write D0 = D(B) ∩ D(C). We first claim

W (H) = W (H|D), (3.1)

where D = D0 ⊕ D0 . It suffices to show W (H) ⊂ W (H|D). To this end, let λ ∈ W (H). Then there exists

v = (f g)t ∈ D(H) = D(C) ⊕ D(B) with ∥v∥ = 1 such that λ = (Hv, v). Since D0 is a core of B and C ,

there are two sequences (f̂n)
∞
n=1 and (ĝn)

∞
n=1 in D0 such that

f̂n → f, n → ∞, Cf̂n → Cf, n → ∞,

ĝn → g, n → ∞, Bĝn → Bg, n → ∞.

We write v̂n = (f̂n ĝn)
t ; then v̂n → v, n → ∞ . Obviously, ∥v̂n∥ → 1, n → ∞ . We may assume v̂n ̸= 0, and

let vn = (fn gn)
t with fn = f̂n

∥v̂n∥ , gn = ĝn
∥v̂n∥ , then vn ∈ D , ∥vn∥2 = ∥fn∥2 + ∥gn∥2 = 1, and

fn → f, n → ∞, Cfn → Cf, n → ∞,

gn → g, n → ∞, Bgn → Bg, n → ∞.
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The closedness of A , B , and C implies A is C -bounded and A∗ is B -bounded. It follows that (Afn)
∞
n=1 and

(A∗gn)
∞
n=1 are both Cauchy sequences, and hence

Afn → Af, n → ∞, A∗gn → A∗g, n → ∞.

Hence

(Afn, fn) → (Af, f), n → ∞, (Bgn, fn) → (Bg, f), n → ∞,

(Cfn, gn) → (Cf, g), n → ∞, (−A∗gn, gn) → (−A∗g, g), n → ∞.

It follows from

(Hvn, vn) = (

(
A B
C −A∗

)(
fn
gn

)
,

(
fn
gn

)
)

= (Afn, fn) + (Bgn, fn) + (Cfn, gn) + (−A∗gn, gn)

that
(Hvn, vn) → (Hv, v), n → ∞.

Thus λ ∈ W (H|D). This proves (3.1).
In view of (3.1), it remains to prove

λ ∈ W (H|D) ⇐⇒ −λ ∈ W (H|D). (3.2)

We decompose H as H = S + T , where

S =

(
0 B
C 0

)
, T =

(
A 0
0 −A∗

)
.

Then it is easy to verify (
A∗ C
B −A

)
= S∗ + T ∗ ⊂ (S + T )∗ = H∗,

which implies JHJ ⊂ H∗ , and hence JD(H) ⊂ D(H∗). It follows from D ⊂ JD(H) ⊂ D(H∗) that

H∗|D =
(
A∗ C
B −A

)
|D . For each v = (f g)t ∈ D = D0 ⊕ D0 with ∥v∥ = 1, we note v̂ = (−g f)t, then

∥v̂∥ = 1 and

(H∗|Dv, v) = (

(
A∗ C
B −A

)(
f
g

)
,

(
f
g

)
)

= (A∗f, f) + (Cg, f) + (Bf, g) + (−Ag, g)

= (

(
−A −B
−C A∗

)(
−g
f

)
,

(
−g
f

)
) = −(Hv̂, v̂),

which implies

λ ∈ W (H|D) ⇐⇒ −λ ∈ W (H∗|D).

Then it follows from W (H|D)∗ = W (H∗|D) that (3.2) holds. 2
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Similarly, we have the following result in the case of the diagonal domain.

Corollary 3.1 Let H =
(
A B
C −A∗

)
: D(A)⊕D(A∗) → X ⊕X be an infinite dimensional Hamiltonian operator.

Then W (H) is symmetric with respect to the imaginary axis, if D(A) ∩ D(A∗) is a core of A and A∗ .

Proof The proof is completely similar to that of Theorem 3.1. 2

Example 3.1 Let X = L2(0, 1). Consider the infinite dimensional Hamiltonian operator

H =

(
A B
C −A∗

)
=

(
iI d2

dx2

d2

dx2 iI

)
: D(C)⊕D(B) → X ⊕X ,

and

D(B) = D(C) = {f ∈ X : f ′, f ′′ ∈ X , f ′ is absolutely continuous, and f(0) = f(1) = 0} .

It is not hard to verify that H satisfies the conditions of Theorem 3.1. For each v = (f g)t ∈ D(H)

with ∥v∥ = 1, we have

(Hv, v) = (

(
iI d2

dx2

d2

dx2 iI

)(
f
g

)
,

(
f
g

)
)

= (if, f) + (g′′, f) + (f ′′, g) + (ig, g)

= i + 2Re(f ′′, g).

Obviously, W (H) is symmetric with respect to the imaginary axis.

Next, we discuss the semigroup generation property of the infinite dimensional Hamiltonian operator

H =
(
A B
C −A∗

)
: D(C)⊕D(B) → X ⊕X . The following are some useful constants defined for H :

α0 = inf{Reλ : λ = (−Af, f), ∥f∥ = 1, f ∈ D(C)},

β0 = inf{Reλ : λ = (A∗g, g), ∥g∥ = 1, g ∈ D(B)},

δ0 = min{α0, β0},

γ0 = sup{Reλ : λ =
(Cf, g) + (Bg, f)

∥f∥2 + ∥g∥2
, (f g)t ∈ D(H)}.

Theorem 3.2 Let H =
(
A B
C −A∗

)
: D(C) ⊕ D(B) → X ⊕ X be an infinite dimensional Hamiltonian operator.

Assume that one of the following statements is satisfied:

(a) The C -bound of A is 0,

(b) The B -bound of A∗ is 0.

If γ0 ≤ δ0 and D(C) ∩ D(B) is a core of B and C , then H generates a C0 semigroup (T (t))t≥0 with

∥T (t)∥ ≤ eβt for some β ≥ 0 if and only if

W (A|D0) ⊂ {z ∈ C : −β ≤ Rez ≤ β}, (3.3)
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where D0 = D(B) ∩ D(C). In addition, as (3.3) holds, we have

σ(H) ⊂ W (H) ⊂ {z ∈ C : −β ≤ Rez ≤ β}.

Proof The relation (3.3) implies

W (A|D0) ∪W (−A∗|D0) ⊂ {z ∈ C : −β ≤ Rez ≤ β}

since W (A|D0)
∗ = W (A∗|D0). Hence α0, β0 are well defined. For each v = (f g)t ∈ D = D0 ⊕D0 with f ̸= 0

and g ̸= 0, let τ = ∥f∥2

∥f∥2+∥g∥2 . It follows from γ0 ≤ δ0 that

Re(Cf, g) + Re(Bg, f)

∥f∥2 + ∥g∥2

≤ γ0 ≤ δ0 ≤ τα0 + (1− τ)β0

≤ τ(α0 + β) + (1− τ)(β0 + β)

≤ ∥f∥2

∥f∥2 + ∥g∥2
Re(−Af, f) + β(f, f)

∥f∥2
+

∥g∥2

∥f∥2 + ∥g∥2
Re(A∗g, g) + β(g, g)

∥g∥2

=
Re(−Af, f) + β(f, f)

∥f∥2 + ∥g∥2
+

Re(A∗g, g) + β(g, g)

∥f∥2 + ∥g∥2
.

Hence
Re(Cf, g) + Re(Bg, f) + Re(Af, f) + Re(−A∗g, g) ≤ β(f, f) + β(g, g),

and

Re(Hv, v) = Re
((A B

C −A∗

)(
f
g

)
,

(
f
g

))
= Re(Af, f) + Re(Bg, f) + Re(Cf, g) + Re(−A∗g, g)

≤ β(v, v).

If f = 0 or g = 0, it is easy to prove Re(Hv, v) ≤ β(v, v). Hence,

W (H|D) ⊂ {z ∈ C : Rez ≤ β}.

Since D0 is a core of B and C , by Theorem 3.1, W (H) is symmetric with respect to the imaginary axis.

Combining with (3.1), we have

W (H) ⊂ {z ∈ C : −β ≤ Rez ≤ β}. (3.4)

Since D(H) = D(C) ⊕ D(B), the closedness of A , B , and C implies that A is C -bounded and A∗ is B -

bounded. Hence, either of the conditions (a) and (b) demonstrates that H is symplectic self-adjoint by Lemma

2.4. Thus σp(H) ∪ σr(H) is symmetric with respect to the imaginary axis by Lemma 2.1. By Lemma 2.2,

we know σp(H) ⊂ σapp(H) ⊂ W (H), and hence σp(H) ∪ σr(H) ⊂ W (H). In view of σc(H) ⊂ σapp(H), we

conclude

σ(H) ⊂ W (H) ⊂ {z ∈ C : −β ≤ Rez ≤ β}.
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Obviously,

{z ∈ C : Rez < −β} ∪ {z ∈ C : Rez > β} ⊂ ρ(H).

Therefore, H generates a C0 semigroup (T (t))t≥0 with ∥T (t)∥ ≤ eβt for some β ≥ 0.

Conversely, if H generates a C0 semigroup (T (t))t≥0 with ∥T (t)∥ ≤ eβt for some β ≥ 0, then

W (H) ⊂ {z ∈ C : Rez ≤ β} and R(H − λ) = X ⊕ X for λ > β . Since D0 is a core of B and C ,

W (H) is symmetric with respect to the imaginary axis by Theorem 3.1. It follows that (3.4) holds, and hence

(3.3) is true, according to (3.1) and Lemma 2.3. 2

We end this section with an illustrating example.

Example 3.2 Let X = L2[a, b] . Consider the infinite dimensional Hamiltonian operator H =
(
A B
C −A∗

)
with

Af = p1f
′ + p2f , Bf = f ′′ , and Cf = −f ′′ , where p1 , p

′
1 , and p2 are real valued continuous on [a, b] , and

D(A) = {f ∈ X : f ′ is absolutely continuous, f(a) = f(b)},

D(B) = D(C) = {f ∈ X : f ′ is absolutely continuous, f(a) = f(b) = 0}.

We claim that H generates a C0 semigroup (T (t))t≥0 with ∥T (t)∥ ≤ eβt for some β ≥ 0, and

σ(H) ⊂ W (H) ⊂ {z ∈ C : −β ≤ Rez ≤ β}.

Indeed, it is easy to verify that γ0 ≤ δ0 , D0 = D(B)∩D(C) is a core of B and C , and A is C -bounded

with relative bound 0. On the other hand, for v ∈ D0 , we have

(Av, v) =

∫ b

a

(p1(x)v
′(x) + p2(x)v(x))v(x)dx

= −
∫ b

a

p′1(x)|v(x)|2dx−
∫ b

a

p1(x)v(x)v′(x)dx+

∫ b

a

p2(x)|v(x)|2dx,

and hence

Re(Av, v) = −1

2

∫ b

a

p′1(x)|v(x)|2dx+

∫ b

a

p2(x)|v(x)|2dx

=

∫ b

a

(−1

2
p′1(x) + p2(x))|v(x)|2dx.

Since | 12p
′
1(x)− p2(x)| ≤ β for some constant β ≥ 0,

−β

∫ b

a

|v(x)|2dx ≤ Re(Av, v) ≤ β

∫ b

a

|v(x)|2dx.

Hence,

W (A|D0) ⊂ {z ∈ C : −β ≤ Rez ≤ β}.

Therefore, according to Theorem 3.2, H generates a C0 semigroup (T (t))t≥0 with ∥T (t)∥ ≤ eβt and

σ(H) ⊂ W (H) ⊂ {z ∈ C : −β ≤ Rez ≤ β}.
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