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1. Introduction

The main goal of this work is to revise the notion of boolean differential operator introducing some new important

properties. This concept is based on the notion of boolean derivative and boolean differential equations ([12, 13])

that have several applications in different scientific branches.

Although the notion of boolean differential operator has been tackled from algebraic ([3]) and logical ([16])

points of view, its interpretation in terms of multivariate boolean calculus has not been completely considered.

This is precisely the mail goal of this work. Specifically, the main contributions of this work are the following:

the notion of boolean differential operator on the set of boolean functions is introduced, its expression in terms

of partial boolean derivatives is explicitly shown, and an upper bound for the degree of a boolean differential

operator is given. Moreover, the notion of boolean differential operator associated with the directional derivative

is presented and some properties are shown. Finally, the concept of vectorial boolean operator is defined and

the basic properties are stated.

The rest of the paper is organized as follows: in section 2 the mathematical background on boolean

functions is introduced; the derivative of boolean functions and the main properties are presented in section 3;

finally, in section 4 the notion of boolean differential operator is introduced based both on boolean derivative

and directional derivative, and some new properties are shown. Moreover, some examples as boolean gradient

and boolean curl are explicitly shown.

2. Mathematical background

In what follows, the basic theory of boolean functions is introduced. For a more detailed discussion about this

topic, we refer the reader to [6].

Let Fn
2 be the nth dimensional vector space over the Galois field F2 = {0, 1} , and set {e1, . . . , en} its
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standard basis, that is:

e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , en = (0, . . . , 0, 1) . (1)

For any two vectors x = (x1, . . . , xn) ∈ Fn
2 and y = (y1, . . . , yn) ∈ Fn

2 , we recall the following three basic

operations:

• XOR addition: x⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn) ∈ Fn
2 .

• Scalar product: x · y = x1y1 ⊕ . . .⊕ xnyn ∈ F2 .

• Hadamard product: x ⋆ y = (x1y1, . . . , xnyn) ∈ Fn
2 .

An n -variable boolean function is a map of the form f : Fn
2 → F2 . The set of all n -variable boolean

functions is denoted by BFn and its cardinality is |BFn| = 22
n

. The vector

tf = (f (v0) , f (v1) , . . . , f (v2n−1)) ∈ F2n

2 , (2)

where v0 = (0, . . . , 0) , v1 = (0, . . . , 0, 1) , . . . , v2n−1 = (1, . . . , 1), is called the truth table of f . Note that, for

1 ≤ i ≤ 2n − 1, vi is the binary representation of i , written as a vector of length n .

The Hamming weight of a vector x = (x1, x2, . . . , xn) ∈ Fn
2 is denoted by wt (x) and it is defined as

the number of its nonzero coordinates. Moreover, the Hamming weight of an n-variable boolean function f is

defined as
wt (f) = |{x ∈ Fn

2 such that f (x) ̸= 0}| , (3)

that is, it is the cardinality of its support. An n -variable boolean function f is said to be balanced if

wt (f) = 2n−1 , i.e if the number of 1’s are equal to the number of 0’s of its truth table.

The Hamming distance between two boolean functions f, g ∈ BFn is d (f, g) = wt (f ⊕ g), where

(f ⊕ g) (x) = f (x)⊕ g (x).

The usual representation of a boolean function f is by means of its algebraic normal form (ANF for

short) which is the n-variable polynomial representation over F2 , that is

f (x1, . . . , xn) = a0 ⊕
⊕

1≤k≤n
1≤i1<i2<...<ik≤n

ai1i2...ikxi1xi2 . . . xik , (4)

where a0, ai1...ik ∈ F2 . Let deg (f) be the degree of the ANF, which is the algebraic degree of the function.

The simplest boolean functions considering their ANF are the affine boolean functions: f (x1, . . . , xn) =

a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn , where a0, a1, . . . , an ∈ F2 . If a0 = 0, we have the linear boolean functions and

each of them is denoted by la (x) with a = (a1, . . . , an) ∈ Fn
2 .

A vectorial boolean function, or (n,m)-boolean function, is a mapping from the vector space Fn
2 to the

vector space Fm
2 :

F : Fn
2 → Fm

2 (5)

x 7→ F (x) = (f1 (x) , f2 (x) , . . . , fm (x))

The n -variable boolean functions f1, . . . , fm are called the coordinate functions of F . When the numbers m

and n are not given, the (n,m)-boolean functions are also called multioutput boolean functions or S -boxes.

The set of all (n,m)-boolean functions is denoted by BFn,m and its cardinality is |BFn,m| =
(
22

n)m
. Note

58
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that an n -variable boolean function is a particular case of a (n,m)-boolean function when m = 1, that is,

BFn,1 = BFn .

Set F,G ∈ BFn,m such that F = (f1, f2, . . . , fm) and G = (g1, g2, . . . , gm). Then we can define

the (n,m)-boolean function F ⊕ G as follows: F ⊕ G = (f1 ⊕ g1, f2 ⊕ g2, . . . , fm ⊕ gm). Moreover, the

Hadamard product of F and G is another vectorial boolean function F ⋆ G ∈ BFn,m such that F ⋆ G =

(f1 · g1, f2 · g2, . . . , fm · gm), where (f · g) (x) = f (x) · g (x).

3. The derivative of a boolean function

3.1. Definition and some interesting results

The notion of boolean derivative was introduced by Reed (see [12]) as a tool for constructing a decoding method

for a class of error-correcting codes. Furthermore, this concept has also been used for example in the design

of properties that boolean functions must satisfy for cryptographic applications (see [6]), for stack filters and

image processing (see [1, 7]), to develop a new order parameter for the random boolean network phase transition

(see [8]), or for simulations of cellular automata (see [2]). It is defined as follows (see, for example, [14]):

Definition 1 The partial derivative of an n-variable boolean function f with respect to the i-th variable xi is

another n-variable boolean function defined as follows:

Dif : Fn
2 → F2 (6)

x 7→ Dif (x) = f (x)⊕ f (x⊕ ei)

that is,

Dif (x) = f (x1, . . . , xi, . . . , xn)⊕ f (x1, . . . , xi ⊕ 1, . . . , xn) . (7)

This definition allows one to state a derivation rule similar to the derivation rule for multivariate
polynomials over real numbers (see [11]):

Lemma 2 Let f be an n-variable boolean function whose ANF expression is given in (4). Then for each

variable xi it is

f (x) = gi (x⊕ xiei)⊕ xihi (x⊕ xiei) , (8)

where hi and gi are (n− 1)-variable boolean functions that do not depend on the variable xi . Moreover, if f

does not depend on the variable xi then hi = 0 .

Note that for the sake of simplicity we set x⊕ xiei = (x1, . . . , x̂i, . . . , xn).

Proposition 3 [11] Let f be an n-variable boolean function. Then

Dif (x) = hi (x⊕ xiei) . (9)

Proof By definition, Dif (x) = f (x)⊕ f (x⊕ ei), and taking into account the last lemma, it yields

Dif (x) = gi (x⊕ xiei)⊕ xihi (x⊕ xiei)⊕ gi (x⊕ xiei) (10)

⊕ (xi ⊕ 1)hi (x⊕ xiei) = hi (x⊕ xiei) ,

thus finishing. 2
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Corollary 4 As a consequence, the partial derivative (with respect to one variable) reduces the algebraic degree

of the boolean function by 1 .

Example 5 Set x = (x1, x2, x3, x4, x5) and let us consider the 5-variable boolean function whose ANF is

f (x) = 1⊕ x2 ⊕ x3 ⊕ x4x5 ⊕ x1x3x4x5; (11)

then, as simple computations show,

D1f (x) = x3x4x5, (12)

D2f (x) = 1, (13)

D3f (x) = 1⊕ x1x4x5, (14)

D4f (x) = x5 ⊕ x1x3x5, (15)

D5f (x) = x4 ⊕ x1x3x4. (16)

The composition of partial derivatives with respect to the ith and j th variables is defined as follows:

(Di ◦Dj) f (x) = Di (Djf) (x) = Djf (x)⊕Djf (x⊕ ei) (17)

= f (x)⊕ f (x⊕ ej)⊕ f (x⊕ ei)⊕ f (x⊕ ei ⊕ ej) .

In this sense, it is easy to check that this composition commutes:

(Di ◦Dj) f (x) = (Dj ◦Di) f (x) . (18)

Definition 6 [15] The boolean jacobian matrix of an (n,m)-boolean function F = (f1, f2, . . . , fm) is the

following boolean matrix:

JF =


D1 (f1) D2 (f1) · · · Dn (f1)
D1 (f2) D2 (f2) · · · Dn (f2)

...
...

. . .
...

D1 (fm) D2 (fm) · · · Dn (fm)

 . (19)

Definition 7 [15] The hessian jacobian matrix of an n-variable boolean function f is the following boolean

matrix:

Hf =


(D1 ◦D1) (f) (D1 ◦D2) (f) · · · (D1 ◦Dn) (f)
(D2 ◦D1) (f) (D2 ◦D2) (f) · · · (D2 ◦Dn) (f)

...
...

. . .
...

(Dn ◦D1) (f) (Dn ◦D2) (f) · · · (Dn ◦Dn) (f)

 . (20)

It is easy to check that the hessian matrix of any boolean function is the null matrix.

We can extend the notion of partial derivative to directional derivative as follows (see [4]):

Definition 8 The directional derivative of the n-variable boolean function f with respect to b ∈ Fn
2 is another

n-variable boolean function defined as follows:

Dbf : Fn
2 → F2 (21)

x 7→ Dbf (x) = f (x)⊕ f (x⊕ b)
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Note that if wt (b) = k then b ∈ Fn
2 has k nonzero coefficients placed at positions 1 ≤ i1 < . . . < ik ≤ n ; thus

b = ei1 ⊕ . . .⊕ eik ∈ Fn
2 . As a consequence and for the sake of simplicity we take

Dbf (x) = Dei1⊕...⊕eik
f (x) = Di1,...,ikf (x) . (22)

In the following proposition, the relation between partial derivatives and directional derivatives is stated

(see [11]):

Proposition 9 Let f be an n-variable boolean function and set

1 ≤ i1 < i2 < . . . < ik ≤ n (23)

with k ≤ n , then

(Di1 ◦ . . . ◦Dik) f (x) =
⊕

1≤l≤k
j1<...<jl

j1,...,jl∈{i1,...,ik}

Dj1,...,jlf (x) . (24)

Note that (24) yields

Di1,...,ikf (x) = (Di1 ◦ . . . ◦Dik) f (x)⊕
⊕

1≤l≤k−1
j1<...<jl

j1,...,jl∈{i1,...,ik}

Dj1,...,jlf (x) . (25)

As a consequence, the following results hold:

Corollary 10 Taking into account Proposition 9 it is verified:

1. The directional derivative reduces the algebraic degree of the boolean function to be applied by, at least,
one.

2. If k = n then

(D1 ◦ . . . ◦Dn) f (x) =
⊕
b∈Fn

2

Dbf (x) . (26)

3. If σ is a permutation of n elements, then

(D1 ◦ . . . ◦Dn) f (x) =
(
Dσ(1) ◦ . . . ◦Dσ(n)

)
f (x) . (27)

4. The directional derivative can be given in terms of the composition of partial derivatives as follows:

Di1,...,ikf (x) =
⊕

1≤l≤k
j1<...<jl

j1,...,jl∈{i1,...,ik}

(Dj1 ◦ . . . ◦Djl) f (x) . (28)

4. Boolean differential operators

In this section the novel notion of differential boolean operator is introduced and its main properties are shown.

Moreover, some examples are introduced and studied.
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4.1. Boolean differential operators on BFn

4.1.1. Definitions and basic properties

Definition 11 A boolean differential operator on BFn is a map acting on BFn

D : BFn → BFn (29)

f 7→ D (f)

such that

Df (x) =
⊕
b∈Fn

2

pb (x)Dbf (x) , (30)

where x ∈ Fn
2 and pb ∈ BFn . The set of all boolean differential operators on BFn is denoted by BDn . The

number of boolean differential operators is 2n+2n . In the Table the first values are shown.

Table. Cardinality of the set of boolean differential operators on BFn .

n 1 2 3 4 5 6 7 8

|BDn| ≈ 8 64 2048 1.05×106 1.37×1011 1.18×1021 4.36×1040 2.96×1059

Example 12 Let us consider the boolean differential operator on BF3

D = (x1 ⊕ x3)Db1 ⊕ x2x3Db2 ⊕ x1x2x3Db3 , (31)

where b1 = (1, 0, 1) , b2 = (1, 0, 0) , b3 = (0, 0, 1) and pb1 = x1 ⊕ x3, pb2 = x2x3, pb3 = x1x2x3 , and pb = 0 for

b ∈ F3
2 such that b ̸= b1, b2, b3 . If we apply D to f (x1, x2, x3) = x1 ⊕ x2 ⊕ x3 , it yields

Df (x) = x2x3 ⊕ x1x2x3. (32)

Taking into account item 4 of Corollary 10, the expression of a boolean differential operator can be

given in terms of the partial boolean derivatives. Consequently, the boolean differential operator whose explicit

expression is

Df (x) =
⊕
b∈Fn

2

pb (x)Dbf (x) , (33)

can be written as follows:

Df (x) =
⊕
b∈Fn

2

pb (x)Dbf (x)

=
⊕

1≤k≤n
1≤i1<...<ik≤n

pi1,...,ik (x)Di1,...,ikf (x)

=
⊕

1≤k≤n,1≤l≤k
1≤i1<...<ik≤n

j1<...<jl,j1,...,jl∈{i1,...,ik}

pi1,...,ik (x) (Dj1 ◦ . . . ◦Djl) f (x) (34)
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Example 13 Let us consider the boolean differential operator on BF3

D = (x1 ⊕ x3)D13 ⊕ x1x3D12 ⊕ (1⊕ x2)D123. (35)

Since

D13 = D1 ⊕D3 ⊕ (D1 ◦D3) , (36)

D12 = D1 ⊕D2 ⊕ (D1 ◦D2) , (37)

D123 = D1 ⊕D2 ⊕D3 ⊕ (D1 ◦D2)⊕ (D1 ◦D3)⊕ (D2 ◦D3) (38)

⊕ (D1 ◦D2 ◦D3) , (39)

then

D = (1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x3)D1 ⊕ (1⊕ x2 ⊕ x1x3)D2

⊕ (1⊕ x1 ⊕ x2 ⊕ x3)D3 ⊕ (1⊕ x2 ⊕ x1x3) (D1 ◦D2)

⊕ (1⊕ x1 ⊕ x2 ⊕ x3) (D1 ◦D3)⊕ (1⊕ x2) (D2 ◦D3)

⊕ (1⊕ x2) (D1 ◦D2 ◦D3) (40)

A simple computation shows the following result:

Proposition 14 Set f ∈ BFn with deg (f) = k ≤ n , and D =
⊕

b∈Fn
2
pbDb ∈ BDn ; then

deg (Df) ≤ max
b∈Fn

2

{deg (pb)}+ k − 1. (41)

Proof By definition

Df (x) =
⊕
b∈Fn

2

pb (x)Dbf (x) . (42)

Then, taking into account item 1 of Corollary 10, the algebraic degree of Dbf is as most k − 1, and, conse-

quently, the algebraic degree of the addend pb (x)Dbf (x) is at most deg (pb) + k − 1. Then, the algebraic

degree of Df is at most maxb∈Fn
2
{deg (pb)}+ k − 1. 2

Definition 15 The partial derivative with respect to the i-th variable defines the following boolean differential

operator:

Di : BFn → BFn (43)

f 7→ Dif

Moreover, the directional derivative with respect to b ∈ Fn
2 defines the following boolean differential operator:

Db : BFn → BFn (44)

f 7→ Dbf

Proposition 16 Set b ∈ Fn
2 . The differential operator Db satisfies the following properties:
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1. If f and g are two n-variable boolean functions, then

Db (f ⊕ g) = Db (f)⊕Db (g) . (45)

2. If f is an n-variable boolean function and a ∈ F2 , then

Db (af) = aDb (f) . (46)

3. If f and g are two n-variable boolean functions, then

Db (f · g) = Db (f) ·Db (g)⊕ f ·Db (g)⊕ g ·Db (f) . (47)

4. Let Di1 , . . . , Dik be the differential operators defined by the partial derivatives with respect to the variables

xi1 , . . . , xik respectively; then

(Di1 ◦ . . . ◦Dik) =
⊕

1≤l≤k
j1<...<jl

j1,...,jl∈{i1,...,ik}

Dj1,...,jl . (48)

Proof

1. Set x ∈ Fn
2 ; then

Db (f ⊕ g) (x) = (f ⊕ g) (x)⊕ (f ⊕ g) (x⊕ b) (49)

= f (x)⊕ g (x)⊕ f (x⊕ b)⊕ g (x⊕ b)

= (f (x)⊕ f (x⊕ b))⊕ (g (x)⊕ g (x⊕ b))

= Db (f) (x)⊕Db (g) (x) .

2. Set x ∈ Fn
2 ; then

Db (af) (x) = af (x)⊕ af (x⊕ b) = a (f (x)⊕ f (x⊕ b)) (50)

= aDb (f) .

3. Set x ∈ Fn
2 ; then

Db (f · g) (x) = (f · g) (x)⊕ (f · g) (x⊕ b) (51)

= f (x) · g (x)⊕ f (x⊕ b) · g (x⊕ b)

= f (x) · g (x)⊕ (Dbf (x)⊕ f (x)) · (Dbg (x)⊕ g (x))

= Dbf (x) ·Dbg (x)⊕ f (x) ·Dbg (x)⊕ g (x) ·Dbf (x) .

4. It follows from Proposition 9.

2

As a consequence and taking into account the last result and equation (30), the following statements

hold:
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Corollary 17 Let D be a boolean differential operator; then

1. If f and g are two n-variable boolean functions, then

D (f ⊕ g) = D (f)⊕D (g) . (52)

2. If f is an n-variable boolean function and a ∈ F2 , then

D (af) = aD (f) . (53)

3. If f and g are two n-variable boolean functions, then

D (f · g) = D (f) ·D (g) (54)

⊕f ·D (g)⊕ g ·D (f)

⊕
⊕

b,c∈Fn
2

b ̸=c

pbpcDb (f)Dc (g) .

4.1.2. Some examples of boolean differential operators

Definition 18 The homogeneity boolean differential operator denoted by Θ is defined as follows:

Θ: BFn → BFn (55)

f 7→ Θ(f) =
⊕

1≤i≤n

xiDif

Definition 19 The boolean divergence is the boolean differential operator denoted by div and defined in the

following way:

div : BFn → BFn (56)

f 7→ div (f) =
⊕

1≤i≤n

Dif

Note that boolean divergence operator is a particular case of the homogeneity boolean differential operator

when the coefficients of the partial derivatives are the nonzero constant boolean function. As is well known,

elementary cellular automata (ECA for short) are a particular type of finite state machine where the evolution

of states of the cells is governed by means of a 3-variable boolean function (see [17]). The boolean derivative

of ECA has been extensively studied (see, for example, [2, 15]) and also the cryptographic significance of its

boolean divergence has been analyzed (see [9]).

Definition 20 The boolean Laplacian is the boolean differential operator denoted by ∇2 and defined as follows:

∇2 : BFn → BFn (57)

f 7→ ∇2 (f) =
⊕

1≤i≤n

(Di ◦Di) f

As a simple calculus shows, ∇2 (f) = 0 for every n -variable boolean function f .
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Example 21 Let f be the following 5-variable boolean function:

f (x) = 1⊕ x2 ⊕ x3 ⊕ x4x5 ⊕ x1x3x4x5; (58)

then its divergence is

div (f) =
⊕

1≤i≤5

Dif (59)

= x4 ⊕ x5 ⊕ x1x3x4 ⊕ x1x3x5 ⊕ x1x4x5 ⊕ x3x4x5.

4.2. Vectorial boolean differential operators

Definition 22 A vectorial boolean differential operator is a map from BFn,m to BFp,q

D : BFn,m → BFp,q (60)

F 7→ D (F )

Note that when m = q = 1 and n = p we obtain the boolean differential operators on BFn . Usually p = n

and, consequently, this work deals with boolean differential operators from BFn,m to BFn,q .

If F = (f1, f2, . . . , fm), then DF =
(
f̃1, f̃2, . . . , f̃m

)
, where f̃i is obtained when some differential

operators (on BFn ) are applied to some of the functions f1, f2, . . . , fm . That is, for 1 ≤ i ≤ m , it is

f̃i = D(i,1)f1 ⊕D(i,2)f2 ⊕ . . .⊕D(i,m)fm, (61)

where D(i,k) are boolean differential operators (on BFm ) with 1 ≤ i, k ≤ m . Now suppose that

D(i,k) =
⊕
b∈Fn

2

pi,kb Db, (62)

where pi,kb ∈ BFn . Then

f̃i =
⊕

1≤k≤m
b∈Fn

2

pi,kb Dbfk. (63)

Example 23 Let D be the vectorial boolean differential operator from BF3,2 to BF3,2 defined as follows: If

F = (f1, f2) ∈ BF3,2 then

D (F ) =
(
f̃1, f̃2

)
, (64)

where

f̃1 = D1f1 ⊕D2f2, (65)

f̃2 = D12f ⊕ 1. (66)

If, for example, F = (x1 ⊕ x2 ⊕ x3, x1 ⊕ x3) , then

D (F ) = (1, x1 ⊕ x3) . (67)
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HERNÁNDEZ ENCINAS and MARTIN DEL REY/Turk J Math

Straightforward computations yield the following results:

Proposition 24 Let D be a vectorial boolean differential operator from BFn,m to BFn,q ; then

1. If F,G ∈ BFn,m then D (F ⊕G) = D (F )⊕D (G) .

2. If F ∈ BFn,m and a ∈ F2 , then D (aF ) = aD (F ) .

3. If F,G ∈ BFn,m then D (F ⋆ G) = D (F ) ⋆ D (G)⊕H , where H = (h1, h2, . . . , hm) , with

hi =
⊕

1≤k≤m
b∈Fn

2

pi,kb (fk ·Dbgk ⊕ gk ·Dbfk) (68)

⊕
⊕

1≤k<j≤m
c,b∈Fn

2 ,b̸=c

pi,kb · pi,jc ·Dbfk ·Dbgj .

4.2.1. Some examples of boolean differential operators on BFn,m

Definition 25 Let f be an n-variable boolean function. The boolean gradient of f is a vectorial boolean

differential operator denoted by ∇ (f) and defined as follows:

∇ : BFn → BFn,n (69)

f 7→ ∇ (f) = (D1 (f) , D2 (f) , . . . , Dn (f))

In [5] the dynamics of cellular automata is studied in terms of the boolean gradient and the jacobian

matrix of its local transition function.

Example 26 Let us consider the 5-variable boolean function

f (x) = 1⊕ x2 ⊕ x3 ⊕ x4x5 ⊕ x1x3x4x5; (70)

then its gradient is the following (5, 5)-boolean function:

∇ : BF5 → BF5,5 (71)

f 7→ ∇ (f) = (x3x4x5, 1, 1⊕ x1x4x5, x5 ⊕ x1x3x5, x4 ⊕ x1x3x4)

Definition 27 Let F be a (3, 3)-boolean function such that F = (F1, F2, F3) . Then the boolean curl of F is

the boolean differential operator on BF3,3 denoted by curl (F ) and defined as follows:

curl : BF3,3 → BF3,3 (72)

F 7→ curl (F ) = (R1, R2, R3)

where

R1 (x) = D2F3 (x)⊕D3F2 (x) , (73)

R2 (x) = D3F1 (x)⊕D1F3 (x) , (74)

R3 (x) = D1F2 (x)⊕D2F1 (x) . (75)
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We can generalize this notion to (n, n)-vectorial boolean functions with n ≥ 3 as follows:

Definition 28 Let F ∈ BFn,n with n ≥ 3 . Its curl, curl (F ) , is the (n, n)-boolean function curl (F ) : Fn
2 →

Fn
2 , such that

curl (F ) (x) = (R1 (x) , . . . , Ri (x) , . . . , Rn (x)) , (76)

where

Ri (x) =
⊕

1≤j≤n, j ̸=i

D1⊕ei⊕ejFj (x) (77)

The curl of elementary cellular automata has been introduced in [10].
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[11] Mart́ın del Rey A, Rodŕıguez Sánchez G, de la Villa Cuenca A. On the boolean partial derivatives and their

composition. Appl Math Lett 2012; 25: 739-744.

[12] Reed JS. A class of multiple error-correcting codes and the decoding scheme. Trans IRE Prof Group Inf Theory

1954; 4: 38-49.

[13] Serfati M. Boolean differential equations. Discrete Math 1995; 146: 235-246.

[14] Tucker JH, Tapia MA, Bennet AW. Boolean integral calculus for digital systems. IEEE T Comput 1985; c-34: 78-81.

[15] Vichniac GY. Boolean derivatives on cellular automata. Physica D 1990; 45: 63-74.

[16] Vigo R. Categorical invariance and structural complexity in human concept learning. J Math Psychology 2009; 53:

203-221.
[17] Wolfram, W. A New Kind of Science. Champaign, IL, USA: Wolfram Media Inc., 2002.

68

http://dx.doi.org/10.1109/TSMCB.2009.2024771
http://dx.doi.org/10.1109/TSMCB.2009.2024771
http://dx.doi.org/10.1142/S0129183192000257
http://dx.doi.org/10.1016/j.camwa.2008.11.012
http://dx.doi.org/10.1016/j.camwa.2008.11.012
http://dx.doi.org/10.1109/78.510612
http://dx.doi.org/10.1109/78.510612
http://dx.doi.org/10.1109/SFCS.1988.21923
http://dx.doi.org/10.1109/SFCS.1988.21923
http://dx.doi.org/10.1109/SFCS.1988.21923
http://dx.doi.org/10.1016/j.aml.2011.10.013
http://dx.doi.org/10.1016/j.aml.2011.10.013
http://dx.doi.org/10.1109/TIT.1954.1057465
http://dx.doi.org/10.1109/TIT.1954.1057465
http://dx.doi.org/10.1016/0012-365X(94)00065-8
http://dx.doi.org/10.1109/TC.1985.1676517
http://dx.doi.org/10.1016/0167-2789(90)90174-N
http://dx.doi.org/10.1016/j.jmp.2009.04.009
http://dx.doi.org/10.1016/j.jmp.2009.04.009

	Introduction
	Mathematical background
	The derivative of a boolean function
	Definition and some interesting results

	Boolean differential operators
	Boolean differential operators on BFn
	Definitions and basic properties
	Some examples of boolean differential operators

	Vectorial boolean differential operators
	Some examples of boolean differential operators on BFn,m



