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Abstract: We describe triangle coordinates for integral laminations on a nonorientable surface Nk,n of genus k with n

punctures and one boundary component, and we give an explicit bijection from the set of integral laminations on Nk,n

to (Z2(n+k−2) × Zk) \ {0} .
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1. Introduction
Let Nk,n be a nonorientable surface of genus k with n punctures and one boundary component. In this paper
we shall describe the generalized Dynnikov coordinate system for the set of integral laminations Lk,n and give an
explicit bijection between Lk,n and (Z2(n+k−2) ×Zk) \ {0} . To be more specific, we shall first take a particular
collection of 3n + 2k − 4 arcs and k curves embedded in Nk,n and describe each integral lamination by an
element of Z3n+2k−4

≥0 ×Zk , its geometric intersection numbers with these arcs and curves. Generalized Dynnikov
coordinates are certain linear combinations of these integers that provide a one-to-one correspondence between
Lk,n and (Z2(n+k−2) × Zk) \ {0} .

The motivation for this paper comes from the recent work of Papadopoulos and Penner [7] where they
provided analogs for nonorientable surfaces of several results from the Thurston theory of surfaces, which were
studied only for orientable surfaces before [4, 8]. Here we shall give the analogy of the Dynnikov coordinate
system [1–3] on a finitely punctured disk that has several useful applications such as giving an efficient method
for the solution of the word problem of the n -braid group [1], computing the geometric intersection number of
integral laminations [9], and counting the number of components they contain [11].

Throughout the text we shall work on a standard model of Nk,n as illustrated in Figure 1, where a disk
with a cross drawn within it represents a crosscap; that is, the interior of the disk is removed and the antipodal
points on the resulting boundary component are identified (i.e. the boundary component bounds a Möbius
band).

The structure of the paper is as follows. In Section 1.1 we give the necessary terminology and background.
In Section 2 we describe and study the triangle coordinates for integral laminations on Nk,n , and we construct
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the generalized Dynnikov coordinate system giving the bijection ρ : Lk,n → (Z2(n+k−2) ×Zk) \ {0} . An explicit
formula for the inverse of this bijection is given in Theorem 2.14.

1.1. Basic terminology and background

A simple closed curve in Nk,n is inessential if it bounds an unpunctured disk, a once punctured disk, or an
unpunctured annulus. It is called essential otherwise. A simple closed curve is called 2-sided (respectively
1-sided) if a regular neighborhood of the curve is an annulus (respectively Möbius band). We say that a 2-sided
curve is nonprimitive if it bounds a Möbius band [7], and a 1-sided curve is nonprimitive if it is a core curve of
a Möbius band. They are called primitive otherwise.

An integral lamination L on Nk,n is a disjoint union of finitely many essential simple closed curves in
Nk,n modulo isotopy. Let Ak,n be the set of arcs αi (1 ≤ i ≤ 2n−2) , βi (1 ≤ i ≤ n+k−1) , γi (1 ≤ i ≤ k−1) ,
which have each endpoint either on the boundary or at a puncture, and the curves ci (1 ≤ i ≤ k ), which are
the core curves of Möbius bands in Nk,n as illustrated in Figure 1: the arcs α2i−3 and α2i−2 for 2 ≤ i ≤ n

join the ith puncture to ∂Nk,n , the arc βi has both end points on ∂Nk,n and passes between the ith and
(i+1)st punctures for 1 ≤ i ≤ n− 1 , the nth puncture and the first crosscap for i = n , and the (i− n)th and
(i + 1 − n)th crosscaps for n + 1 ≤ i ≤ n + k − 1 . The arc γi ( 1 ≤ i ≤ k − 1) has both endpoints on ∂Nk,n

and surrounds the ith crosscap.
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Figure 1. The arcs αi , βi , γi ; the 1-sided curves c1, c2, . . . , ck ; and the regions ∆i and Σi .

The surface is divided by these arcs into 2n + 2k − 2 regions; 2n + k − 3 of these are triangular since
each ∆i (1 ≤ i ≤ 2n− 2) and Σi (1 ≤ i ≤ k − 1) is bounded by three arcs when the boundary of the surface
is identified to a point. The two triangles ∆2i−3 and ∆2i−2 on the left-hand and right-hand side of the ith
puncture are defined by the arcs α2i−3, α2i−2, βi−1 and α2i−3, α2i−2, βi , respectively. The triangle Σi is defined
by the arcs γi, βn+i−1, βn+i . Each ∆′

i (1 ≤ i ≤ k − 1) is bounded by γi , and the two end regions ∆0 and ∆′
k

are bounded by β1 and βn+k−1 , respectively. Given L ∈ Lk,n , let L be a taut representative of L with respect
to the elements of Ak,n . That is, L intersects each of the arcs and curves in Ak,n minimally.
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Figure 2. There is 1 left loop component in the first case and 2 right loop components in the second case. There are 2
above and 3 below components in each case.

Definition 1.1 Set Si = ∆2i−1 ∪ ∆2i for each i with 1 ≤ i ≤ n − 1 . A path component of L in Si is a
component of L ∩ Si . There are four types of path components in Si as depicted in Figure 2:

• An above component has end points on βi and βi+1 , passing across α2i−1 ;

• A below component has end points on βi and βi+1 , passing across α2i ;

• A left loop component has both end points on βi+1 ;

• A right loop component has both end points on βi .
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Figure 3. There is 1 right core loop and 1 straight core component in the first case; 1 left loop and 1 left core loop
component in the second case; 1 right noncore loop and 1 right core loop component in the third case; and 1 1 -sided
and 1 2 -sided nonprimitive curves in the fourth case. There are 2 above and 2 below components in each case.

Definition 1.2 Set S′
i = ∆′

i ∪ Σi for each 1 ≤ i ≤ k − 1 . A path component of L in S′
i is a component of

L ∩ S′
i . There are 7 types of path components in S

′

i as depicted in Figure 3.

• An above component has end points on βn+i−1 and βn+i , and passes across γi without intersecting ci ;

• A below component has end points on βn+i−1 and βn+i , and does not pass across γi ;

• A left loop component has both end points on βn+i ;
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• A right loop component has both end points on βn+i−1 :

If a loop component intersects ci , it is called core loop component, otherwise it is called noncore loop
component;

• A straight core component has end points on βn+i−1 and βn+i , and intersects ci ;

• A non-primitive 1-sided curve:

If L contains a nonprimitive 1-sided curve ci we depict it with a ring with end points on the i th crosscap
as shown in the fourth case in Figure 3;

• A nonprimitive 2-sided curve.

2. Triangle coordinates

Let L be a taut representative of L . Write αi, βi, γi , and ci for the geometric intersection number of L with
the arc αi, βi, γi and the core curve ci , respectively. It will always be clear from the context whether we mean
the arc or the geometric intersection number assigned on the arc.

Definition 2.1 The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 × Zk) \ {0} is defined by

τ(L) = (α1, . . . , α2n−2;β1, . . . , βn+k−1; γ1, . . . , γk−1; c1, . . . , ck),

where ci = −1 if L contains the i th core curve, ci = −2m if it contains m ∈ Z+ disjoint copies 2-sided
nonprimitive curves around the i th crosscap, and ci = −2m − 1 if it contains m disjoint copies of 2-sided
nonprimitive curves around the i th crosscap plus the i th core curve.

Remark 2.2 Let bi = βi−βi+1

2 for 1 ≤ i ≤ n+k−2 . Then in each Si (1 ≤ i ≤ n−1) and S′
i (n ≤ i ≤ n+k−2)

there are |bi| loop components. Furthermore, if bi < 0 , these loop components are left, and if bi > 0 they are
right.

The proof of the next lemma is obvious from Figure 2.

Lemma 2.3 Let 1 ≤ i ≤ n−1 . The number of above and below components in Si are given by aSi
= α2i−1−|bi|

and bSi = α2i − |bi| , respectively.

Let λi and λci denote the number of noncore and core loop components, ψi the number of straight core
components, and aS′

i
and bS′

i
the number of above and below components in S′

i .

Lemma 2.4 Let L be a taut representative of L ∈ Lk,n , and set c+i = max(ci, 0) . Then, for each 1 ≤ i ≤ k−1 ,
we have

λi = max(|bn+i−1| − c+i , 0), λci = min(|bn+i−1|, c+i ),

ψi = max(c+i − |bn+i−1|, 0).
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Proof Assume that L does not contain any nonprimitive curve in S′
i . Since ci gives the sum of straight core

and core loop components and |bn+i−1| gives the sum of noncore loop and core loop components in S′
i (see

Figure 3), we have
ci = ψi + λci and |bn+i−1| = λi + λci . (1)

If ci > |bn+i−1| , then clearly there exists a straight core component in S′
i and hence no noncore loop

component in S′
i ; that is, λi = 0 . Therefore, in this case, λci = |bn+i−1| and hence ψi = ci − |bn+i−1| by

Equation 1.
If ci < |bn+i−1| , there exists a noncore loop component in S′

i and hence no straight core components in
S′
i ; that is, ψi = 0 . Therefore, ci = λci and hence λi = |bn+i−1| − ci by Equation 1. We get:

λi = max(|bn+i−1| − ci, 0)

ψi = max(ci − |bn+i−1|, 0).

Also, if |bn+i−1| < ci, λi = 0 and hence λci = |bn+i−1| ; if |bn+i−1| > ci, ψi = 0 and hence λci = ci by
Equation 1. Therefore, we get λci = min(|bn+i−1|, ci) .

Finally, if L contains a nonprimitive curve in S′
i , there can be no straight core and core loop component

in S′
i ; that is, ψi = λci = 0 , and hence λi = |bn+i−1| . Since ci < 0 by definition, setting c+i = max(ci, 0) , we

can write:

λi = max(|bn+i−1| − c+i , 0), λci = min(|bn+i−1|, c+i ),

ψi = max(c+i − |bn+i−1|, 0).

2

Lemma 2.5 Let L be a taut representative of L ∈ Lk,n . For each 1 ≤ i ≤ k − 1 we have:

aS′
i
=
γi
2

− |bn+i−1| − ψi

bS′
i
= max(βn+i−1, βn+i)− |bn+i−1| −

γi
2
.

Proof
To compute the number of above and below components in S′

i we observe that each path component
other than a below component in S′

i intersects γi twice; that is, γi = 2(aS′
i
+ |bn+i−1|+ψi) . Therefore, we get

aS′
i
=
γi
2

− |bn+i−1| − ψi.

To compute the number of below components, we note that the sum of all path components in S′
i is given by

β = max(βn+i−1, βn+i) . Then bS′
i

is β minus the number of above, straight core components and twice the
number loop components in S′

i (each loop component intersects β twice). We get

bS′
i
= max(βn+i−1, βn+i)− aS′

i
− 2|bn+i−1| − ψi

= max(βn+i−1, βn+i)− |bn+i−1| −
γi
2
.
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2

Another way of expressing aS′
i

and bS′
i

is given in item P4. in Properties 2.12.

Remark 2.6 Observe that the loop components in ∆0 are always left and the number of them is given by β1

2 .
Similarly, the loop components in ∆′

k are always right and the numbers of core and noncore loop components

in ∆′
k are given by ck and λk = βn+k−1

2 − ck .

Lemma 2.7 and Lemma 2.8 are obvious from Figures 2 and 3.

Lemma 2.7 There are equalities for each Si :

• When there are left loop components (bi < 0),

α2i + α2i−1 = βi+1

α2i + α2i−1 − βi = 2|bi|;

• When there are right loop components (bi > 0),

α2i + α2i−1 = βi

α2i + α2i−1 − βi+1 = 2|bi|;

• When there are no loop components (bi = 0),

α2i + α2i−1 = βi = βi+1.

Lemma 2.8 There are equalities for each S′
i :

• When there are left loop components (bn+i−1 < 0),

aS′
i
+ bS′

i
+ ψi + 2|bn+i−1| = βn+i

aS′
i
+ bS′

i
+ ψi = βn+i−1;

• When there are right loop components (bn+i−1 > 0)

aS′
i
+ bS′

i
+ ψi + 2|bn+i−1| = βn+i−1.

aS′
i
+ bS′

i
+ ψi = βn+i;

• When there are no loop components bn+i−1 = 0

aS′
i
+ bS′

i
+ ψi = βn+i = βn+i−1.

Example 2.9 Let τ(L) = (4, 2, 2, 6; 2, 6, 8, 4; 8; 1, 1) be the triangle coordinates of an integral lamination
L ∈ L2,3 . We shall show how we draw L from its given triangle coordinates. First, we compute the loop
components in the two end regions ∆0 and ∆′

2 using Remark 2.6. Since β1 = 2 there is one loop component
in ∆0 . Similarly, since β4 = 4 and c2 = 1 , we get λ2 = β4

2 − c2 = 1 .
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Next we compute loop components in S1 , S2 , and S′
1 . Since bi =

βi−βi+1

2 for each 1 ≤ i ≤ 3 , we have
b1 = −2, b2 = −1 . Hence, there are two left loop components in S1 and one left component in S2 . Similarly,
since b3 = 2 , there are 2 right loop components in S′

1 , and by Lemma 2.4, λ1 = max(|b3| − c1, 0) = 1 (hence
ψ1 = 0) and λc1 = min(|b3|, c1) = 1 . Using Lemma 2.3 and Lemma 2.5 we compute the number of above and
below components. We get aS1

= α1 − |b1| = 2 , bS1
= α2 − |b1| = 0 , aS2

= α3 − |b2| = 1 , bS2
= α4 − |b2| = 5 ,

and

aS′
1
=
γ1
2

− |b3| − ψ1 = 2,

bS′
1
= max(β3, β4)− |b3| −

γ1
2

= 2.

Connecting the path components in each ∆0 , ∆′
2 , S1 , S2 , and S′

1 we draw the integral lamination as
shown in Figure 4.

Figure 4. τ(L) = (4, 2, 2, 6; 2, 6, 8, 4; 8; 1, 1).

Lemma 2.10 The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 × Zk) \ {0} is injective.

Proof We can determine the number of loop, above, and below components in each Si by Remark 2.2 and
Lemma 2.3 and core and noncore loop, straight core, above, and below components in each S′

i by Lemma 2.4
and Lemma 2.5 as illustrated in Example 2.9. The components in each Si and S′

i are glued together in a unique
way up to isotopy, and hence L is constructed uniquely. 2

Remark 2.11 The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 ×Zk) \ {0} is not surjective: an integral

lamination must satisfy the triangle inequality in each Si and S′
i , and some additional conditions such as the

equalities in Lemma 2.7 and Lemma 2.8.

Next we give a list of properties that an integral lamination L ∈ Lk,n satisfies in terms of its triangle coordinates
as in [9], and then we construct a new coordinate system from the triangle coordinates that describes integral
laminations in a unique way. In particular, we shall generalize the Dynnikov coordinate system [1–3, 5, 9–11]
for Nk,n .

Properties 2.12 Let L be a taut representative of L ∈ Lk,n .

P1. Every component of L intersects each βi an even number of times. Recall from Remark 2.2 that the
number of loop components is given by |bi| where bi =

βi−βi+1

2 .
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mi+ximi+xi

mi
mi

α2i− 1
α2i− 1
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| |

ψi
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βn+i− 1βn+i− 1 βn+iβn+i

bi | |bi

| |bn+i−1 | |bn+i−1

Figure 5. mi and ni denote the smaller of the above and below components in Si and S′
i , respectively.

P2. Set xi = |α2i−α2i−1| and ti = |aS′
i
−bS′

i
| . Then xi and ti give the difference between the number of above

and below components in Si and S′
i , respectively. Set mi = min {α2i − |bi|, α2i−1 − |bi|} ; 1 ≤ i ≤ n − 1

and ni = min
{
aS′

i
, bS′

i

}
; 1 ≤ i ≤ k−1 . See Figure 5. Note that xi is even since L intersects α2i∪α2i−1

an even number of times. Clearly, this may not hold for ti since when ψi is odd the sum of above and
below components (and hence their difference) is odd. See Lemma 2.8.

P3. Set 2ai = α2i − α2i−1 (|ai| = xi/2) . Then, by Lemma 2.7, we get:

• If bi ≥ 0 , then βi = α2i + α2i−1 and hence

α2i = ai +
βi
2

and α2i−1 = −ai +
βi
2
;

• If bi ≤ 0 , then βi+1 = α2i + α2i−1 and hence

α2i = ai +
βi+1

2
and α2i−1 = −ai +

βi+1

2
.

That is,

αi =

{
(−1)ia⌈i/2⌉ +

β⌈i/2⌉
2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0,
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where ⌈i/2⌉ denotes the smallest integer that is not less than i/2 .

P4. Since ti = aS′
i
− bS′

i
for 1 ≤ i ≤ k − 1 , from Lemma 2.8 we get:

• If bn+i−1 ≥ 0 then aS′
i
+ bS′

i
+ ψi + 2bn+i−1 = βn+i−1 , and

aS′
i
=
ti − ψi + βn+i−1 − 2bn+i−1

2
;

• If bn+i−1 ≤ 0 then aS′
i
+ bS′

i
+ ψi − 2bn+i−1 = βn+i , and

aS′
i
=
ti − ψi + βn+i + 2bn+i−1

2
,

and hence

aS′
i
=
ti − ψi +max(βn+i, βn+i−1)− 2|bn+i−1|

2
.

Similarly we compute

bS′
i
=

−ti − ψi +max(βn+i, βn+i−1)− 2|bn+i−1|
2

.

P5. It is easy to observe from Figure 5 that

βi = 2 [|ai|+max(bi, 0) +mi] for 1 ≤ i ≤ n− 1

βn+i = |ti|+ 2max(bn+i−1, 0) + ψi + 2ni for 1 ≤ i ≤ k − 1.

Therefore, since bi = βi−βi+1

2 ; 1 ≤ i ≤ n+k−2 we can compute β1 using one of the two equations below:

β1 = 2

|ai|+max(bi, 0) +mi +

i−1∑
j=1

bj

 for 1 ≤ i ≤ n− 1,

β1 = |ti|+ 2max(bn+i−1, 0) + ψi + 2ni + 2

n+i−2∑
j=1

bj for 1 ≤ i ≤ k − 1.

Figure 6. L∗ is a simple closed curve on the right but it is not on the left.
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P6. Some integral laminations contain R -components: an R -component of L has geometric intersection
numbers i(R,αj) = 1 for each 1 ≤ j ≤ 2n− 2 , i(R, βj) = 2 for each 1 ≤ j ≤ n+ k− 1 , and i(R, γj) = 2

for each 1 ≤ j ≤ k − 1 , which has its end points on the k th crosscap (denoted red in Figure 6). Set
L∗ = L \ R . Note that L∗ is a component of L , which is not necessarily a simple closed curve (the two
possible cases are depicted in Figure 6). Let α∗

i , β
∗
i , and γ∗i denote the number of intersections of L∗ with

the arcs αi, βi , and γi , respectively. Define a∗i , b
∗
i , t

∗
i and λ∗i , λ∗ci , a∗S′ , b∗S′ and ψ∗

i similarly as above.
We therefore have

β∗
1 = 2

|a∗i |+max(b∗i , 0) +m∗
i +

i−1∑
j=1

b∗j

 for 1 ≤ i ≤ n− 1,

β∗
1 = |t∗i |+ 2max(b∗n+i−1, 0) + ψ∗

i + 2n∗i + 2

n+i−2∑
j=1

b∗j for 1 ≤ i ≤ k − 1,

where m∗
i = min

{
α∗
2i − |b∗i |, α∗

2i−1 − |b∗i |
}

; 1 ≤ i ≤ n − 1 and n∗i = min
{
a∗S′

i
, b∗S′

i

}
; 1 ≤ i ≤ k − 1 .

Furthermore, there is some m∗
i = 0 , or some n∗i = 0 since otherwise L∗ would have above and below

components in each Si and S′
i , which would yield curves parallel to ∂Nk,n , or L∗ would contain R -

components, which is impossible by definition. Write a∗i = ai, b
∗
i = bi, t

∗
i = ti since deleting R -components

does not change the a, b, t values. Set

Xi = 2

|ai|+max(bi, 0) +

i−1∑
j=1

bj

 for 1 ≤ i ≤ n− 1,

Yi = |ti|+ 2max(bn+i−1, 0) + ψi + 2

n+i−2∑
j=1

bj for 1 ≤ i ≤ k − 1.

Then one of the three following cases hold for L∗ :

I. If m∗
i > 0 for all 1 ≤ i ≤ n− 1 , then there is some j with 1 ≤ j ≤ k− 1 such that n∗j = 0 . Therefore,

β∗
1 > Xi and β∗

1 = Yj .

II. If n∗i > 0 for all 1 ≤ i ≤ k−1 , then there is some j with 1 ≤ j ≤ n−1 such that m∗
j = 0 . Therefore,

β∗
1 > Yi and β∗

1 = Xj .

III. There is some i with 1 ≤ i ≤ n − 1 such that m∗
i = 0 and some j with 1 ≤ j ≤ k − 1 such that

n∗j = 0 . Therefore, β∗
1 = Xi = Yj .

We therefore have

β∗
i = max(X,Y )− 2

i−1∑
j=1

bj
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where

X = 2 max
1≤r≤n−1

|ar|+max(br, 0) +

r−1∑
j=1

bj


and

Y = max
1≤s≤k−1

|ts|+ 2max(bn+s−1, 0) + ψs + 2

n+s−2∑
j=1

bj

 .

P7. If L does not have an R -component, that is if L∗ = L , then 2ck ≤ β∗
n+k−1 = βn+k−1 since βn+k−1 =

2ck + 2λk . If L has an R -component then 2ck > β∗
n+k−1 and λk = 0 . See Figure 6. Hence, the number

of R -components of L is given by

R = max(0, 2ck − β∗
n+k−1)/2.

For example, the integral laminations in Figure 6 (from left to right) have c1 = 2, β∗
5 = 2 , and hence

R = 1 ; and c1 = 1, β∗
5 = 0 , and hence R = 1 . Then L is constructed by identifying the two end points of

an R component with the pieces of L∗ on the k th crosscap. Since R -components intersect each βi twice,
we get

βi = β∗
i + 2R; 1 ≤ i ≤ n+ k − 1.

Then

βi = max(X,Y )− 2

i−1∑
j=1

bj + 2R.

Also, from item P3. , we have

αi =

{
(−1)ia⌈i/2⌉ +

β⌈i/2⌉
2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0,

Finally, it is easy to observe from Figure 3 that

γi = 2(aS′
i
+ |bn+i−1|+ ψi).

Making use of the properties above, we shall define the generalized Dynnikov coordinate system, which
coordinatizes Lk,n bijectively and with the least number of coordinates.

Definition 2.13 The generalized Dynnikov coordinate function

ρ : Lk,n → (Z2(n+k−2) × Zk) \ {0}
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is defined by
ρ(L) = (a; b; t; c) := (a1, . . . , an−1; b1, . . . , bn+k−2; t1, . . . , tk−1; c1, . . . , ck)

where

ai =
α2i − α2i−1

2
for 1 ≤ i ≤ n− 1,

bi =
βi − βi+1

2
for 1 ≤ i ≤ n+ k − 2,

ti = aS′
i
− bS′

i
for 1 ≤ i ≤ k − 1,

where aS′
i

and bS′
i

are as given in Lemma 2.5.

Theorem 2.14 gives the inverse of ρ : Lk,n → (Z2(n+k−2) × Zk) \ {0} .

Theorem 2.14 Let (a; b; t; c) ∈ (Z2(n+k−2) × Zk) \ {0} . Set

X = 2 max
1≤r≤n−1

|ar|+max(br, 0) +

r−1∑
j=1

bj


Y = max

1≤s≤k−1

|ts|+ 2max(bn+s−1, 0) + ψs + 2

n+s−2∑
j=1

bj

 .

Then (a; b; t; c) is the Dynnikov coordinate of exactly one element L ∈ Lk,n , which has

βi = max(X,Y )− 2

i−1∑
j=1

bj + 2R, (2)

αi =

{
(−1)ia⌈i/2⌉ +

β⌈i/2⌉
2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0,
(3)

γi = 2(aS′
i
+ |bn+i−1|+ ψi), (4)

where aS′
i

is defined as in item P4. in Properties 2.12.

Proof
Given L ∈ Lk,n with τ(L) = (α, β, γ, c) and ρ(L) = (a, b, t, c) , Properties 2.12 show that α, β , and

γ must be given by (2), (3), and (4), respectively, and hence L is unique by Lemma 2.10. Therefore, ρ is
injective. By Properties 2.12 we can draw nonintersecting path components in each Si (1 ≤ i ≤ n − 1), S′

i

(1 ≤ i ≤ k − 1), ∆0 , and ∆′
k , which intersect each element of Ak,n the number of times given by (α, β, γ, c) .

Gluing together these path components gives a disjoint union of simple closed curves in Nk,n . There are no
curves that bound a puncture or parallel to the boundary by construction, and hence (α, β, γ, c) where α, β ,
and γ are defined by (2), (3), and (4), respectively, correspond to some L with ρ(L) = (a, b, t, c) . Therefore,
ρ is surjective. 2

Example 2.15 Let ρ(L) = (a1; b1, b2; t1; c1, c2) = (−1; 2, 0; 1; 1, 0) be the generalized Dynnikov coordinates of
an integral lamination L on N2,2 . We shall use Theorem 2.14 to compute the triangle coordinates of L from
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which we determine the number of path components in S1 and S′
1 , and hence draw L as illustrated in Example

2.9. By Lemma 2.4, ψ1 = max(c+1 − |b2|, 0) = 1 , and so we have

X = 2(|a1|+max(b1, 0)) = 6 and Y = |t1|+ 2max(b2, 0) + ψ1 + 2b1 = 6.

Therefore,

β1 = max(6, 6) = 6, β2 = max(6, 6)− 2b1 = 2, β3 = max(6, 6)− 2(b1 + b2) = 2,

α1 = −a1 +
β1
2

= 4, α2 = a1 +
β1
2

= 2.

Since 0 = 2c2 < β∗
3 = 2 , there are no R -components by item P8. of Properties 2.12. Since β1 = 6 there are

3 loop components in ∆0 , and since β3 = 2 and c2 = 0 , there is one noncore loop component in ∆′
2 , i.e.

λ2 = 1 . By Remarks 2.2, b1 = 2 and b2 = 0 , and hence there are 2 right loop components in S1 and no loop
components in S′

1 . By Lemma 2.3 we compute that aS1
= α1 − |b1| = 2 and bS1

= α2 − |b1| = 0 . Finally, by
item P4. of Properties 2.12,

aS′
1
=
t1 − ψ1 +max(β2, β3)− 2|b2|

2
= 1,

bS′
1
=

−t1 − ψ1 +max(β2, β3)− 2|b2|
2

= 0.

Gluing together the path components in S1 and S′
1 , we construct the integral lamination depicted in Figure 7.

Figure 7. ρ(L) = (−1; 2, 0; 1; 1, 0).

Remark 2.16 Generalized Dynnikov coordinates for integral laminations can be extended in a natural way to
generalized Dynnikov coordinates of measured foliations [5]: the transverse measure on the foliation [4, 7, 8]
assigns to each element in Ak,n a nonnegative real number, and hence each measured foliation is described
by an element of (R3n+2k−4

≥0 × Rk) \ {0} , the associated measures of the arcs and curves of Ak,n . Therefore,
the generalized Dynnikov coordinate system for measured foliations is defined similarly (see Definition 2.13)
and provides a one-to-one correspondence between the set of measured foliations (up to isotopy and Whitehead
equivalence) on Nk,n and (R2(n+k−2) × Rk) \ {0} .
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