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Abstract: In this paper, we prove that an orthonormal wavelet basis associated with a general isotropic expansive
matrix must be an unconditional basis for all LP(R?) with 1 < p < oo, provided the wavelet functions satisfy some

usual conditions.
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1. Introduction

It is a significant event in wavelet analysis that good wavelet bases are unconditional bases in LP(RY) with
1 < p < 0o. Results of this type are given in some important books on wavelets such as [2, 9, 12, 15], and in
some articles such as [7, 8, 13, 16]. However, all those works but [13] consider only the case of the expansive
matrix A = 2[;, and most of them are in dimension d = 1, where I; is the d x d identity matrix. This paper
deals with the case of isotropic expansive matrices.

We start with some definitions and notations. Let d be a fixed positive integer. S(R?) denotes the space

of Schwartz functions and S’(R?) its dual space, i.e. the so-called tempered distribution space. We denote by

. . . 5 - plortentteq) fip po .
f its conjugate reflection, i.e. f(:) = f(—), and define D, f(z1, z2, -+ ,2q) = amflam?f-gngzj zd) for
a tempered distribution f and a = (a1, ag, -+ ,aq) with «; € Z, (the set of nonnegative integers). For two

Banach spaces B; and By, we denote by £(By, Bs) the set of bounded linear operators from B; into By . For a
countable set E, we denote by lo(E) the set of finitely supported sequences on E. A d x d matrix A is called
an expansive matrix if it is an integer matrix with all its eigenvalues being greater than 1 in modulus, and it is
called an isotropic matriz if it is similar to a d x d diagonal matrix diag (A1, Aa, - -+ , Ag) with |X;| = |det A]a .
Given a d x d expansive matrix A, we denote by A* its transpose, and we define the dilation operator D and

the shift operator T, with xo € R? respectively by

Df(-) = |det AJ% f(A-) and Ty, f(-) = f(- — @0) (1.1)

for a measurable function f. Obviously, they are both unitary operators on L?(R9). For a measurable function
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f, we write
fik() = DITLf(-), and fa-i(-) = ¢/ f(AT") (1.2)

for j € Z and k € Z%, where q = |det A|, which will be used throughout this paper. The Fourier transform is
defined by

fO= [ e

for f € L*(R?) and naturally extended to L2(R?) and distributions, where (-, -) denotes the inner Euclidean
product in R?. We denote by |- | the Euclidean norm, that is

Nl

2| = (27 + a5+ +23)2,

for x € R? with x; being its ith component. Let f, h, and 1 be measurable functions, A a finite set of

measurable functions, and g > 0. We make the following notations if they make sense:

(f, h) = y f(x)h(z)dz, (1.3)

g (D) = [ D[« FOP | (1.4)
JEZ

X(A)={ajr:a€AjeZand keZ}, (1.5)

W.Af() = Z Z |<f7 a‘j,kHQQjXAJJC () ) (16)

a€A (j,k)EZXZ4

Tasf()= (202 |suw (aa_im‘);i);dy) ’ (1.7)

acA jez |vER?

where
Mgy = AI(T 1 k), T = [0,1)¢, (1.8)

X, . denotes the characteristic function of A; ;. We denote by R°(R?) the set of functions f defined on R¢

satisfying the following: there exist constants oo >y > € >0 and 0 < C < oo such that

| 1@z =o. (19)
LFO)I < (1_’_|.CY|)2d+,Ya (1.10)
V()| < (1+C|)d+ (1.11)

a.e. on R?, where Vf denotes the gradient function of f.
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[9, p.287, Theorem 4.15] shows that a one-dimensional dyadic wavelet basis X (¢) with ¢ € R%(R) must
be an unconditional basis of LP(R) for 1 < p < co. Its higher dimensional version with A = 21 is obtained in
[15, Theorem 8.9]. The goal of this paper is to extend this theorem to the case of general isotropic expansive
matrices. To our knowledge, the reference [13] seems to be the first and the only work addressing unconditional
wavelet bases for LP (Rd), 1 < p < o0, associated with general expansive matrices. It provides us with a very
general theoretic result. By [13, Theorem 2.4], for a finite subset ¥ of L%(R9), if all elements of ¥ have an

A-radial majorant ¢ satisfying
/ é(u) In(ju] + 1)dx < oo, (1.12)
Rd

and X(¥) is an orthonormal basis for L2(R?), then X (¥) is an unconditional basis for all LP(R?) with
1 < p < 0o. Observe that “A-radial” therein is a very technical concept, and it strongly depends on another
concept, “A-balanced set” ([13, Definitions 2.2 and 2.3]). [1, Lemma 2.2] proves the existence of the A-balanced
set, but its proof is not a direct constructive one. Therefore, it is not easy to find one A-radial (1.12)-majorant
¢ of a function. At least an A-radial majorant ¢ of the function (1 + |z|)~t with ¢ > 0 strongly depends on
A. Tt is unknown whether the function (1 + |z|)~* with ¢ > 0 has a good A-radial majorant for an arbitrary

expansive matrix A, so it is natural for us to ask the following question:

Question. Suppose that A is a d x d expansive matrix and ¥ is a finite subset of RO(R9). Is X ()

an unconditional basis for all LP(R?) with 1 < p < co provided that it is an orthonormal basis for L?(R%)?

For isotropic expansive matrices, in this paper we give an affirmative answer to this question. It is
unresolved whether it is true for a general expansive matrix. This is because our method strongly depends
on a norm associated with the expansive matrix, which is equivalent to the Euclidean norm in R%. A general
expansive matrix need not correspond a quasi-norm equivalent to the Euclidean one in R¢ by [14, Definition
1-8, Proposition 1-9], or [1, Lemma 3.2], while [10, Lemma 1.1] shows that every isotropic expansive matrix

corresponds a norm equivalent to the Euclidean one in R?. Our main result can be stated as follows.

Theorem 1.1 Let 1 < p < oo, let A be a d x d isotropic expansive matriz, and let W be a finite subset of
RO(RY). Suppose that X(¥) is an orthonormal basis for L?(RY); then it is an unconditional basis for LP(R).

When A = 21;, Theorem 1.1 reduces to [15, Theorem 8.9]. It was proved by duality and the interpolation
between H;(RY) and L?(R?). Therein [15, Proposition 8.8] and

1107 1ll1.q = | det A% []]]]]1.q (1.13)

played a key role. Here ||| -|||1,4 is a norm on H{(R%) with 1 < ¢ < oo, but we do not know whether [15,
Proposition 8.8] is true for a general expansive matrix or even for a general isotropic expansive matrix. At
least, (1.13) need not hold in this case. Therefore, Theorem 1.1 can not be proved similarly to [15, Theorem
8.9]. We should avoid H;(R?)-related arguments. With the help of harmonic analysis tools and a suitable norm
related to a general isotropic expansive matrix, we prove Theorem 1.1. To prove Theorem 1.1, the following
two theorems are needed.
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Theorem 1.2 Let A be a d x d isotropic expansive matriz, and 1 € RO(RY). Then, for every 1 < p < oo,

there exists a positive constant By, such that

9w (F)llp < Byl flp
for f € LP(RY).

Theorem 1.3 Let 1 < p < oo, let A be a d x d isotropic expansive matriz, and let U be a finite subset of
RO(R?). Supposing that X (V) is an orthonormal basis for L*(R?), then there exist constants 0 < ¢ < C < 00
such that

Aflly < IWVe fll, < CllEp (1.14)
for f € LP(RY).

The rest of this paper is organized as follows. Section 2 is devoted to proving Theorem 1.2, and Section

3 is devoted to proving Theorems 1.1 and 1.3.

2. Proof of Theorem 1.2
This section is devoted to proving Theorem 1.2. For this purpose, we introduce some necessary notations and
notions. Let B be a Banach space, and 1 < p < co. We denote by LP(R? B) the Banach space consisting of

all B-valued measurable functions f defined on R? such that

IFO)lle € LP(RY),

where the norm is defined by

IFOllze@a,z) = HF OB,

for f € LP(RY, B). In particular, LP(R?, C) = LP(RY).
A set A C R? is said to be an ellipsoid if

A ={reR?: |[Az| < 1}

for some real invertible d x d matrix A. Observe that the transpose of an expansive matrix is still an expansive

one. By [1, Lemma 1.1], we have:
Lemma 2.1 For an arbitrary expansive matrixz A, there exist an ellipsoid N and r > 1 such that
AN CrA CAYA.

Let A be as in Lemma 2.1, and take S = (A*A)\A. Then {(A*)/S : j € Z} is a partition of RY.
Without loss of generality, we assume that |£] < 1 for £ € S later. Indeed, if not, we can do it by scaling.
Observe that the transpose of an isotropic matrix is still an isotropic one, and that the determinant of a

matrix equals the one of its transpose. The following lemma is borrowed from [10, Lemma 1.1]:
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Lemma 2.2 Let A be a d x d isotropic expansive matriz. Then there exists a norm || - | on R? such that
A=A, (2.1)
where A = | det A]1

Since the norms on R? are equivalent to each other, for the norm || - || in Lemma 2.2, there exist positive
constants A1, Ap such that
Al << Aol -] (2.2)

Lemma 2.3 Under the hypotheses of Theorem 1.2,

DA77 € L=(RY).
jE€L
Proof Without loss of generality, we assume that 1 is a real function. Since {(A*)™7S :j € Z} is a partition

of R, we only need to prove that 3 [¢((A*)79.)|? is bounded on S. Suppose ¢ < |¢] < 1 for € € S with a
JEZ
positive constant ¢. Taking A™! < § < 1, then there exists .Jy € N such that
[(A*)™9||7 < 6 for j > Jo. (2.3)

It follows that . ) ) ,
[(A)77 | <&| | and [(A*)-|>67/]-| on R (2.4)

for j > Jy. Since ¥ € RO(R?), we have v € L'(R?), and thus
Jo '
D AP < 200+ DY (2.5)
j=—Jo

Next we estimate 3. [¢)((4*)77.)|2 on S. Since ¥(0) = 0, we have

[71>Jo
h(E) = () [e 28 — 1]da
]Rd
|z|<|€]72 lz|>|€|" 2
= L&)+ () (2.6)
for £ £0. For I,(§), we have
1118 < / N [ (x)||e” 24 ) — 1]dx
lz|<l¢| 2
< 2 G £ld
o W@l
< 2mlg]le)z. 2.7)

For I5(§), we have
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LE)| < 20 |27 da
jal>J¢) %

o0
2C . T_Qd_"*dr/ dx
g~ 2 |z|=r

C'le|F. (2.8)

A

Collecting (2.6)—(2.8), we obtain that

[D(€)] < C”€|* for 0 < €] < 1 (2.9)

with C" = 2r||¢||y + C’. For & with [¢] > 1, since

0O = [ e
¢

= f et g O, (2.10)
we have
N _ 1 _ § —27i(z, §)
HOI = 5| [ @) =i+ geglle s
1 _ &
< 5[ @ —vat 55| da
1
—_ \Y d
< g [ v
Ch 1
— |
=T e T T
= C2|€|_1’
where n:er%, 0 <t < 1. This implies
D)) < Csé] " for £ £ 0 (2.11)
by (2.9). Collecting (2.3), (2.4), (2.9), and (2.11), we have
YoR(ANTOP = Y W(A)TIOP+ Y (AP
[71>Jo j=Jo+1 j=Jo+1
< Cy ( Yool T+ Y |(A*)j§_2)
j=Jo+1 j=Jo+1
< G| YV Y oY
j=Jo+1 j=Jo+1
= M<o (2.12)
for £ € S. This leads to Y. [h((A*)77€)]2 € L>®°(R%) by (2.5). The proof is completed. O

JEZ
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The following lemma is partially borrowed from [6, p.492, Theorem 3.4].

Lemma 2.4 Let By and By be Banach spaces, and T € L (Lr(]Rd7 B,), L"(R4, IB%Q)) for some 1 < r < oo.
Assume that for a.e. © € R, K(x) € L(By, By), that K(x) is measurable and locally integrable away from the

origin, that

TF(z) = y K(z —y)F(y)dy

for compactly supported F € L>®°(R%, By) and x ¢ supp(F), and that K(x) satisfies Hormander’s condition:

there exists a positive constant M such that
[ K@= ) = K@)leqs, maydo < M fory € B2 (2.13)
|[>2]y|

Then T can be extended to an operator defined on LP(R?, By), 1 < p < oo, such that
ITF| Lo ra,B) < CpllFllrra,z,) (1 <p<o00),

o € RY: [ TF@) s, > tH < Ot | Fllps s,
Remark 2.1 A careful observation to the proof of this lemma shows that (2.13) can be replaced by

/| K =)~ K@le, e < M fory < B (2.14)
x|>cly

where ¢ is an arbitrary positive constant.

Lemma 2.5 Under the hypothesis of Theorem 1.2, let A1 and Ay be as in (2.2), and let ¢ be a constant

satisfying ¢ > Afz)\%. Then there exists a positive constant M such that
[ S Wl —y) - s @)lde < M (2.15)
lz|>clyl ez

for y € RY.
Proof Without loss of generality, we assume that v is a real function. The left-hand side of (2.15) vanishes if

y = 0, so we only treat the case 0 # y € R?. It is obvious that

/|| \|Z|W*k($_y)_w”“(w)|dx = Z/ | le(a:—A’“y)—lb(x)\dx
z|>clY| kez A—kz|>cly

keZ
= L(y) + Lx(y), (2.16)
where
= Tr — k — x X .
= 3 [ A ) (217)
— T — k — x €T .
L= 3 [ A ) (215)

and A is as in Lemma 2.2.
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Next we prove that I;(y) and Iy(y) are both bounded on R?\{0} to finish the proof. We first treat
I1(y). Observing that

/ (e — AMy)ldz = / ()| de
[A=Fz|>cly] [A=kz+y|>cly|

< / ()| de,
[A=Fz|>(c—1)]y|

N

we have
/ W(w — AFy) — p(o)lde < 2 / () dz. (2.19)
[A=Fz|>cly| [A=Fz|>(c—1)|y]|

Also, [A Fz] < A\THAFz] = ATIATF||2]| < AeAT A F|z| by (2.2) and Lemma 2.2, so

dx

———dx 2.20
lz|>axkly) (14 [z])2dT (2.20)

/ |(z — AFy) — p(x)|dz < 2C
|A=Fz|>cly

by (1.10) and (2.19), where o = A\; ' A1 (¢ — 1). Also observe that

/ dx /°° dr / do(x)
e — - - o
|z|>aXF|y| (1 + |x|)2d+’y aXk|y| (1 + T)2d+’y |z|=r

- C’/Do L,
T oy (T

e dr
< ' -
- /a/\ky| (1 + ’I”)d+1+7
< Oy

It follows that

L (y)

IN

C///‘y|—d——y Z (/\—d—'y)k

k:k>—log, |y
< Cyly|m (AT @) losa lyl -1
= C’l)\dJr’Y < 0

by (2.17) and (2.20). Now we turn to (2.18). By the mean value theorem,

ClAry|
x— AFy) — ()] < [Vip(&)||APy| < ——=—,
| ( y) —v(@)] < V(9|4 T @D
where ¢ = 2 — tAFy for some 0 <t < 1. By (2.2) and Lemma 2.2, we have
A7 el < ATHATR] = ATl < ATAeA e,

and
|AFy] < ATHIARYI = ATyl S AT Agly| < e TTATT AN AT R
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if |[A=*x| > c|y|. This implies that
[ Ay| < AT e,
and
€] > Jof = [A%y] > (1= cTIATAY) 2| = il

for z € R? with |A=*2| > c|y|. Thus, we have

Cildfy|  _ Culaby|

Wz — AFy) — p(z)| < (14 ala|)dte = (1 + |af)d+e

for z € R? with |A=*z| > c|y|, and thus

Ix(y)

IN

dx
c A /7
IR W oeari

kAR |y|<1

< (s Z | ARy

kAR |y|<1

Culyl Y N (2.21)

ik |y <1

IN

by (2.2) and Lemma 2.2. Let us estimate .  A*:

kb [y|<1
Yook = >
k:\Fly|<1 k:k>log, |yl

= oot

k=[logy [y[]+1

(L=A7H)7 yl 7

IN

Therefore,

I(y) < C5 < 0

by (2.21). The proof is completed. O

Proof of Theorem 1.2. We use the notations in Lemma 2.4. Take B; = C and By = [?(Z). Define

Tf(z) =A{va-r* (@) }kez (2.22)
for f with (2.22) being well defined. Then

9u (N (@) = Tf(@)li2z)- (2.23)
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By the Plancherel theorem, we have

[ Irt@lbgde = X [ Wae s r@)Pda

kEZ

-/ <Z \@((A*)’“f)f) F©Fd

keZ

I1F1®

IN

DDA

keZ

DA

kEZ

o0

I1£112

o0

for f e L2(R%). Also observing that 3 [¢((A*)~%)|2 € L°(R?) by Lemma 2.3, we have that T is a bounded
kEZ

operator from L2(R?) to L?(RY, [?(Z)). Thus, by (2.23), to prove the theorem, we only need to prove that the

kernel
K(z) = (Ya-+ (m))kez

satisfies Hormander’s condition; that is,

/I ol <Z [ha-x(z —y) — ¢A—k($)|2> dx

keZ

is bounded on R?. By Remark 2.1, it suffices to prove that, for some ¢ > 0,

N

/| » (Z (@ —y) —wAk<x>|2> dz

kEZ

is bounded on R?. Also observe that

[N

(Z [a-r(z—y) - ¢Ak($)|2> <Y a-r(@ —y) — Ya-s(2)].

kEZ keZ

We only need to show that, for some ¢ > 0,
[ Sy - bas(@)lds
|z|>clyl ez

is bounded on R?. Lemma 2.5 tells us this is true. The theorem therefore follows. O

3. Proofs of Theorems 1.3 and 1.1
Lemma 3.1 ([4, Theorem 1]) Let 1 < p,q < co. Then there exists constant 0 < C < oo such that

{Z(MmQ}q <c {Z fl|Q}q (3.)

=1 =1
p P
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for any sequence {fi}72, of locally integrable function, where Mf is defined by

1

Mf(-) = sup

fC—=y)ldy
B0, 0)] Jpos LY

a.e. on R? for a measurable function f, where B(0, §) = {z € R?: |z| < §}.

Lemma 3.2 (/9, p.215, Theorem 2.10]) Let B = {z; : j € N} be a basis for a Banach space B = (B, || - ||).

For an arbitrary bounded sequence 5 = {f;};en, define

Sp(z) =Y _ B, fi@)x;

JEN
for x =3 fi(x)x; € B. Then the following statements are equivalent:
JEN

1) B is an unconditional basis for B;

2) There exists a constant C' > 0 such that ||Sg(z)|| < Cllz|| for all x € B and sequences B = {B;};en
with ‘5j| < 1,'

3) There exists a constant C' > 0 such that ||Sg(z)|| < Cllz|| for all x € B and sequences B = {B;};en
with Bj = :l:l,

4) There exists a constant C' > 0 such that ||Sg(z)|| < C|lz|| for all x € B and 8 = {B;}jen € lo(N)
with B; =1 or 0.

Lemma 3.3 (/5, Lemma 2.4])For every 0 < p < 0o, there exists a positive constant C, such that for every
g € S'(RY) with supp(g) C {€ € RY:|¢] < 29T} and j € Z,

1
P

id
> suwp |g(@) | < Cp27 llglly, (3:2)
kezd €Lk

where Q. =277([0, )4 + k).

Lemma 3.4 Let A be a d x d isotropic expansive matriz, and v > € > 0. Assume that g and h satisfy

901 Vo0 < ¢ = (3.3)

1+|.|)d+6’

/ h(z)dx =0, (3.4)
Rd

B
hOl< a7 pee 3.5
WO < G (35)
for some positive constant B. Then there exists a positive constant C such that for 1 >0
Cq—GG+3)
lg0.0 * huo(4)] < 72 on RY. (3.6)
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Proof Without loss of generality, we assume that both g and h are real functions. We use the norm || - || in

Lemma 2.2. By (2.2), we only need to prove that there exists a positive constant C' such that for [ > 0,

Cq-l+D)
MN< 22 - .
|g0,0 * h’l,O( )‘ —= (1 + H K ||)d+e (3 7)
a.e. on R%. By (3.4), we have
1900 % hio(@)] = | / (9(y) — 9(2))hiol — y)dy]
< / / / o) — 9(@) ol — v)\dy
Eq Eo Es
= L1+ 1+ I, (38)

where By = {y € R?: [lz —y[| <2}, B2 = {y € R?: [lz —y[| > 2 and ||yl < ]lz|}, Bs = {y €R*: [l= —y] >
2 and [ly]| > 3]}
We first deal with I;. By (3.3) and (2.2), we have

B Blz —y| C'llz — vl
lg(y) — g(z)| = [(Vg(§), y — x)| < 1 e < A+ [Ene

where € =2 +n(y — ) with 0 <n < 1. For y € Fy, it leads to

Lt [z < T+ lz =&+ €N < T+ flo =yl + 1€l < 3L+ [1€]D),

SO

C"q> [z — 9]l
I < / dy
A+ [zl Jp, L+ Mz —yl))2*
by (3.5), (2.2), and Lemma 2.2. Substituting A!(z — y) = ¢’ in the above formula, we have

_ o / XAy
= (A )it Jiyeray<anty (1 [lyl)2d+y

l

C//q s\l 2X\!
= d d
R, T

C«// l —1 2!
= dr / do(y)
(1+ II:vH )t /0 (1+r) 2‘”” lyll=1

I

C”q_é/\ l /oo /
< dr do(y)
L+ [lzl) ¥t Jo d*” lyll=1
Cq1G+3)
= A (3.9)
(L [|[1)
Next we turn to I. Fix x € R? and | € Z. From (2.2), we have
1 T
14—l = Ml — gl = X1+ L e =i 2 2+ 2 > o0 ) (3.10)
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for y € E5, which implies that

Iy

IN

IN

IN

IN

IN

IA

IN

<

C'qz

C//q%

C//I

@+ a2 ¢

1

[ (e wrees)
B \(L+ [yl (A4 flzl)¥e ) (1 + (AN

z =yl

A—l(2d+y)

— 1
, A l(2d+’y)qz

I, e * woae)
B \(LH yl)e (4 flzl)e ) (1 + fl])?

dy

dy

1

(1+ [J))2d+
ATI2d b 1t
(1 + [|l[})2*

Ed]

(

L+ [l2l|)

xz(zdﬂ)qé
(1 + ]| )2+

dr d
A+rire + =

Cl)\—l(2d+v)q%

Clqg G+

(1 + [lz[)

Crq~lGG+3)

(1 + [lz[[)

by (3.3), (3.5), and the fact that v > e.
Now we estimate I3. From (3.3), (3.5), and (2.2), it follows that

I3

Collecting (3.8), (3.9), (3.11), and (3.12), we have (3.6). The proof is completed.

Observe that

<

IN

IN

AN

<

|~

1
Jr
/{yew:ny|<§nw|} <<1 + llyl)**e

P 1
( [ /”yl_r do(y) +

T+ |x||>d+e> W

[ES
(14 [lz[[)+

1

(3.11)

, 1 1
ca /E‘3 ((1 T T Ifﬂll)d“)

C’”qé

1
/{yeRdrlm—mZz} (1 + M|z —y|))2d+

dr do
/|y|=1 W)

dr

(1 + [lz[)) ¢+

C”qé rd—1

(14 [lz[)) /2 (14 Alr)2dn

gz e rd-1
(1 + [lz[)) /2 (14 Alr)2dn
Cigz a1
(1 + [lz[)) ¢+
CrqlG+3)
(1 [l

o 1
d
/ZAI (1 +7’)d+7+1 "

(i 1y Drmn)| = (00,0 * Vj—m,0) (A" Tk —n)| if m < j,

dy

T+ A& =y

(3.12)

(3.13)
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and
[(@5.ks G| = (V0.0 % Gm—ji0) (k — A7""n)[ if m > j. (3.14)

As an immediate consequence of Lemma 3.4, we have the following lemma, for which related results can be
found in [3] and [11]:

Lemma 3.5 Let A be a d x d isotropic expansive matriz, and ¥, ¢ € R°(R?). Then there exists a positive
constant C such that for j, m € Z and k, n € Z4

1)
Cqm=G+3)

[(¥jks Gmon)| < (14 |Am—ik — n|)d+e
ifm<j, and
2)
Cqli—m(5+3)
|<1/1],k7 ¢mvn>| = (1 + |k _ AJ—mnDd-‘re
ifm>j.

Lemma 3.6 Let A be a d x d isotropic expansive matriz, and € > 0. Then there exists a positive constant C

such that for all sequences {s;x : (j, k) € Z x Z} of complex numbers and all x € A, with (j, k) € Z x Z2,

|s1,m]
> (1 + [AlTk — m]|)d+e <SCM | D Isumlxa,, | (2) (3.15)
mezd mezd
if 1 <j, and
|Sl7m| 1—j
2 (A5 [Ai—m — yare =07 "M > Istmlxan. | (@) (3.16)
mezd mezd
>

Proof By (2.2), we only need to prove that there exists a positive constant C' such that = € A;j, with
(j k) € Z x Z4,

|St,m] . .
Z A5 ATk — m)ore <CM Z IstmlXA . | (2)if 1 <4, (3.17)
meZd mezd
and
|Stm| 1—j . .
Z (1 + ||Ai=tm — k||)d+e <CqgIM Z [stm[XA0 | (2) 1125 (3.18)
meZd mezd
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Next we prove (3.17) and (3.18). We first consider (3.17). Fix € A; ;. For [ < j, write
Ey={meZ: |Ak—m| <1} and E, = {m € Z* : \" 71 < ||A" Tk —m]| < \"}

with n € N. Then we have

|Sl7m| _ ‘Sl,m‘
S T = L L G

meze n=0meckE,

IN

OZ/\ PN syl (3.19)

mek,

For m € E,, y € Ajm, we have y —x € A=Y (m — A'=7k + T¢ — A'=IT9). Also observe that [ < j. It follows
that
ly — || < A7H™ 4 Cp) < Coa™ !

for some constant Cs independent of y and x, so

> sl = 4 > st bas ) ) dy
{yeR®:|ly—z||<C2 A"~}

mekE, meEn
S ql/ Z |Sl,m|XAl,'m(y) dy
{yeR:|y—z|<C3A ™1} meE,
< NI IM < > |5lvm|XAlvm> @)
meEn

C' A M ( > |sl,m|XAm> (z) (3.20)

mekE,

by (2.2). Combining (3.19) with (3.20) leads to

|sl,m| = —ne
2 T TA T e S O AT M Y b, | @)

meZd n=0 mekEy,

IN

C"M D Istmlxa,, | (@)

mezd

For I >j,let Fo={mecZ:|A'm—k| <1} and F, = {m € Z: \*"! < ||A7"'m — k|| < A\"|} with

n € N. Similarly, we have

[51,m| (n—1)(d+e)
2. [ A tm e <€ ZA > st (3.21)

mezZd mekr,

and A;,, C{y € R?: |y — x| < CA"7J} for some constant C' related with A;, Az in (2.2). Then we can prove
(??) by the same procedure as in the proof of (3.17). This completes the proof. O
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Lemma 3.7 Let A be a d xd isotropic expansive matriz, ¥ and ® two finite subsets of R°(R?) with the same

cardinality, and X (®) an orthonormal basis for L>(R?). Then for 1 < p < 0o, there exists a positive constant
Cp such that
Wa fllp < ColWa fll, (3.22)

for f € LP(RY).

Proof Since X (®) is an othonormal basis for L?(R%), we have

% k Z Z <¢j,k7 ¢m,n>¢m,n(')

PEP (m,n)ELXLA
for (¥, j, k) € ¥ x Z x Z%, so
1
2 2

Waf() = <> > Do D Wik bmn)(fs )| @xa, () p - (3.23)

YEV (5,k)ELXLE |$EP (m,n)ELXZLE

Fix (1,7,k) € ¥ x Z x Z¢. Write

T)Z)ajv ZZZ f7¢mn wjka¢mn>

PEDP m<j nezd

and
waja ZZZ f7¢mn wjka¢mn>
PEDP mM>j nezd
Then
Waf() < A, 5, k)t xa,  (lxzxze + A2, 5, k)a2 xa, ()l xzxz

= Ai() + As(), (3.24)

and thus
W f Ol < 1141 C)llp + [1A2() - (3.25)

For z € Aj i, (j,k) € Z x Z¢, we have

|A1(1/)7J,k)\ < Z Z Z |<fa ¢m,n>”<¢j,ka ¢m,n>|

PEP M<jnezd

¢Zq> [(fs m,n)l
(m—3)(5+3) €
< 0> > (1+ |[Am—ik — n|)dte
m<j nezd
< Y dmIEDIML YT DL b X | @)

m<j nezd ped
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by Lemmas 3.5 and 3.6. This implies that

2
1Al < 3D a™ 7 MO ST dmandla® x,,, )0
JEZ \m<j nezd ped
= C"||IH{am} * {bm )}z
where
g1 =0, -
a; = and by (z) = M | S ST [F, dmadlaEx,, | (@)
0 j <0, nezd ped

for m € Z and a.e. x € R?. It follows that

N

1A O)lle - < CT I am i I{bm () Hex 1,

m.

- Zq*% Z Z Z|f7 bmn)lq? XA7nn)()
>0 mEZL nezd pcd
2Y) 2
= Ol 2 (MO D2 dmalla s, )0)
meZ neZd ped
P
Applying Lemma 3.1 with ¢ = 2, we have
1
2Y) 2
IO < Ollg 2 | 2 2 1 dmalla X, 0)
meZ \neZd ped
P
1
2Y) 2
= C Z Z Z |<fa (bm,n)lq%XA,m,”(')
meZneZd \pe®
P

IN

C’card(fb)%HW@prv

[N

P

p

(3.26)

where we use the fact that {A,,, : n € Z%} is a partition of R? for each m € Z, and card(®) denotes the

cardinality of ®. Similarly, we can also prove that there exists a positive constant C' such that

142 ()l < ClIWa £l

for f € LP(RY). The lemma therefore follows.
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Lemma 3.8 Let A be a d x d isotropic expansive matriz, 1 < p < oo, A as in Lemma 2.2, and ¥ a finite

function set of R°(R?) whose elements are all band-limited. Then there exists a positive constant C such that
Wy () < CTg \ [ ()

for f e LP(RY), where ¥ = {1) : ¢p € U}.

Proof Observe that JA—j * f is band-limited for f € LP(RY), j € Z due to the fact of ¢» € ¥ being band-
limited, and thus it is differentiable by the Paley—Wiener theorem. Therefore, considering its point-wise values

makes sense. Fix f € LP(R?). It is easy to check that

(f i)l = a7 3| (Gas * FATE)|

< q7% sup |(Gas )W)
YEA; &

for (1, j, k) € ¥ x Z x Z*. For an arbitrarily fixed zo € R? and jy € Z, there exists a unique ko € Z? such
that zo € Aj, k, - It follows that

Z [/, ¢j07k>‘2qj0XAjo_k(x0) < sup  [1ha—s * f(y)]?
kezd ' YEN o, ko
0 2
“jg * Ty — 2 .
— sup |("/’A Jo f])( 0 2)\d)‘ (1 4 ||AJOZ||)2)\d
2€—Ajy ko TT0 (1 + HA OZH)
~ 2 ‘
< sup |(Ya-d0 * f)(z0 — 2)| sup (1+ )\jo||z||)2)\d'

z€ER4 (1 + ”AjOZ”)Q)\d 2€—Ajj ko +To

Observe that 2z € —Aj, k, + 20 € A7 ([—1,1)%). It follows that ||z]| < CA~%, and thus

i |1/~1Aﬂ‘o * f(wo — Z)|2
I(f, ©; ,k>|2qJOXAj (z0) < C' sup ,
k%z:d 0 o 2R (1 + |AJDZD2)‘d

by (2.2). This leads to Wy f(z0) < CTg ) f(z0). This finishes the proof by the arbitrariness of zo. O
Given > 0 and a function f defined on R?, define

750)= s, e (3.27)

a.e. on RY.

Lemma 3.9 Let 3 > 0 and g € L'(R?) with § being compactly supported. Then, for every o € Z with
a; >0, 1<i<d, there exists a positive constant C, such that

(Dag)3() < Cagp(:)

on RY.
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Proof Take v € S(R?) such that 4(-) = 1 on supp(g). This can be done since supp(§) is compact. Then

G = g%, and thus g = v * g. It follows that D,g = Du7 * g. Next we estimate D,g(x —y) with z, y € R%.

|Dag(x —y)|

Dory(z —y — 2)g(2)d=

Rd

oYt —y)g(z — t)dt‘

_ Bd lg(z —t)|
< [ IDarte =)l (L )
gta 1)
< @)™ [ 1Dl (= o)
< Call+ o) g3(a), (3:29

where Cy = [pa |Day(t)](1 + [t])P?dt. Tt follows that

(Dag)g(') < CagE(')

by the arbitrariness of x and y. O
Applying Lemma 3.3 and by the same procedure as in [9, p.271, Corollary 3.9], we have:

Lemma 3.10 Let 3 >0, and let g a band-limited function with g € LP(R?), 0 < p < co. Then we have
g5(-) < oo on R

Lemma 3.11 For 8 > 0, there exists a positive constant Cg such that

g30) < Cs (Mgl H)))”

on RY for an arbitrary band-limited function g satisfying g;;() < oo on RY.

Proof Without loss of generality, we assume that ¢ is a real function. Since ¢ is band-limited, it is
differentiable by the Paley~Wiener theorem, so considering its point-wise values makes sense. Fix z, y € R?,
0 < J < 1. Choose z € R? such that 2 € B(zx —y,d) = {z : |z — 2 +y| < §}. Then we have
lg(z —y) —g(z)| = {Vg(&), z—x+y)| with £ = (z—y) +t(z—x+y), 0<t<1. It follows that

lg(z — )| < g(2)| + |z — 2+ yl|Vg(€)| < lg(2)] + Cad sup |Dag (&),
{6:€€B(z—y, 0),|a|=1}

and thus

gz —y)|x <C (|g<z>|i +6% sup |Dag<s>|i> (3.29)

{§:£eB(z—y, 6),lal=1}

for some constant C related to A and d. Integrating the above formula on B(x — y, §), we have

/ g(z —y)l¥dz< C / 9(2)3dz + 63 Ba -y, 8)| sup Dag(©)% ),
B(x—y, ) B(z—y,9) {&:6eB(z—y,d),|al=1}
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which leads to

gz —y)|x <674 ( /B . lg(2)| ¥ dz + 63+ sup |Dag<f>|i> :
=Y,

{§:£€B(z—y, 6),la|=1}

Also observe that B(z —y, ) C B(z, |y| + ¢). Then we have

/ 9(2)[Fdz < / l9(2)|Fdz
B(z—y,0) B(z, |y|+9)

1
< C(lyl+0)*M(|g|*)(x)
and
1 1
sup |Dag(§)]* < sup |Dag(&)>
{&:6€B(z~vy, d),|al=1} {&:6€B(z, |y|+9),|a|=1}
1
= sup |Dag(x — &)

{&:1€1<lyl+6,lal=1}

= sup
{&:1¢l<]y[+8,|al=1}

Dag(e ~O\* (|, e
(i) oo

< (Dag)a(@)* (1 + lyl +6)°

with |a| = 1. Combining (3.30) and (3.31) with (3.32) leads to

e
AN

o {0l )

g -yt < Mgl )(w) + 0% (Dag ) (14 I+ 0y}

IA

¢ {ZM(L‘JM(%) + 8% ((Dag)i)(x))i} (1+ 1yl +0)

(9]

M=

IA

’ 1 1 1 *
c'{ oMU ) (@) + 5% ((Dag) @) | 240+ )
by 0 < é < 1. This implies that

A
L M) () + 6% <<Dag>:><x>>i} 2M(1 4 [y])

(e9]

gz —y)| < C” {

IN

e { 55 (MUsH)@) "+ 8(Dag ) | (14 D
and thus

|g(x — y)| " 1 1 A *

el < o g (MUalH@) + 8w}
Therefore, we have

giw) < C” {(;d (MUglH@) "+ caag;m}
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by Lemma 3.9. Taking § small enough such that C"”C,6 < 1 in the above formula, we get
. AN
gi() < C (MlglH)())
a.e. on R? for some constant due to the fact g5 < oo. This completes the proof. O

Lemma 3.12 Let A be a d x d isotropic expansive matriz, 0 < p < oo, and ¢ a band-limited function on R®.
Suppose f € S'(RY), and ¢4 * f € LP(R?). Then there exists a positive constant C such that

- |(pa-i* f)(- =)
seme (14 |Aig])

<o{Mloss = 19O} (335)

on RY for j € Z, where X is as in Lemma 2.2.
Proof For j € 7Z, write g(-) = (¢4 * f)(A77-) a.e. on R?. Then g is band-limited and g € LP(R?).
Arbitrarily fix # € RY. Observing that

m R - et
= gi(Alx), (3.36)
we have
o S e < ¢ b 357
by Lemmas 3.10 and 3.11. We only need to prove
M(|g|*)(ATz) < CM(pa-s + £13)(x) (3.38)

to finish the proof. Next we prove (3.38). For any y satisfying |y — A7z| < §, we have

|A™y — a |A™ (y — Alz)|

IN

AAT (y — Ala)|

AN ly — Al

IN

M AT AT |y — Ay
< AATATIS
by (2.2) and Lemma 2.2. It follows that A~/ (B(A7x, §)) C B(z, A2A; 'A776), and thus

1

M(lg ) (Alz) = SUp = ba-ixf)ATy %dy
(| | )( ) >0 |B(O, 5)| B(Aiz, ) |( A )( )|
1 1
S —m da-ix f)(y)|*dy
q7|B(0, 6)| /B2, xor; T A-75) (6 )Wl
< oM (l6as = f1}) (@), (3.39)
This completes the proof. O
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Lemma 3.13 Let 1 < p < oo, let A be a d x d isotropic expansive matriz, and let ¥ be a finite subset of
ROY(R?). Suppose that X (¥) is an orthonormal basis for L?(R®). Then there exists a positive constant C such

that
[Tofllp < Cllfllp

for f € LP(R?), where X is as in Lemma 2.2.

Proof Observing that ¥ C L*(R?), we have ¢4—; * f € LP(R?) for f € LP(R?), j € Z and ¢ € ¥ . Thus,
Ty f is well defined for f € LP(R?), and

(a5 = /) =)
(14 [ATy[)2r

1TonfOl = [ 323 sup

vev jez YER?

P

1

2

1
< Ol D2 D M(bas = fIX) (]
VeV jEZ

P

A

2

1
= C|[| Do D _M(as = fIX)CIP
YeV jez N
P
by Lemma 3.12. Then applying Lemma 3.1 and Theorem 1.2, we obtain
A
2X
ITorfle < C{[4 DD [bas*f
YEV jEZ
PA
< D guf
Ppew »
< C"Nfllp-
This completes the proof. O

Combining Lemmas 3.8 and 3.13, we have:

Lemma 3.14 Let 1 < p < oo, let A be a d x d isotropic expansive matriz, and let U be a finite subset of
RO(RY) whose every element is band-limited. Suppose that X (V) is an orthonormal basis for L*(RY). Then
there exist constants 0 < ¢ < C < oo such that

cllflle < IWe fllp < ClIfllp (3.40)

for f € LP(R?).

Proof Since ¥ C R°(RY) implies ¥ ¢ R°(R%), the right-hand side inequality in (3.40) is an immediate
consequence of Lemmas 3.8 and 3.13. Next we prove the left-hand side inequality. Observe that ||[Wg f|l2 = ||f||2
for f € L2(RY). Write

Quf (@) = {{f, Yindad xa,, (@) : (0,4, k) € U x Z x 2}
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for a.e. x € R and f € LP(R?). Then by the polarization identity and a density argument, we have

f(@)g@)de = / (0 £(2), Qug(@))iz(unxads

for f € LP(RY) and g € LY(R?) with % + % = 1. This implies that

s = s {| [ (@0fe). Qugewziznds] ol <1}
R
< s { [ Was@Wag(ald gl <1}
R
< sup{[Wa flplWegllq : llgllg <1}
< ClWefllp
by applying Lemma 3.14 to g. This completes the proof. O

Proof of Theorem 1.3 Choose a finite subset ® of R°(R?) with the same cardinality to ¥ such that the
elements of ® are all band-limited, and X (®) is an orthonormal basis for L?(R?). Then there exist positive
constants C7; and Cy such that

CilWa fllp < W fllp < Co[Wa fllp
for f € LP(RY) by Lemma 3.7. It leads to the theorem by Lemma 3.14.
Proof of Theorem 1.1 We first show that X (¥) is a basis for LP(R?). Arbitrarily fix f € LP(RY). Define

Svaf() =0 D (i)

YeW [j|<N,|k|<M

for N, M € N. Observe that

<f7 ¢j(),k)g> if ‘jO|SN7|kO‘§M7
(SN S5 Vjoko)

0 otherwise,

for each (v, jo, ko) € ¥ x Z x Z%. It follows that

Nl

WoSnmf(-) = Z Z I(f, 1/Jj,k>‘2quAj)k ()¢ (3.41)

YEV SN, |k|<M

and thus |We f — We Sy, v fllp = 0 as N, M — oo by the Lebesgue dominated convergence theorem and the
fact that Wy f € LP(R?), which is derived from Theorem 1.3. Also, we have

1f =S fllp < ClWa f = WaSn(f)llp

by Theorem 1.3. Therefore, N}Vl}gw |f —Snam(f)ll, =0, ie.

F=Y" > (i)t (3.42)

YEW (j,k)ELX L4
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in LP(R?). Now suppose f has another expression:

I= Z Z Cyp 3k V5 k
YEW (j,k)ELXZI
in LP(R%). Also observing that ¢ € L(R?) with %Jr% =1 for ¢ € ¥, we have (f, ¢¥;r) = cy jr for
(1, §, k) € U x Z x Z%; that is, the expression (3.42) is unique for every f € LP(R?). Therefore, X (¥) is a
basis for LP(R?).
Next we prove that the basis X (¥) is an unconditional one. By Lemma 3.2, we only need to prove the

existence of a constant C' such that
1S fllp < Cllfllp (3.43)

for f € LP(RY) and S € lo(V x Z x Z%) satisfying By ;r = 1 on its support, where

Ssf =Y > Buiklfs ik)tin

YEV (4,k)EZXZLY

It is easy to check that

[N

0<WaSsf =D D Bujkllhivim)Pdxa,, | <Waf.

YEVY (5,k)ELXZLY
Thus,
IS5 f1lp < ¢ WS flly < ¢ W fllp < ¢ CIIfllp

by Theorem 1.3; that is, (3.43) holds. The proof is completed.
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