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Abstract: In this paper, we prove that an orthonormal wavelet basis associated with a general isotropic expansive

matrix must be an unconditional basis for all Lp(Rd) with 1 < p < ∞ , provided the wavelet functions satisfy some

usual conditions.
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1. Introduction

It is a significant event in wavelet analysis that good wavelet bases are unconditional bases in Lp(Rd) with

1 < p < ∞ . Results of this type are given in some important books on wavelets such as [2, 9, 12, 15], and in

some articles such as [7, 8, 13, 16]. However, all those works but [13] consider only the case of the expansive

matrix A = 2Id , and most of them are in dimension d = 1, where Id is the d× d identity matrix. This paper

deals with the case of isotropic expansive matrices.

We start with some definitions and notations. Let d be a fixed positive integer. S(Rd) denotes the space

of Schwartz functions and S ′(Rd) its dual space, i.e. the so-called tempered distribution space. We denote by

f̃ its conjugate reflection, i.e. f̃(·) = f(−·), and define Dαf(x1, x2, · · · , xd) = ∂(α1+α2+···+αd)f(x1, x2,··· ,xd)

∂x
α1
1 ∂x

α2
2 ···∂xαd

d

for

a tempered distribution f and α = (α1, α2, · · · , αd) with αi ∈ Z+ (the set of nonnegative integers). For two

Banach spaces B1 and B2 , we denote by L(B1, B2) the set of bounded linear operators from B1 into B2 . For a

countable set E , we denote by l0(E) the set of finitely supported sequences on E . A d× d matrix A is called

an expansive matrix if it is an integer matrix with all its eigenvalues being greater than 1 in modulus, and it is

called an isotropic matrix if it is similar to a d×d diagonal matrix diag (λ1, λ2, · · · , λd) with |λi| = | detA| 1d .
Given a d× d expansive matrix A , we denote by A∗ its transpose, and we define the dilation operator D and

the shift operator Tx0 with x0 ∈ Rd respectively by

Df(·) = | detA| 12 f(A·) and Tx0f(·) = f(· − x0) (1.1)

for a measurable function f . Obviously, they are both unitary operators on L2(Rd). For a measurable function
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f , we write

fj,k(·) = DjTkf(·), and fA−j (·) = qjf(Aj ·) (1.2)

for j ∈ Z and k ∈ Zd , where q = | detA| , which will be used throughout this paper. The Fourier transform is

defined by

f̂(·) =
∫
Rd

f(x)e−2πi⟨x, ·⟩dx

for f ∈ L1(Rd) and naturally extended to L2(Rd) and distributions, where ⟨·, ·⟩ denotes the inner Euclidean

product in Rd . We denote by | · | the Euclidean norm, that is

|x| =
(
x21 + x22 + · · ·+ x2d

) 1
2 ,

for x ∈ Rd with xi being its ith component. Let f , h , and ψ be measurable functions, A a finite set of

measurable functions, and β > 0. We make the following notations if they make sense:

⟨f, h⟩ =
∫
Rd

f(x)h(x)dx, (1.3)

gψ(f)(·) =

∑
j∈Z

|ψA−j ∗ f(·)|2
 1

2

, (1.4)

X(A) =
{
aj,k : a ∈ A, j ∈ Z and k ∈ Zd

}
, (1.5)

WAf(·) =

∑
a∈A

∑
(j,k)∈Z×Zd

|⟨f, aj,k⟩|2 qjχΛj,k
(·)


1
2

, (1.6)

TA,βf(·) =

∑
a∈A

∑
j∈Z

∣∣∣∣∣ supy∈Rd

(aA−j ∗ f)(· − y)

(1 + |Ajy|)βd

∣∣∣∣∣
2
 1

2

, (1.7)

where

Λj,k = A−j(Td + k), Td = [0, 1)d, (1.8)

χΛj,k
denotes the characteristic function of Λj,k . We denote by R0(Rd) the set of functions f defined on Rd

satisfying the following: there exist constants ∞ > γ ≥ ϵ > 0 and 0 < C <∞ such that∫
Rd

f(x)dx = 0, (1.9)

|f(·)| ≤ C

(1 + | · |)2d+γ
, (1.10)

|∇f(·)| ≤ C

(1 + | · |)d+ϵ
(1.11)

a.e. on Rd , where ∇f denotes the gradient function of f .
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[9, p.287, Theorem 4.15] shows that a one-dimensional dyadic wavelet basis X(ψ) with ψ ∈ R0(R) must

be an unconditional basis of Lp(R) for 1 < p <∞ . Its higher dimensional version with A = 2Id is obtained in

[15, Theorem 8.9]. The goal of this paper is to extend this theorem to the case of general isotropic expansive

matrices. To our knowledge, the reference [13] seems to be the first and the only work addressing unconditional

wavelet bases for Lp(Rd), 1 < p < ∞ , associated with general expansive matrices. It provides us with a very

general theoretic result. By [13, Theorem 2.4], for a finite subset Ψ of L2(Rd), if all elements of Ψ have an

A -radial majorant ϕ satisfying ∫
Rd

ϕ(u) ln(|u|+ 1)dx <∞, (1.12)

and X(Ψ) is an orthonormal basis for L2(Rd), then X(Ψ) is an unconditional basis for all Lp(Rd) with

1 < p < ∞ . Observe that “A -radial” therein is a very technical concept, and it strongly depends on another

concept, “A -balanced set” ([13, Definitions 2.2 and 2.3]). [1, Lemma 2.2] proves the existence of the A -balanced

set, but its proof is not a direct constructive one. Therefore, it is not easy to find one A -radial (1.12)-majorant

ϕ of a function. At least an A -radial majorant ϕ of the function (1 + |x|)−t with t > 0 strongly depends on

A . It is unknown whether the function (1 + |x|)−t with t > 0 has a good A -radial majorant for an arbitrary

expansive matrix A , so it is natural for us to ask the following question:

Question. Suppose that A is a d × d expansive matrix and Ψ is a finite subset of R0(Rd). Is X(Ψ)

an unconditional basis for all Lp(Rd) with 1 < p <∞ provided that it is an orthonormal basis for L2(Rd)?

For isotropic expansive matrices, in this paper we give an affirmative answer to this question. It is

unresolved whether it is true for a general expansive matrix. This is because our method strongly depends

on a norm associated with the expansive matrix, which is equivalent to the Euclidean norm in Rd . A general

expansive matrix need not correspond a quasi-norm equivalent to the Euclidean one in Rd by [14, Definition

1-8, Proposition 1-9], or [1, Lemma 3.2], while [10, Lemma 1.1] shows that every isotropic expansive matrix

corresponds a norm equivalent to the Euclidean one in Rd . Our main result can be stated as follows.

Theorem 1.1 Let 1 < p < ∞ , let A be a d × d isotropic expansive matrix, and let Ψ be a finite subset of

R0(Rd) . Suppose that X(Ψ) is an orthonormal basis for L2(Rd) ; then it is an unconditional basis for Lp(Rd) .

When A = 2Id , Theorem 1.1 reduces to [15, Theorem 8.9]. It was proved by duality and the interpolation

between H1(Rd) and L2(Rd). Therein [15, Proposition 8.8] and

|||Djf |||1,q = | detA|−
j
2 |||f |||1,q (1.13)

played a key role. Here ||| · |||1,q is a norm on Hq
1 (Rd) with 1 < q ≤ ∞ , but we do not know whether [15,

Proposition 8.8] is true for a general expansive matrix or even for a general isotropic expansive matrix. At

least, (1.13) need not hold in this case. Therefore, Theorem 1.1 can not be proved similarly to [15, Theorem

8.9]. We should avoid H1(Rd)-related arguments. With the help of harmonic analysis tools and a suitable norm

related to a general isotropic expansive matrix, we prove Theorem 1.1. To prove Theorem 1.1, the following

two theorems are needed.
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Theorem 1.2 Let A be a d × d isotropic expansive matrix, and ψ ∈ R0(Rd) . Then, for every 1 < p < ∞ ,

there exists a positive constant Bp such that

∥gψ(f)∥p ≤ Bp∥f∥p

for f ∈ Lp(Rd) .

Theorem 1.3 Let 1 < p < ∞ , let A be a d × d isotropic expansive matrix, and let Ψ be a finite subset of

R0(Rd) . Supposing that X(Ψ) is an orthonormal basis for L2(Rd) , then there exist constants 0 < c ≤ C <∞
such that

c∥f∥p ≤ ∥WΨf∥p ≤ C∥f∥p (1.14)

for f ∈ Lp(Rd) .

The rest of this paper is organized as follows. Section 2 is devoted to proving Theorem 1.2, and Section

3 is devoted to proving Theorems 1.1 and 1.3.

2. Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. For this purpose, we introduce some necessary notations and

notions. Let B be a Banach space, and 1 ≤ p ≤ ∞ . We denote by Lp(Rd, B) the Banach space consisting of

all B-valued measurable functions f defined on Rd such that

∥f(·)∥B ∈ Lp(Rd),

where the norm is defined by

∥f(·)∥Lp(Rd,B) = ∥∥f(·)∥B∥p

for f ∈ Lp(Rd, B). In particular, Lp(Rd, C) = Lp(Rd).

A set △ ⊂ Rd is said to be an ellipsoid if

△ = {x ∈ Rd : |Ax| < 1}

for some real invertible d×d matrix A . Observe that the transpose of an expansive matrix is still an expansive

one. By [1, Lemma 1.1], we have:

Lemma 2.1 For an arbitrary expansive matrix A , there exist an ellipsoid △ and r > 1 such that

△ ⊂ r△ ⊂ A∗△.

Let △ be as in Lemma 2.1, and take S = (A∗△)\△ . Then {(A∗)jS : j ∈ Z} is a partition of Rd .
Without loss of generality, we assume that |ξ| ≤ 1 for ξ ∈ S later. Indeed, if not, we can do it by scaling.

Observe that the transpose of an isotropic matrix is still an isotropic one, and that the determinant of a

matrix equals the one of its transpose. The following lemma is borrowed from [10, Lemma 1.1]:
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Lemma 2.2 Let A be a d× d isotropic expansive matrix. Then there exists a norm ∥ · ∥ on Rd such that

∥A · ∥ = λ∥ · ∥, (2.1)

where λ = | detA| 1d .

Since the norms on Rd are equivalent to each other, for the norm ∥ · ∥ in Lemma 2.2, there exist positive

constants λ1 , λ2 such that

λ1| · | ≤ ∥ · ∥ ≤ λ2| · |. (2.2)

Lemma 2.3 Under the hypotheses of Theorem 1.2,∑
j∈Z

|ψ̂((A∗)−j ·)|2 ∈ L∞(Rd).

Proof Without loss of generality, we assume that ψ is a real function. Since {(A∗)−jS : j ∈ Z} is a partition

of Rd , we only need to prove that
∑
j∈Z

|ψ̂((A∗)−j ·)|2 is bounded on S . Suppose c ≤ |ξ| ≤ 1 for ξ ∈ S with a

positive constant c . Taking λ−1 < δ < 1, then there exists J0 ∈ N such that

∥(A∗)−j∥
1
j < δ for j > J0. (2.3)

It follows that
|(A∗)−j · | ≤ δj | · | and |(A∗)j · | ≥ δ−j | · | on Rd (2.4)

for j > J0 . Since ψ ∈ R0(Rd), we have ψ ∈ L1(Rd), and thus

J0∑
j=−J0

|ψ̂((A∗)−j ·)|2 ≤ (2J0 + 1)∥ψ∥21. (2.5)

Next we estimate
∑

|j|>J0
|ψ̂((A∗)−j ·)|2 on S . Since ψ̂(0) = 0, we have

ψ̂(ξ) =

∫
Rd

ψ(x)[e−2πi⟨x, ξ⟩ − 1]dx

=

(∫
|x|≤|ξ|−

1
2

+

∫
|x|>|ξ|−

1
2

)
ψ(x)[e−2πi⟨x, ξ⟩ − 1]dx

= I1(ξ) + I2(ξ) (2.6)

for ξ ̸= 0. For I1(ξ), we have

|I1(ξ)| ≤
∫
|x|≤|ξ|−

1
2

|ψ(x)||e−2πi⟨x, ξ⟩ − 1|dx

≤ 2π

∫
|x|≤|ξ|−

1
2

|ψ(x)||x||ξ|dx

≤ 2π∥ψ∥1|ξ|
1
2 . (2.7)

For I2(ξ), we have
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|I2(ξ)| ≤ 2C

∫
|x|>|ξ|−

1
2

|x|−2d−γdx

= 2C

∫ ∞

|ξ|−
1
2

r−2d−γdr

∫
|x|=r

dx

= C ′|ξ|
d+γ
2 . (2.8)

Collecting (2.6)–(2.8), we obtain that

|ψ̂(ξ)| ≤ C ′′|ξ| 12 for 0 < |ξ| ≤ 1 (2.9)

with C ′′ = 2π∥ψ∥1 + C ′ . For ξ with |ξ| > 1, since

ψ̂(ξ) =

∫
Rd

ψ(x)e−2πi⟨x, ξ⟩dx

= −
∫
Rd

ψ(x+
ξ

2|ξ|2
)e−2πi⟨x, ξ⟩dx, (2.10)

we have

|ψ̂(ξ)| =
1

2

∣∣∣∣∫
Rd

[ψ(x)− ψ(x+
ξ

2|ξ|2
)]e−2πi⟨x, ξ⟩dx

∣∣∣∣
≤ 1

2

∫
Rd

∣∣∣∣ψ(x)− ψ(x+
ξ

2|ξ|2
)

∣∣∣∣ dx
≤ 1

4|ξ|

∫
Rd

|∇ψ(η)|dx

≤ C1

|ξ|

∫
Rd

1

(1 + |x|)d+ϵ
dx

= C2|ξ|−1,

where η = x+ tξ
2|ξ|2 , 0 < t < 1. This implies

|ψ̂(ξ)| ≤ C3|ξ|−1 for ξ ̸= 0 (2.11)

by (2.9). Collecting (2.3), (2.4), (2.9), and (2.11), we have∑
|j|>J0

|ψ̂((A∗)−jξ)|2 =
∞∑

j=J0+1

|ψ̂((A∗)−jξ)|2 +
∞∑

j=J0+1

|ψ̂((A∗)jξ)|2

≤ C4

 ∞∑
j=J0+1

|(A∗)−jξ|+
∞∑

j=J0+1

|(A∗)jξ|−2


≤ C5

 ∞∑
j=J0+1

δj +
∞∑

j=J0+1

δ2j


= M <∞ (2.12)

for ξ ∈ S . This leads to
∑
j∈Z

|ψ̂((A∗)−jξ)|2 ∈ L∞(Rd) by (2.5). The proof is completed. 2
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The following lemma is partially borrowed from [6, p.492, Theorem 3.4].

Lemma 2.4 Let B1 and B2 be Banach spaces, and T ∈ L
(
Lr(Rd, B1), L

r(Rd, B2)
)
for some 1 ≤ r ≤ ∞ .

Assume that for a.e. x ∈ Rd , K(x) ∈ L(B1, B2) , that K(x) is measurable and locally integrable away from the

origin, that

TF (x) =

∫
Rd

K(x− y)F (y)dy

for compactly supported F ∈ L∞(Rd, B1) and x /∈ supp(F ) , and that K(x) satisfies Hörmander’s condition:

there exists a positive constant M such that∫
|x|>2|y|

∥K(x− y)−K(x)∥L(B1,B2)dx ≤M for y ∈ Rd. (2.13)

Then T can be extended to an operator defined on Lp(Rd, B1) , 1 ≤ p <∞ , such that

∥TF∥Lp(Rd,B2) ≤ Cp∥F∥Lp(Rd,B1) (1 < p <∞),

|{x ∈ Rd : ∥TF (x)∥B2
> t}| ≤ C1t

−1∥F∥L1(Rd,B1).

Remark 2.1 A careful observation to the proof of this lemma shows that (2.13) can be replaced by∫
|x|>c|y|

∥K(x− y)−K(x)∥L(B1,B2)dx ≤M for y ∈ Rd, (2.14)

where c is an arbitrary positive constant.

Lemma 2.5 Under the hypothesis of Theorem 1.2, let λ1 and λ2 be as in (2.2), and let c be a constant

satisfying c > λ−2
1 λ22 . Then there exists a positive constant M such that∫

|x|>c|y|

∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|dx ≤M (2.15)

for y ∈ Rd .

Proof Without loss of generality, we assume that ψ is a real function. The left-hand side of (2.15) vanishes if

y = 0, so we only treat the case 0 ̸= y ∈ Rd . It is obvious that∫
|x|>c|y|

∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|dx =
∑
k∈Z

∫
|A−kx|>c|y|

|ψ(x−Aky)− ψ(x)|dx

= I1(y) + I2(y), (2.16)

where

I1(y) =
∑

k:λk|y|≥1

∫
|A−kx|>c|y|

|ψ(x−Aky)− ψ(x)|dx, (2.17)

I2(y) =
∑

k:λk|y|<1

∫
|A−kx|>c|y|

|ψ(x−Aky)− ψ(x)|dx, (2.18)

and λ is as in Lemma 2.2.
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Next we prove that I1(y) and I2(y) are both bounded on Rd\{0} to finish the proof. We first treat

I1(y). Observing that ∫
|A−kx|>c|y|

|ψ(x−Aky)|dx =

∫
|A−kx+y|>c|y|

|ψ(x)|dx

≤
∫
|A−kx|>(c−1)|y|

|ψ(x)|dx,

we have ∫
|A−kx|>c|y|

|ψ(x−Aky)− ψ(x)|dx ≤ 2

∫
|A−kx|>(c−1)|y|

|ψ(x)|dx. (2.19)

Also, |A−kx| ≤ λ−1
1 ∥A−kx∥ = λ−1

1 λ−k∥x∥ ≤ λ2λ
−1
1 λ−k|x| by (2.2) and Lemma 2.2, so∫

|A−kx|>c|y|
|ψ(x−Aky)− ψ(x)|dx ≤ 2C

∫
|x|>αλk|y|

dx

(1 + |x|)2d+γ
dx (2.20)

by (1.10) and (2.19), where α = λ−1
2 λ1(c− 1). Also observe that∫

|x|>αλk|y|

dx

(1 + |x|)2d+γ
=

∫ ∞

αλk|y|

dr

(1 + r)2d+γ

∫
|x|=r

dσ(x)

= C ′
∫ ∞

αλk|y|

rd−1

(1 + r)2d+γ
dr

≤ C ′
∫ ∞

αλk|y|

dr

(1 + r)d+1+γ

≤ C ′′(λ−d−γ)k|y|−d−γ .

It follows that

I1(y) ≤ C ′′′|y|−d−γ
∑

k:k≥− logλ |y|

(λ−d−γ)k

≤ C1|y|−d−γ(λ−(d+γ))− logλ |y|−1

= C1λ
d+γ <∞

by (2.17) and (2.20). Now we turn to (2.18). By the mean value theorem,

|ψ(x−Aky)− ψ(x)| ≤ |∇ψ(ξ)||Aky| ≤ C|Aky|
(1 + |ξ|)d+ϵ

,

where ξ = x− tAky for some 0 < t < 1. By (2.2) and Lemma 2.2, we have

|A−kx| ≤ λ−1
1 ∥A−kx∥ = λ−1

1 λ−k∥x∥ ≤ λ−1
1 λ2λ

−k|x|,

and

|Aky| ≤ λ−1
1 ∥Aky∥ = λ−1

1 λk∥y∥ ≤ λ−1
1 λkλ2|y| ≤ c−1λ−1

1 λ2λ
k|A−kx|
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if |A−kx| > c|y| . This implies that

|Aky| ≤ c−1λ−2
1 λ22|x|,

and

|ξ| ≥ |x| − |Aky| ≥ (1− c−1λ−2
1 λ22)|x| = α̃|x|

for x ∈ Rd with |A−kx| > c|y| . Thus, we have

|ψ(x−Aky)− ψ(x)| ≤ C1|Aky|
(1 + α̃|x|)d+ϵ

≤ C2|Aky|
(1 + |x|)d+ϵ

for x ∈ Rd with |A−kx| > c|y| , and thus

I2(y) ≤ C2

∑
k:λk|y|<1

|Aky|
∫
Rd

dx

(1 + |x|)d+ϵ

≤ C3

∑
k:λk|y|<1

|Aky|

≤ C4|y|
∑

k:λk|y|<1

λk (2.21)

by (2.2) and Lemma 2.2. Let us estimate
∑

k:λk|y|<1

λk :

∑
k:λk|y|<1

λk =
∑

k:k>logλ |y|

λ−k

=
∑

k=[logλ |y|]+1

λ−k

≤ (1− λ−1)−1|y|−1.

Therefore,

I2(y) ≤ C5 <∞

by (2.21). The proof is completed. 2

Proof of Theorem 1.2. We use the notations in Lemma 2.4. Take B1 = C and B2 = l2(Z). Define

Tf(x) = {ψA−k ∗ f(x)}k∈Z (2.22)

for f with (2.22) being well defined. Then

gψ(f)(x) = ∥Tf(x)∥l2(Z). (2.23)
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By the Plancherel theorem, we have∫
Rd

∥Tf(x)∥2l2(Z)dx =
∑
k∈Z

∫
Rd

|ψA−k ∗ f(x)|2dx

=

∫
Rd

(∑
k∈Z

∣∣∣ψ̂((A∗)−kξ)
∣∣∣2) |f̂(ξ)|2dξ

≤

∥∥∥∥∥∑
k∈Z

|ψ̂((A∗)−k·)|2
∥∥∥∥∥
∞

∥f̂∥2

=

∥∥∥∥∥∑
k∈Z

|ψ̂((A∗)−k·)|2
∥∥∥∥∥
∞

∥f∥2

for f ∈ L2(Rd). Also observing that
∑
k∈Z

|ψ̂((A∗)−k·)|2 ∈ L∞(Rd) by Lemma 2.3, we have that T is a bounded

operator from L2(Rd) to L2(Rd, l2(Z)). Thus, by (2.23), to prove the theorem, we only need to prove that the

kernel
K(x) = (ψA−k(x))k∈Z

satisfies Hörmander’s condition; that is,

∫
|x|>2|y|

(∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|2
) 1

2

dx

is bounded on Rd . By Remark 2.1, it suffices to prove that, for some c > 0,

∫
|x|>c|y|

(∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|2
) 1

2

dx

is bounded on Rd . Also observe that(∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|2
) 1

2

≤
∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|.

We only need to show that, for some c > 0,∫
|x|>c|y|

∑
k∈Z

|ψA−k(x− y)− ψA−k(x)|dx

is bounded on Rd . Lemma 2.5 tells us this is true. The theorem therefore follows. 2

3. Proofs of Theorems 1.3 and 1.1

Lemma 3.1 ([4, Theorem 1]) Let 1 < p, q <∞ . Then there exists constant 0 < C <∞ such that∥∥∥∥∥∥
{ ∞∑
l=1

(Mfl)
q

} 1
q

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
{ ∞∑
l=1

|fl|q
} 1

q

∥∥∥∥∥∥
p

(3.1)
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for any sequence {fl}∞l=1 of locally integrable function, where Mf is defined by

Mf(·) = sup
δ>0

1

|B(0, δ)|

∫
B(0, δ)

|f(· − y)|dy

a.e. on Rd for a measurable function f , where B(0, δ) = {x ∈ Rd : |x| < δ} .

Lemma 3.2 ([9, p.215, Theorem 2.10]) Let B = {xj : j ∈ N} be a basis for a Banach space B = (B, ∥ · ∥) .
For an arbitrary bounded sequence β = {βj}j∈N , define

Sβ(x) =
∑
j∈N

βjfj(x)xj

for x =
∑
j∈N

fj(x)xj ∈ B . Then the following statements are equivalent:

1) B is an unconditional basis for B ;

2) There exists a constant C > 0 such that ∥Sβ(x)∥ ≤ C∥x∥ for all x ∈ B and sequences β = {βj}j∈N

with |βj | ≤ 1 ;

3) There exists a constant C > 0 such that ∥Sβ(x)∥ ≤ C∥x∥ for all x ∈ B and sequences β = {βj}j∈N

with βj = ±1 ;

4) There exists a constant C > 0 such that ∥Sβ(x)∥ ≤ C∥x∥ for all x ∈ B and β = {βj}j∈N ∈ l0(N)
with βj = 1 or 0 .

Lemma 3.3 ([5, Lemma 2.4])For every 0 < p ≤ ∞ , there exists a positive constant Cp such that for every

g ∈ S ′(Rd) with supp(ĝ) ⊂ {ξ ∈ Rd : |ξ| ≤ 2j+1} and j ∈ Z ,

∑
k∈Zd

sup
x∈Qj,k

|g(x)|p
 1

p

≤ Cp2
jd
p ∥g∥p, (3.2)

where Qj,k = 2−j([0, 1)d + k) .

Lemma 3.4 Let A be a d× d isotropic expansive matrix, and γ ≥ ϵ > 0 . Assume that g and h satisfy

|g(·)|, |∇g(·)| ≤ B

(1 + | · |)d+ϵ
, (3.3)∫

Rd

h(x)dx = 0, (3.4)

|h(·)| ≤ B

(1 + | · |)2d+γ
, (3.5)

for some positive constant B . Then there exists a positive constant C such that for l ≥ 0

|g0,0 ∗ hl,0(·)| ≤
Cq−l(

1
2+

1
d )

(1 + | · |)d+ϵ
on Rd. (3.6)
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Proof Without loss of generality, we assume that both g and h are real functions. We use the norm ∥ · ∥ in

Lemma 2.2. By (2.2), we only need to prove that there exists a positive constant C such that for l ≥ 0,

|g0,0 ∗ hl,0(·)| ≤
Cq−l(

1
2+

1
d )

(1 + ∥ · ∥)d+ϵ
(3.7)

a.e. on Rd . By (3.4), we have

|g0,0 ∗ hl,0(x)| = |
∫
Rd

(g(y)− g(x))hl,0(x− y)dy|

≤ (

∫
E1

+

∫
E2

+

∫
E3

)|g(y)− g(x)||hl,0(x− y)|dy

= I1 + I2 + I3, (3.8)

where E1 = {y ∈ Rd : ∥x− y∥ ≤ 2} , E2 = {y ∈ Rd : ∥x− y∥ > 2 and ∥y∥ ≤ 1
2∥x∥} , E3 = {y ∈ Rd : ∥x− y∥ >

2 and ∥y∥ > 1
2∥x∥} .

We first deal with I1 . By (3.3) and (2.2), we have

|g(y)− g(x)| = |⟨∇g(ξ), y − x⟩| ≤ B|x− y|
(1 + |ξ|)d+ϵ

≤ C ′∥x− y∥
(1 + ∥ξ∥)d+ϵ

,

where ξ = x+ η(y − x) with 0 < η < 1. For y ∈ E1 , it leads to

1 + ∥x∥ ≤ 1 + ∥x− ξ∥+ ∥ξ∥ ≤ 1 + ∥x− y∥+ ∥ξ∥ ≤ 3(1 + ∥ξ∥),

so

I1 ≤ C ′′q
l
2

(1 + ∥x∥)d+ϵ

∫
E1

∥x− y∥
(1 + λl∥x− y∥)2d+γ

dy

by (3.5), (2.2), and Lemma 2.2. Substituting λl(x− y) = y′ in the above formula, we have

I1 ≤ C ′′q
l
2

(1 + ∥x∥)d+ϵ

∫
{y∈Rd:∥y∥≤2λl}

λ−ldλ−l∥y∥
(1 + ∥y∥)2d+γ

dy

=
C ′′q−

l
2λ−l

(1 + ∥x∥)d+ϵ

∫ 2λl

0

r

(1 + r)2d+γ
dr

∫
∥y∥=r

dσ(y)

=
C ′′q−

l
2λ−l

(1 + ∥x∥)d+ϵ

∫ 2λl

0

rd

(1 + r)2d+γ
dr

∫
∥y∥=1

dσ(y)

≤ C ′′q−
l
2λ−l

(1 + ∥x∥)d+ϵ

∫ ∞

0

1

(1 + r)d+γ
dr

∫
∥y∥=1

dσ(y)

=
C̃q−l(

1
2+

1
d )

(1 + ∥x∥)d+ϵ
. (3.9)

Next we turn to I2 . Fix x ∈ Rd and l ∈ Z . From (2.2), we have

∥Al(x− y)∥ = λl∥x− y∥ ≥ λl(1 +
1

2
∥x− y∥) ≥ λl(1 +

∥x∥
4

) ≥ C1λ
l(1 + ∥x∥) (3.10)
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for y ∈ E2 , which implies that

I2 ≤ C ′q
l
2

∫
E2

(
1

(1 + ∥y∥)d+ϵ
+

1

(1 + ∥x∥)d+ϵ

)
1

(1 + ∥Al(x− y)∥)2d+γ
dy

≤ C ′′q
l
2

∫
E2

(
1

(1 + ∥y∥)d+ϵ
+

1

(1 + ∥x∥)d+ϵ

)
λ−l(2d+γ)

(1 + ∥x∥)2d+γ
dy

≤ C ′′ λ
−l(2d+γ)q

l
2

(1 + ∥x∥)2d+γ

∫
{y∈Rd:∥y∥≤ 1

2∥x∥}

(
1

(1 + ∥y∥)d+ϵ
+

1

(1 + ∥x∥)d+ϵ

)
dy

≤ C ′′ λ
−l(2d+γ)q

l
2

(1 + ∥x∥)2d+γ

(∫ ∥x∥
2

0

1

(1 + r)d+ϵ
dr

∫
∥y∥=r

dσ(y) +
∥x∥d

(1 + ∥x∥)d+ϵ

)

≤ C ′′′ λ
−l(2d+γ)q

l
2

(1 + ∥x∥)2d+γ

(∫ ∥x∥
2

0

dr

(1 + r)1+ϵ
+ ∥x∥d

)

≤ C1λ
−l(2d+γ)q

l
2

(1 + ∥x∥)2d+γ
(1 + ∥x∥d)

≤ C ′
1q

−l( 3
2+

γ
d )

(1 + ∥x∥)d+γ

≤ C̃1q
−l( 1

2+
1
d )

(1 + ∥x∥)d+ϵ
(3.11)

by (3.3), (3.5), and the fact that γ ≥ ϵ .

Now we estimate I3 . From (3.3), (3.5), and (2.2), it follows that

I3 ≤ C ′q
l
2

∫
E3

(
1

(1 + ∥y∥)d+ϵ
+

1

(1 + ∥x∥)d+ϵ

)
1

(1 + ∥Al(x− y)∥)2d+γ
dy

≤ C ′′q
l
2

(1 + ∥x∥)d+ϵ

∫
{y∈Rd:∥x−y∥≥2}

1

(1 + λl∥x− y∥)2d+γ
dy

≤ C ′′q
l
2

(1 + ∥x∥)d+ϵ

∫ ∞

2

rd−1

(1 + λlr)2d+γ
dr

∫
∥y∥=1

dσ(y)

≤ C ′′′q
l
2

(1 + ∥x∥)d+ϵ

∫ ∞

2

rd−1

(1 + λlr)2d+γ
dr

≤ C1q
l
2λ−ld

(1 + ∥x∥)d+ϵ

∫ ∞

2λl

1

(1 + r)d+γ+1
dr

≤ C̃1q
−l( 1

2+
1
d )

(1 + ∥x∥)d+ϵ
. (3.12)

Collecting (3.8), (3.9), (3.11), and (3.12), we have (3.6). The proof is completed. 2

Observe that

|⟨ψj,k, ϕm,n⟩| = |(ϕ0,0 ∗ ψ̃j−m,0)(Am−jk − n)| if m ≤ j, (3.13)
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and

|⟨ψj,k, ϕm,n⟩| = |(ψ0,0 ∗ ϕ̃m−j,0)(k −Aj−mn)| if m > j. (3.14)

As an immediate consequence of Lemma 3.4, we have the following lemma, for which related results can be

found in [3] and [11]:

Lemma 3.5 Let A be a d × d isotropic expansive matrix, and ψ, ϕ ∈ R0(Rd) . Then there exists a positive

constant C such that for j, m ∈ Z and k, n ∈ Zd

1)

|⟨ψj,k, ϕm,n⟩| ≤
Cq(m−j)( 1

2+
1
d )

(1 + |Am−jk − n|)d+ϵ

if m ≤ j , and

2)

|⟨ψj,k, ϕm,n⟩| ≤
Cq(j−m)( 1

2+
1
d )

(1 + |k −Aj−mn|)d+ϵ

if m > j .

Lemma 3.6 Let A be a d× d isotropic expansive matrix, and ϵ > 0 . Then there exists a positive constant C

such that for all sequences {sj,k : (j, k) ∈ Z× Zd} of complex numbers and all x ∈ Λj,k with (j, k) ∈ Z× Zd ,

∑
m∈Zd

|sl,m|
(1 + |Al−jk −m|)d+ϵ

≤ CM

∑
m∈Zd

|sl,m|χΛl,m

 (x) (3.15)

if l ≤ j , and

∑
m∈Zd

|sl,m|
(1 + |Aj−lm− k|)d+ϵ

≤ Cql−jM

∑
m∈Zd

|sl,m|χΛl,m

 (x) (3.16)

if l ≥ j .

Proof By (2.2), we only need to prove that there exists a positive constant C such that x ∈ Λj,k with

(j, k) ∈ Z× Zd ,

∑
m∈Zd

|sl,m|
(1 + ∥Al−jk −m∥)d+ϵ

≤ CM

∑
m∈Zd

|sl,m|χΛl,m

 (x) if l ≤ j, (3.17)

and

∑
m∈Zd

|sl,m|
(1 + ∥Aj−lm− k∥)d+ϵ

≤ Cql−jM

∑
m∈Zd

|sl,m|χΛl,m

 (x) if l ≥ j. (3.18)
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Next we prove (3.17) and (3.18). We first consider (3.17). Fix x ∈ Λj,k . For l ≤ j , write

E0 = {m ∈ Zd : ∥Al−jk −m∥ ≤ 1} and En = {m ∈ Zd : λn−1 < ∥Al−jk −m∥ ≤ λn}

with n ∈ N . Then we have

∑
m∈Zd

|sl,m|
(1 + ∥Al−jk −m∥)d+ϵ

=

∞∑
n=0

∑
m∈En

|sl,m|
(1 + ∥Al−jk −m∥)d+ϵ

≤ C
∞∑
n=0

λ−(n−1)(d+ϵ)
∑
m∈En

|sl,m|. (3.19)

For m ∈ En , y ∈ Λl,m , we have y − x ∈ A−l(m − Al−jk + Td − Al−jTd). Also observe that l ≤ j . It follows

that

∥y − x∥ ≤ λ−l(λn + C1) ≤ C2λ
n−l

for some constant C2 independent of y and x , so

∑
m∈En

|sl,m| = ql
∫
{y∈Rd:∥y−x∥≤C2λn−l}

( ∑
m∈En

|sl,m|χΛl,m
(y)

)
dy

≤ ql
∫
{y∈Rd:|y−x|≤C3λn−l}

( ∑
m∈En

|sl,m|χΛl,m
(y)

)
dy

≤ C ′λld(λn−l)dM

( ∑
m∈En

|sl,m|χΛl,m

)
(x)

= C ′λndM

( ∑
m∈En

|sl,m|χΛl,m

)
(x) (3.20)

by (2.2). Combining (3.19) with (3.20) leads to

∑
m∈Zd

|sl,m|
(1 + ∥Al−jk −m∥)d+ϵ

≤ C ′′
∞∑
n=0

λ−nϵM

( ∑
m∈En

|sl,m|χΛl,m

)
(x)

≤ C ′′′M

∑
m∈Zd

|sl,m|χΛl,m

 (x).

For l ≥ j , let F0 = {m ∈ Zd : ∥Aj−lm− k∥ ≤ 1} and Fn = {m ∈ Zd : λn−1 < ∥Aj−lm− k∥ ≤ λn|} with

n ∈ N . Similarly, we have

∑
m∈Zd

|sl,m|
(1 + ∥Aj−lm− k∥)d+ϵ

≤ C

∞∑
n=0

λ−(n−1)(d+ϵ)
∑
m∈Fn

|sl,m|, (3.21)

and Λl,m ⊆ {y ∈ Rd : ∥y− x∥ ≤ Cλn−j} for some constant C related with λ1 , λ2 in (2.2). Then we can prove

(??) by the same procedure as in the proof of (3.17). This completes the proof. 2
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Lemma 3.7 Let A be a d×d isotropic expansive matrix, Ψ and Φ two finite subsets of R0(Rd) with the same

cardinality, and X(Φ) an orthonormal basis for L2(Rd) . Then for 1 < p <∞ , there exists a positive constant

Cp such that

∥WΨf∥p ≤ Cp∥WΦf∥p (3.22)

for f ∈ Lp(Rd) .

Proof Since X(Φ) is an othonormal basis for L2(Rd), we have

ψj,k(·) =
∑
ϕ∈Φ

∑
(m,n)∈Z×Zd

⟨ψj,k, ϕm,n⟩ϕm,n(·)

for (ψ, j, k) ∈ Ψ× Z× Zd , so

WΨf(·) =


∑
ψ∈Ψ

∑
(j,k)∈Z×Zd

∣∣∣∣∣∣
∑
ϕ∈Φ

∑
(m,n)∈Z×Zd

⟨ψj,k, ϕm,n⟩⟨f, ϕm,n⟩

∣∣∣∣∣∣
2

qjχΛj,k
(·)


1
2

. (3.23)

Fix (ψ, j, k) ∈ Ψ× Z× Zd . Write

A1(ψ, j, k) =
∑
ϕ∈Φ

∑
m≤j

∑
n∈Zd

⟨f, ϕm,n⟩⟨ψj,k, ϕm,n⟩,

and

A2(ψ, j, k) =
∑
ϕ∈Φ

∑
m>j

∑
n∈Zd

⟨f, ϕm,n⟩⟨ψj,k, ϕm,n⟩.

Then

WΨf(·) ≤ ∥A1(ψ, j, k)q
j
2χΛj,k

(·)∥l2(Ψ×Z×Zd) + ∥A2(ψ, j, k)q
j
2χΛj,k

(·)∥l2(Ψ×Z×Zd)

= A1(·) +A2(·), (3.24)

and thus

∥WΨf(·)∥p ≤ ∥A1(·)∥p + ∥A2(·)∥p. (3.25)

For x ∈ Λj,k , (j, k) ∈ Z× Zd , we have

|A1(ψ, j, k)| ≤
∑
ϕ∈Φ

∑
m≤j

∑
n∈Zd

|⟨f, ϕm,n⟩||⟨ψj,k, ϕm,n⟩|

≤ C
∑
m≤j

q(m−j)( 1
2+

1
d )
∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|

(1 + |Am−jk − n|)d+ϵ

≤ C ′
∑
m≤j

q(m−j)( 1
2+

1
d )M

∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|χΛm,n

 (x)
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by Lemmas 3.5 and 3.6. This implies that

∥A1(·)∥p ≤ C ′′

∥∥∥∥∥∥∥∥

∑
j∈Z

∑
m≤j

q(m−j) 1
dM(

∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χ

Λm,n
)(·)

2


1
2

∥∥∥∥∥∥∥∥
p

= C ′′
∥∥∥∥{am} ∗ {bm(·)}∥l2(Z)

∥∥∥
p
,

where

aj =

 q−
j
d j ≥ 0,

0 j < 0,

and bm(x) = M

∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χΛm,n

 (x)

for m ∈ Z and a.e. x ∈ Rd . It follows that

∥A1(·)∥p ≤ C ′ ∥∥{am}∥l1∥{bm(·)}∥l2∥p

= C ′

∥∥∥∥∥∥∥∥
∑
j≥0

q−
j
d



∑
m∈Z

M(
∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χΛm,n

)(·)

2


1
2

∥∥∥∥∥∥∥∥
p

= C ′′

∥∥∥∥∥∥∥∥

∑
m∈Z

M(
∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χΛm,n

)(·)

2


1
2

∥∥∥∥∥∥∥∥
p

.

Applying Lemma 3.1 with q = 2, we have

∥A1(·)∥p ≤ C

∥∥∥∥∥∥∥∥

∑
m∈Z

∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χΛm,n

(·)

2


1
2

∥∥∥∥∥∥∥∥
p

= C

∥∥∥∥∥∥∥∥

∑
m∈Z

∑
n∈Zd

∑
ϕ∈Φ

|⟨f, ϕm,n⟩|q
m
2 χΛm,n

(·)

2


1
2

∥∥∥∥∥∥∥∥
p

≤ Ccard(Φ)
1
2 ∥WΦf∥p, (3.26)

where we use the fact that {Λm,n : n ∈ Zd} is a partition of Rd for each m ∈ Z , and card(Φ) denotes the

cardinality of Φ. Similarly, we can also prove that there exists a positive constant C̃ such that

∥A2(·)∥p ≤ C̃∥WΦf∥p

for f ∈ Lp(Rd). The lemma therefore follows. 2
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Lemma 3.8 Let A be a d × d isotropic expansive matrix, 1 < p < ∞ , λ as in Lemma 2.2, and Ψ a finite

function set of R0(Rd) whose elements are all band-limited. Then there exists a positive constant C such that

WΨf(·) ≤ CTΨ̃,λf(·)

for f ∈ Lp(Rd) , where Ψ̃ = {ψ̃ : ψ ∈ Ψ} .

Proof Observe that ψ̃A−j ∗ f is band-limited for f ∈ Lp(Rd), j ∈ Z due to the fact of ψ ∈ Ψ being band-

limited, and thus it is differentiable by the Paley–Wiener theorem. Therefore, considering its point-wise values

makes sense. Fix f ∈ Lp(Rd). It is easy to check that

|⟨f, ψj,k⟩| = q−
j
2 |(ψ̃A−j ∗ f)(A−jk)|

≤ q−
j
2 sup
y∈Λj,k

|(ψ̃A−j ∗ f)(y)|

for (ψ, j, k) ∈ Ψ × Z × Zd . For an arbitrarily fixed x0 ∈ Rd and j0 ∈ Z , there exists a unique k0 ∈ Zd such

that x0 ∈ Λj0,k0 . It follows that∑
k∈Zd

|⟨f, ψj0,k⟩|2qj0χΛj0,k
(x0) ≤ sup

y∈Λj0,k0

|ψ̃A−j0 ∗ f(y)|2

= sup
z∈−Λj0,k0

+x0

|(ψ̃A−j0 ∗ f)(x0 − z)|2

(1 + ∥Aj0z∥)2λd
(1 + ∥Aj0z∥)2λd

≤ sup
z∈Rd

|(ψ̃A−j0 ∗ f)(x0 − z)|2

(1 + ∥Aj0z∥)2λd
sup

z∈−Λj0,k0
+x0

(1 + λj0∥z∥)2λd.

Observe that z ∈ −Λj0,k0 + x0 ⊆ A−j0([−1, 1)d). It follows that ∥z∥ ≤ Cλ−j0 , and thus

∑
k∈Zd

|⟨f, ψj0,k⟩|2qj0χΛj0,k
(x0) ≤ C ′ sup

z∈Rd

|ψ̃A−j0 ∗ f(x0 − z)|2

(1 + |Aj0z|)2λd

by (2.2). This leads to WΨf(x0) ≤ CTΨ̃,λf(x0). This finishes the proof by the arbitrariness of x0 . 2

Given β > 0 and a function f defined on Rd , define

f∗β(·) = sup
y∈Rd

|f(· − y)|
(1 + |y|)βd

(3.27)

a.e. on Rd .

Lemma 3.9 Let β > 0 and g ∈ L1(Rd) with ĝ being compactly supported. Then, for every α ∈ Zd with

αi ≥ 0 , 1 ≤ i ≤ d , there exists a positive constant Cα such that

(Dαg)
∗
β(·) ≤ Cαg

∗
β(·)

on Rd .
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Proof Take γ ∈ S(Rd) such that γ̂(·) = 1 on supp(ĝ). This can be done since supp(ĝ) is compact. Then

ĝ = ĝγ̂ , and thus g = γ ∗ g . It follows that Dαg = Dαγ ∗ g . Next we estimate Dαg(x− y) with x, y ∈ Rd .

|Dαg(x− y)| =

∣∣∣∣∫
Rd

Dαγ(x− y − z)g(z)dz

∣∣∣∣
=

∣∣∣∣∫
Rd

Dαγ(t− y)g(x− t)dt

∣∣∣∣
≤

∫
Rd

|Dαγ(t− y)| (1 + |t|)βd |g(x− t)|
(1 + |t|)βd

dt

≤ (1 + |y|)βd
∫
Rd

|Dαγ(t− y)| (1 + |t− y|)βd |g(x− t)|
(1 + |t|)βd

dt

≤ Cα(1 + |y|)βdg∗β(x), (3.28)

where Cα =
∫
Rd |Dαγ(t)|(1 + |t|)βddt . It follows that

(Dαg)
∗
β(·) ≤ Cαg

∗
β(·)

by the arbitrariness of x and y . 2

Applying Lemma 3.3 and by the same procedure as in [9, p.271, Corollary 3.9], we have:

Lemma 3.10 Let β > 0 , and let g a band-limited function with g ∈ Lp(Rd) , 0 < p ≤ ∞ . Then we have

g∗β(·) <∞ on Rd.

Lemma 3.11 For β > 0 , there exists a positive constant Cβ such that

g∗β(·) ≤ Cβ

(
M(|g|

1
β )(·)

)β
on Rd for an arbitrary band-limited function g satisfying g∗β(·) <∞ on Rd .

Proof Without loss of generality, we assume that g is a real function. Since g is band-limited, it is

differentiable by the Paley–Wiener theorem, so considering its point-wise values makes sense. Fix x, y ∈ Rd ,
0 < δ < 1. Choose z ∈ Rd such that z ∈ B(x − y, δ) = {x : |z − x + y| ≤ δ} . Then we have

|g(x− y)− g(z)| = |⟨∇g(ξ), z − x+ y⟩| with ξ = (x− y) + t(z − x+ y), 0 < t < 1. It follows that

|g(x− y)| ≤ |g(z)|+ |z − x+ y||∇g(ξ)| ≤ |g(z)|+ Cdδ sup
{ξ:ξ∈B(x−y, δ),|α|=1}

|Dαg(ξ)|,

and thus

|g(x− y)| 1
λ ≤ C

(
|g(z)| 1

λ + δ
1
λ sup

{ξ:ξ∈B(x−y, δ),|α|=1}
|Dαg(ξ)|

1
λ

)
(3.29)

for some constant C related to λ and d . Integrating the above formula on B(x− y, δ), we have

∫
B(x−y, δ)

|g(x− y)| 1
λ dz ≤ C

(∫
B(x−y, δ)

|g(z)| 1
λ dz + δ

1
λ |B(x− y, δ)| sup

{ξ:ξ∈B(x−y, δ),|α|=1}
|Dαg(ξ)|

1
λ

)
,
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which leads to

|g(x− y)| 1
λ ≤ C ′δ−d

(∫
B(x−y, δ)

|g(z)| 1
λ dz + δ

1
λ+d sup

{ξ:ξ∈B(x−y, δ),|α|=1}
|Dαg(ξ)|

1
λ

)
. (3.30)

Also observe that B(x− y, δ) ⊆ B(x, |y|+ δ). Then we have∫
B(x−y, δ)

|g(z)| 1
λ dz ≤

∫
B(x, |y|+δ)

|g(z)| 1
λ dz

≤ C(|y|+ δ)dM(|g| 1
λ )(x) (3.31)

and

sup
{ξ:ξ∈B(x−y, δ),|α|=1}

|Dαg(ξ)|
1
λ ≤ sup

{ξ:ξ∈B(x, |y|+δ),|α|=1}
|Dαg(ξ)|

1
λ

= sup
{ξ:|ξ|≤|y|+δ,|α|=1}

|Dαg(x− ξ)| 1
λ

= sup
{ξ:|ξ|≤|y|+δ,|α|=1}

(
|Dαg(x− ξ)|
(1 + |ξ|)λd

) 1
λ

(1 + |ξ|)d

≤ ((Dαg)
∗
λ(x))

1
λ (1 + |y|+ δ)d (3.32)

with |α| = 1. Combining (3.30) and (3.31) with (3.32) leads to

|g(x− y)| 1
λ ≤ C ′

{
(|y|+ δ)d

δd
M(|g| 1

λ )(x) + δ
1
λ ((Dαg)

∗
λ)(x))

1
λ (1 + |y|+ δ)d

}
≤ C ′

{
1

δd
M(|g| 1

λ )(x) + δ
1
λ ((Dαg)

∗
λ)(x))

1
λ

}
(1 + |y|+ δ)d

≤ C ′
{

1

δd
M(|g| 1

λ )(x) + δ
1
λ ((Dαg)

∗
λ)(x))

1
λ

}
2d(1 + |y|)d

by 0 < δ < 1. This implies that

|g(x− y)| ≤ C ′′
{

1

δd
M(|g| 1

λ )(x) + δ
1
λ ((Dαg)

∗
λ)(x))

1
λ

}λ
2λd(1 + |y|)λd

≤ C ′′′
{

1

δλd

(
M(|g| 1

λ )(x)
)λ

+ δ(Dαg)
∗
λ)(x)

}
(1 + |y|)λd, (3.33)

and thus

|g(x− y)|
(1 + |y|)λd

≤ C ′′′
{

1

δλd

(
M(|g| 1

λ )(x)
)λ

+ δ(Dαg)
∗
λ(x)

}
.

Therefore, we have

g∗λ(x) ≤ C ′′′
{

1

δλd

(
M(|g| 1

λ )(x)
)λ

+ Cαδg
∗
λ(x)

}
(3.34)
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by Lemma 3.9. Taking δ small enough such that C ′′′Cαδ <
1
2 in the above formula, we get

g∗λ(·) ≤ C
(
M(|g| 1

λ )(·)
)λ

a.e. on Rd for some constant due to the fact g∗λ <∞ . This completes the proof. 2

Lemma 3.12 Let A be a d× d isotropic expansive matrix, 0 < p ≤ ∞ , and ϕ a band-limited function on Rd .
Suppose f ∈ S ′(Rd) , and ϕA−j ∗ f ∈ Lp(Rd) . Then there exists a positive constant C such that

sup
y∈Rd

|(ϕA−j ∗ f)(· − y)|
(1 + |Ajy|)λd

≤ C
{
M(|ϕA−j ∗ f | 1

λ )(·)
}λ

(3.35)

on Rd for j ∈ Z , where λ is as in Lemma 2.2.

Proof For j ∈ Z , write g(·) = (ϕA−j ∗ f)(A−j ·) a.e. on Rd . Then g is band-limited and g ∈ Lp(Rd).
Arbitrarily fix x ∈ Rd . Observing that

sup
y∈Rd

|(ϕA−j ∗ f)(x− y)|
(1 + |Ajy|)λd

= sup
y∈Rd

|(ϕA−j ∗ f)(x−A−jy)|
(1 + |y|)λd

= g∗λ(A
jx), (3.36)

we have

sup
y∈Rd

|(ϕA−j ∗ f)(x− y)|
(1 + |Ajy|)λd

≤ C
{
M(|g| 1

λ )(Ajx)
}λ

(3.37)

by Lemmas 3.10 and 3.11. We only need to prove

M(|g| 1
λ )(Ajx) ≤ CM(|ϕA−j ∗ f | 1

λ )(x) (3.38)

to finish the proof. Next we prove (3.38). For any y satisfying |y −Ajx| < δ , we have

|A−jy − x| = |A−j(y −Ajx)|

≤ λ−1
1 ∥A−j(y −Ajx)∥

= λ−1
1 λ−j∥y −Ajx∥

≤ λ2λ
−1
1 λ−j |y −Ajx|

< λ2λ
−1
1 λ−jδ

by (2.2) and Lemma 2.2. It follows that A−j (B(Ajx, δ)
)
⊂ B(x, λ2λ

−1
1 λ−jδ), and thus

M(|g| 1
λ )(Ajx) = sup

δ>0

1

|B(0, δ)|

∫
B(Ajx, δ)

|(ϕA−j ∗ f)(A−jy)| 1
λ dy

≤ 1

q−j |B(0, δ)|

∫
B(x, λ2λ

−1
1 λ−jδ)

|(ϕA−j ∗ f)(y)| 1
λ dy

≤ CM
(
|ϕA−j ∗ f | 1

λ

)
(x). (3.39)

This completes the proof. 2
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Lemma 3.13 Let 1 < p ≤ ∞ , let A be a d × d isotropic expansive matrix, and let Ψ be a finite subset of

R0(Rd) . Suppose that X(Ψ) is an orthonormal basis for L2(Rd) . Then there exists a positive constant C such

that
∥TΨ,λf∥p ≤ C∥f∥p

for f ∈ Lp(Rd) , where λ is as in Lemma 2.2.

Proof Observing that Ψ ⊂ L1(Rd), we have ψA−j ∗ f ∈ Lp(Rd) for f ∈ Lp(Rd), j ∈ Z and ψ ∈ Ψ . Thus,

TΨ,λf is well defined for f ∈ Lp(Rd), and

∥TΨ,λf(·)∥p =

∥∥∥∥∥∥∥
∑
ψ∈Ψ

∑
j∈Z

sup
y∈Rd

|(ψA−j ∗ f)(· − y)|2

(1 + |Ajy|)2λd

 1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥
∑
ψ∈Ψ

∑
j∈Z

[M(|ψA−j ∗ f | 1
λ )(·)]2λ

 1
2

∥∥∥∥∥∥∥
p

= C

∥∥∥∥∥∥∥
∑
ψ∈Ψ

∑
j∈Z

[M(|ψA−j ∗ f | 1
λ )(·)]2λ

 1
2λ

∥∥∥∥∥∥∥
λ

pλ

by Lemma 3.12. Then applying Lemma 3.1 and Theorem 1.2, we obtain

∥TΨ,λf∥p ≤ C ′

∥∥∥∥∥∥∥
∑
ψ∈Ψ

∑
j∈Z

|ψA−j ∗ f |2


1
2λ

∥∥∥∥∥∥∥
λ

pλ

≤ C ′′

∥∥∥∥∥∥
∑
ψ∈Ψ

gψf

∥∥∥∥∥∥
p

≤ C ′′′∥f∥p.

This completes the proof. 2

Combining Lemmas 3.8 and 3.13, we have:

Lemma 3.14 Let 1 < p < ∞ , let A be a d × d isotropic expansive matrix, and let Ψ be a finite subset of

R0(Rd) whose every element is band-limited. Suppose that X(Ψ) is an orthonormal basis for L2(Rd) . Then

there exist constants 0 < c ≤ C <∞ such that

c∥f∥p ≤ ∥WΨf∥p ≤ C∥f∥p (3.40)

for f ∈ Lp(Rd) .

Proof Since Ψ ⊂ R0(Rd) implies Ψ̃ ⊂ R0(Rd), the right-hand side inequality in (3.40) is an immediate

consequence of Lemmas 3.8 and 3.13. Next we prove the left-hand side inequality. Observe that ∥WΨf∥2 = ∥f∥2
for f ∈ L2(Rd). Write

ΩΨf(x) = {⟨f, ψj,k⟩q
j
2χΛj,k

(x) : (ψ, j, k) ∈ Ψ× Z× Zd}
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for a.e. x ∈ Rd and f ∈ Lp(Rd). Then by the polarization identity and a density argument, we have∫
Rd

f(x)g(x)dx =

∫
Rd

⟨ΩΨf(x), ΩΨg(x)⟩l2(Ψ×Z×Zd)dx

for f ∈ Lp(Rd) and g ∈ Lq(Rd) with 1
p +

1
q = 1. This implies that

∥f∥p = sup

{∣∣∣∣∫
Rd

⟨ΩΨf(x), ΩΨg(x)⟩l2(Ψ×Z×Zd)dx

∣∣∣∣ : ∥g∥q ≤ 1

}
≤ sup

{∫
Rd

WΨf(x)WΨg(x)dx : ∥g∥q ≤ 1

}
≤ sup {∥WΨf∥p∥WΨg∥q : ∥g∥q ≤ 1}

≤ C∥WΨf∥p

by applying Lemma 3.14 to g . This completes the proof. 2

Proof of Theorem 1.3 Choose a finite subset Φ of R0(Rd) with the same cardinality to Ψ such that the

elements of Φ are all band-limited, and X(Φ) is an orthonormal basis for L2(Rd). Then there exist positive

constants C1 and C2 such that

C1∥WΦf∥p ≤ ∥WΨf∥p ≤ C2∥WΦf∥p

for f ∈ Lp(Rd) by Lemma 3.7. It leads to the theorem by Lemma 3.14.

Proof of Theorem 1.1 We first show that X(Ψ) is a basis for Lp(Rd). Arbitrarily fix f ∈ Lp(Rd). Define

SN,Mf(·) =
∑
ψ∈Ψ

∑
|j|≤N,|k|≤M

⟨f, ψj,k⟩ψj,k(·)

for N, M ∈ N . Observe that

⟨SN,Mf, ψj0,k0⟩ =

 ⟨f, ψj0,k0⟩ if |j0| ≤ N, |k0| ≤M ,

0 otherwise,

for each (ψ, j0, k0) ∈ Ψ× Z× Zd . It follows that

WΨSN,Mf(·) =

∑
ψ∈Ψ

∑
|j|≤N,|k|≤M

|⟨f, ψj,k⟩|2qjχΛj,k
(·)


1
2

, (3.41)

and thus ∥WΨf −WΨSN,Mf∥p → 0 as N,M → ∞ by the Lebesgue dominated convergence theorem and the

fact that WΨf ∈ Lp(Rd), which is derived from Theorem 1.3. Also, we have

∥f − SN,Mf∥p ≤ C∥WΨf −WΨSN,M (f))∥p

by Theorem 1.3. Therefore, lim
N,M→∞

∥f − SN,M (f)∥p = 0, i.e.

f =
∑
ψ∈Ψ

∑
(j,k)∈Z×Zd

⟨f, ψj,k⟩ψj,k (3.42)
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in Lp(Rd). Now suppose f has another expression:

f =
∑
ψ∈Ψ

∑
(j,k)∈Z×Zd

cψ,j,kψj,k

in Lp(Rd). Also observing that ψ ∈ Lq(Rd) with 1
p + 1

q = 1 for ψ ∈ Ψ, we have ⟨f, ψj,k⟩ = cψ,j,k for

(ψ, j, k) ∈ Ψ × Z × Zd ; that is, the expression (3.42) is unique for every f ∈ Lp(Rd). Therefore, X(Ψ) is a

basis for Lp(Rd).
Next we prove that the basis X(Ψ) is an unconditional one. By Lemma 3.2, we only need to prove the

existence of a constant C such that

∥Sβf∥p ≤ C∥f∥p (3.43)

for f ∈ Lp(Rd) and β ∈ l0(Ψ× Z× Zd) satisfying βψ,j,k = 1 on its support, where

Sβf =
∑
ψ∈Ψ

∑
(j,k)∈Z×Zd

βψ,j,k⟨f, ψj,k⟩ψj,k.

It is easy to check that

0 ≤ WΨSβf =

∑
ψ∈Ψ

∑
(j,k)∈Z×Zd

βψ,j,k|⟨f, ψj,k⟩|2qjχΛj,k

 1
2

≤ WΨf.

Thus,

∥Sβf∥p ≤ c−1∥WΨSβf∥p ≤ c−1∥WΨf∥p ≤ c−1C∥f∥p

by Theorem 1.3; that is, (3.43) holds. The proof is completed.
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