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Abstract: In this paper, a new operational matrix method based on the Taylor polynomials is presented to solve

generalized pantograph type delay differential equations. The method is based on operational matrices of integration

and product for Taylor polynomials. These matrices are obtained by using the best approximation of function by the

Taylor polynomials. The advantage of the method is that the method does not require collocation points. By using the

proposed method, the generalized pantograph equation problem is reduced to a system of linear algebraic equations. The

solving of this system gives the coefficients of our solution. Numerical examples are given to demonstrate the accuracy of

the technique and the numerical results show that the error of the present method is superior to that of other methods.

The residual correction technique is used to improve the accuracy of the approximate solution and estimation of absolute

error. The estimation aspect of the residual method is useful when the exact solution of the considered equation is

unknown and this feature of the method is shown in numerical examples.

Key words: Pantograph equation, delay dif ferential equations, Taylor operation method, inner product, error estima-

tion, residual correction.

1. Introduction

Delay differential equations describe the models of phenomenons with delay effects such as stress-strain states

of materials, population dynamics, and so on [9].

The studying of numerical aspects of functional equations constitutes a large and very important branch

of modern mathematics. Developing computer technologies give the opportunity to consider various functional

equations, obtain numerical results, and visualize graphics of approximate solutions. In recent years, many

techniques have been applied to a large class of problems. In particular, generalized pantograph equations are

numerically solved by using the Adomian decomposition method [7], the Taylor method is utilized in [14], and

the Bessel matrix method based on collocation points is applied in [19]. Hermite polynomials have been used

to find the approximate solutions of pantograph equations [16]. In [8], Keskin et al. applied the differential

transform method to get the Taylor expansion of exact solutions. Additionally, the approximate solutions

of generalized pantograph equations were obtained by using the homotopy method and variational iteration

method in [12, 18], respectively. Brunner et al. [4] used the Galerkin methods for solutions of delayed differential

equations of pantograph type. In [1, 13, 15, 20], the collocation methods were developed for functional equations

with delays.

Operational matrices of integration, derivation, and product for Bernstein, Jacobi, and Chebyshev
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polynomials were presented in [2, 6, 10, 17]. Our aim is to derive operational matrices of integration and product

for Taylor polynomials and utilize them for solving pantograph type differential equations. To determine these

matrices we use the best approximation by Taylor polynomials and our product matrix is defined, unlike in the

above papers.

In this paper, we propose a method based on operational matrices for Taylor polynomials to numerically

solve the generalized pantograph equations

u(n) (x) = f (x)u (x) +
n−1∑
i=0

hi (x)u
(i) (αix+ βi) + g (x) (x ∈ [0, 1]) , (1)

with initial conditions

u(i) (0) = λi (i = 0, 1, ..., n− 1) . (2)

Here, αi, βi are positive constants and hi (t) and g (x) are continuous functions on [0, 1] .

This paper is organized as follows. In Section 2.1, the operational matrices of Taylor polynomials are

constructed. In Section 2.2, we obtain the operational matrix of integration for Taylor polynomials. We form

the operational matrix of production based on the Taylor polynomials in Section 2.3. In Section 3, a numerical

scheme is presented for the solution of generalized pantograph type delay differential equations by using relations

in Section 2. In Section 4, the residual error estimation and correction method are discussed. In Section 5,

the proposed method is applied to examples, and comparisons are made with the existing numerical solutions

reported in other published works in the literature. Finally, conclusions are given in Section 6.

2. Operational matrices based on Taylor polynomials

In this section, we derive operational matrices of the Taylor polynomials and operational matrices of integration

and product by using the best approximation by Taylor polynomials.

2.1. Operational matrix of Taylor polynomials

In this section, we construct the operational matrices of Taylor polynomials. Let H = L2 [0, 1] and suppose

that any given f ∈ H is to be approximated by y ∈ Y , where Y = Span{1, x, x2, ..., xN} . Since Y is a finite

dimensional vector space, f has the unique best approximation out of y ∈ Y . Now, any element y0 ∈ Y is

uniquely determined by coefficients A = [a0, a1, ..., aN ] such that

y0 =
N∑
i=0

aix
i = AX (x) ,

where X (x) = [1 x x2... xN ]T . Let y0 be the best approximation of f ; that is, ∥f − y0∥2 ≤ ∥f − y∥2 for all

y ∈ Y, where ∥f∥22 = ⟨f, f⟩. Then A can be obtained by

A⟨X,X⟩ = ⟨f,XT ⟩,

where

⟨f,X⟩ =
1∫
0

f (x)X (x)
T
dx = [⟨f, 1⟩, ⟨f, x⟩, ..., ⟨f, xN ⟩]
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and ⟨X,X⟩ is an (N + 1)× (N + 1) matrix. Let

Q = ⟨X,X⟩ =
1∫
0

X (x)X (x)
T
dx,

then

A =

 1∫
0

f (x)X (x)
T
dx

Q−1. (3)

Now let us determine elements of matrix Q :

Q = [Qi,j ] =

 1∫
0

xi−1xj−1dx



=


1 1

2
1
3 · · · 1

N+1
1
2

1
3

1
4 · · · 1

N+2
...

...
...

...
...

1
N+1

1
N+2

1
N+3 · · · 1

2N+1


where i, j = 1, ..., N + 1, which is well known as the Hilbert matrix.

2.2. Operational matrix of integration for Taylor polynomials

In this subsection, we obtain the operational matrix of integration for Taylor polynomials. Suppose that P is

an (N + 1)× (N + 1) operational matrix of integration; then
x∫
0

X (t) dt ≃ PX (x) where 0 ≤ x ≤ 1.

Integrating components of X (t) , we have following product of matrices:

x∫
0

X (t) dt = ΛX1 (x) =


1 0 0 · · · 0
0 1

2 0 · · · 0
...

...
...

...
0 0 0 · · · 1

N+1




x
x2

...
xN+1

 .

Components of X1 (x) can be expressed in terms of the basis set X (x). We can write X (x) = IX (x),

where I is an (N + 1) × (N + 1) identity matrix. Then xi−1 = IiX (x) (i = 1, 2, ..., N + 1), where Ii is the

ith row of I. For f (x) = xN+1, by (2), we have xN+1 ≃ AN+1X (x) . Now, substituting the expressions for xi

(i = 1, 2, ..., N + 1) into X1 (x) , we have
x∫
0

X (t) dt ≃ ΛLX (x) , where L =


I2
I3
...

IN+1

AN+1

 is an (N + 1)×(N + 1)

matrix. Finally, we get the operational matrix of integration in the following form:

P = ΛL. (4)
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2.3. Operational matrix of product for Taylor polynomials

In this subsection, we get the operational matrix of product, which is very useful when the considered functional

equation has variable coefficients. Letting α (x) ∈ L2 [0, 1] be any given function, then C is an (N + 1)×(N + 1)

operational matrix of product and the relation

α (x)X (x) ≃ CX (x)

holds.

Now we want to approximate elements of product α (x)X (x) by the scheme given at the beginning this

section.

By (2) , xi−1α (x) ≃ EiX (x) (i = 1, 2, ..., N + 1), and then

α (x)X (x) =
[
α (x) xα (x) ... xNα (x)

]T
=


E1

E2

...
EN+1

X (x) .

Therefore, we have

C =


E1

E2

...
EN+1

 . (5)

In the next section, we utilize operational matrices for solving generalized pantograph type DDEs.

3. Solution method

In this section, the present method takes advantage of operational matrices. Let equation (1) have a unique

solution that can be expressed by the power series expansion in terms of the Taylor polynomials

u (x) =
∞∑
k=0

ckx
k.

Our aim is to find an approximate solution of equation (1) expressed in the Taylor polynomial form. Let

us approximate the derivative as

u(n) (x) ≃ u
(n)
N (x) = AX (x) , (6)

and then by using the operational matrix of integration P and initial conditions λk we have

u (x) ≃ uN (x) = APnX (x) +
n−1∑
k=0

λkx
k

k!
, (7)

where A = [a0 a1 ... aN ] is a matrix of unknown coefficients. Unknown functions with delays are also expressed

in the following form:

u(i) (αix+ βi) ≃ u
(i)
N (αix+ βi) = APn−iQiX(x) +

n−1∑
k=0

λk (αix+ βi)
k

k!
,
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so that

Qi =


1 0 0 · · · 0
βi αi 0 · · · 0
β2
i 2αiβi α2

i · · · 0
...

...
...

...
...

CN
N βN

i CN−1
N βN−1

i αi CN−2
N βN−2

i α2
i · · · C0

NαN
i

 ,

where Ck
N (k = 0, ..., N) are binomial coefficients. The given functions hi (x) in equation (1) are approximated

according to Section 2 such as hi (x) ≃ HiX (x). Substituting the obtained expressions into equation (1), we

get:

AX (x) = f (x)

[
APnX (x) +

n−1∑
k=0

λkx
k

k!

]
+

n−1∑
i=0

hi (x)

[
APn−iQiX(x) +

n−1∑
k=0

λk (αix+ βi)
k

k!

]
+ g (x)

or

AX (x) = APnf (x)X (x) +

n−1∑
i=0

APn−iQihi (x)X(x)

+
n−1∑
i=0

n−1∑
k=0

hi (x)
λk (αix+ βi)

k

k!
+

n−1∑
k=0

f (x)
λkx

k

k!
+ g (x) . (1)

Now, using the product matrix for f (x)X (x) = CX (x) and hi (x)X(x) = CiX (x) and then the approximate

function f1 (x) =
n−1∑
i=0

n−1∑
k=0

hi (x)
λk(αix+βi)

k

k! +
n−1∑
k=0

f (x) λkx
k

k! + g (x) = F1X (x) and substituting into (8), we get

AX (x) = APnCX (x) +
n−1∑
i=0

APn−iQiCiX (x) + F1X (x) .

Removing X (x) from the last equation, we can find unknown coefficients as

A = F1

(
I−PnC−

n−1∑
i=0

Pn−iQiCi

)
,

and using (7) we obtain the approximate solution.

4. Error estimation and residual correction

This section is devoted to estimation of error function eN (x) = u (x) − uN (x) and employing the residual

correction function for increased accuracy of the approximate solution of equation (1) . The residual correction

method was used in [5, 11, 21]. Consider the residual correction function

R (x) = u(n) (x)− f (x)u (x)−
n−1∑
i=0

hi (x)u
(i) (αix+ βi)− g (x) = 0 (9)
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of equation (1) . In the last equation, replacing u (x) by approximate solution uN (x), we obtain

RN (x) = u
(n)
N (x)− f (x)uN (x)−

n−1∑
i=0

hi (x)u
(i)
N (αix+ βi)− g (x) . (10)

Now, subtracting (10) from (9), we have the following equation:

e
(n)
N (x) = f (x) eN (x) +

n−1∑
i=0

hi (x) e
(i)
N (αix+ βi)−RN (x) , (11)

with initial condition e
(i)
N (0) = u(i) (0)− u

(i)
N (0) (i = 0, ..., n− 1). That is a generalized pantograph equation,

too. Then, applying the present method for equation (11), we get the approximate solution eN,M (x) for some

M. Finally, we obtain the corrected solution as

uNM (x) = uN (x) + eN,M (x) . (12)

Corrected actual error EN,M (x) is defined by EN,M (x) = u(x)− uN,M (x).

5. Numerical examples

In this section, we apply the present method and residual correction technique for some pantograph type delay

differential equations and numerical results obtained by the proposed method compared with the data of other

methods.

Example 1 Let us consider the following problem [6]:

u′′′ (x) = −u (x)− u (x− 0.3) + exp (−x+ 0.3) (13)

with initial conditions u′′ (0) = 1, u′ (0) = −1, u (0) = 1.

The exact solution of the problem is u (x) = exp (−x) . According to the present method, let us

approximate the third derivative of the unknown function as u′′′
4 (x) = AX (x) . Employing the operational

matrix of integration and initial conditions, we have

u′′
4 (x) = APX (x) + 1, (2)

u′
4 (x) = AP2X (x) + x− 1,

u4 (x) = AP3X (x) +
x2

2
− x+ 1,

and for the function with delay argument

u4 (x− 0.3) = AP3Q1X (x) +
(x− 0.3)

2

2
− (x− 0.3) + 1.

Here,

P =


0 1 0 0 0
0 0 0.5 0 0
0 0 0 0.333 0
0 0 0 0 0.25

7.936E − 4 −2.38E − 2 0.166 −0.444 0.499


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is a matrix of integration,

Q1 =


1 0 0 0 0

−0.3 1 0 0 0
0.09 −0.6 1 0 0
0.027 0.27 −0.899 1 0
0.0081 −0.108 0.54 −1.2 1


appears in the function with delay argument, and g (x) = exp (−x+ 0.3) −

[
(x−0.3)2

2 − (x− 0.3) + 1
]
−[

x2

2 − x+ 1
]
is approximated as g (x) = GX (x) , where

G = [−9.951E − 1, 9.51E − 1, − 3.313E − 1, − 2.073E − 1, 3.45E − 2] .

Now, substituting the obtained expressions into equation (13) and removing X (x), we find the unknown

coefficients as

A = G
(
I+P3 +P3Q1

)−1
,

and using (14), we get approximation solution u4 (x) = 0.025613x4 −0.153725x3 + 0.495452x2− 0.999373x+

0.999979. Note that the maximum error of u4 (x) is 6.643E − 5.

Now we want to employ the residual correction technique to increase the accuracy of the approximate

solution.

Using equation (10) we find R4 (x) = 0.495452x2−exp(0.3−x)−1.384031x− 0.153725x3+ 0.025613x4+

0.495452(x − 0.3)2 −0.153725(x − 0.3)3 + 0.025613(x − 0.3)4 + 1.377416. In our case, equation (11) has the

following form:

e′′′ (x) = −e (x)− e (x− 0.3)−R4 (x)

with initial conditions e′′ (0) = 0.009, e′ (0) = −0.0006, e (0) = 0.00005. Applying the present method for

M = 5 and adding the obtained solution to u4 (x), we find the corrected solution as u45 = −0.00511x +

0.038283x− 0.164913x+ 0.499595x− 0.99996x+ 0.999999, for which the maximum error is 1.346E − 5.

It can be seen from Table 1 and Figure 1 that the present method’s errors are superior to those of others

[6,17]. Figure 2 shows the effect of the residual correction technique. In Figure 3, we give the graphics of

the error functions for N = 8, 10. It is observed from Figure 3 that the errors decrease while the value of N

increases.

Table 1. Comparison of absolute errors eN (x) = |u(x)− uN (x)| for Example 1.

x Hermite collocation method [6] Jacobi rational-Gauss method [17] Present method
N=8 N=26 N=8 N=10

0.2 6.2E-9 3.605E-8 6.777E-11 2.313E-13
0.4 5.76E-8 9.299E-9 3.312E-10 1.168E-12
0.6 1.796E-7 3.503E-10 8.428E-10 2.775E-12
0.8 3.735E-7 8.345E-9 1.543E-9 5.125E-12
1.0 6.368E-7 1.161E-8 2.491E-9 8.123E-12
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Figure 1. Comparison of |eN (x)| for Example 1.
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Figure 2. Graphics of |e9(x)| and |E9,10(x)| for Example 1.
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Figure 3. Comparison of |eN (x)| for N=8 and N=10, Example 1.

Example 2 Let us consider the following differential equation with variable coefficients [5]:

u′′′ (x) = xu′′ (2x)− u′ (x)− u (0.5x) + x cos 2x+ cos 0.5x

with initial conditions u′′ (0) = −1, u′ (0) = 0, u (0) = 1.

The exact solution of problem is u (x) = cosx.
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YÜZBAŞI and ISMAILOV/Turk J Math

In Table 2 and Figure 4, the absolute errors of the present method for N = 8 are compared with the

absolute errors of the exponential approximation with the residual correction for N = 8,M = 9 and the Taylor

method [6] for N = 8. Errors of the present method without the residual correction are better than those of

the exponential approximation method [5]. Also, it is seen from Table 2 and Figure 4 that the results of our

method are better than those of the Taylor method [6].

Table 2. Comparison of absolute errors eN (x) = |u(x)− uN (x)| for Example 2.

x Exponential approximation method [5] Taylor method [6] Present method
N=8, M=9 N=8 N=8

0.2 5.167E-6 8.00E-8 1.3E-12
0.4 2.506E-5 5.12E-6 5.453E-11
0.6 5.847E-5 5.832E-5 1.607E-9
0.8 9.683E-5 3.277E-4 1.442E-8
1.0 1.119E-4 1.25E-3 6.555E-8
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Figure 4. Comparison of |eN (x)| for Example 2.

Example 3 Consider the following multi-pantograph equation [14]:

u′ (x) = −u (x)− u (0.8x)

with initial conditions u (0) = 1.

The exact solution of the problem is u (x) =
∞∑
k=0

1
k!

k∏
i=1

(
−1− 0.8i−1

)
xk (see [3]).

The problems were considered in [13, 16] without error estimation. In this case, we can see the main

advantage of the residual correction technique, which is that we can estimate the error of the approximate

solution when the exact solution is not of closed form. Table 3 shows that u5 (x) is a good approximation for

the solution of Example 3.

Example 4 Our last problem is

u′′ (x) = 0.75u (x) + u (0.5x)− 0.75

x2 + x+ 1
− 4

x2 + 2x+ 4
+

2 (2x+ 1)
2

(x2 + x+ 1)
3 − 2

(x2 + x+ 1)
2

with initial conditions u (0) = 1, u′ (0) = −1.
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YÜZBAŞI and ISMAILOV/Turk J Math

Table 3. Numerical results of estimated error e5,5(x) and values of u5(x) for Example 3.

x Estimated error |e5,5(x)| Values of u5(x)
0.2 7.392E-16 0.664688
0.4 5.229E-16 0.4335642
0.6 3.654E-16 0.27648307
0.8 9.907E-16 0.1714817
1.0 1.586E-15 0.1026574

The exact solution of the problem is u (x) = 1
x2+x+1 .

Figure 5 shows the graphic of the error function for N = 14. In Table 4, a comparison is made between

values of the approximate solutions and the exact solution. The maximum error is 1.898E − 10.

Table 4. Exact and approximate values of Example 4.

x Exact solution Approximate solution u14(x) Absolute error
0.2 0.080645161290 0.80645161309 1.898E-10
0.4 0.641025641 0.6410256409 4.012E-11
0.6 0.5102040816 0.51020408145 1.821E-10
0.8 0.4098360655 0.40983606541 1.62E-10
1.0 0.90090090092 0.90090090091 6.324E-11
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Figure 5. Graphic of |e14(x)| for Example 4.

6. Conclusions

In this study, a new Taylor operation method based on Taylor polynomials is presented. The advantage of

the present method over other operational matrix methods is the chosen simple basis set X and its elements

can be easily shown by the identity matrix. Also note that the integration matrix P mainly consist of zeros,

which involve less computational work. Note that our product matrix C is defined more easily than in [10, 17].

In addition, the transforming of the differential equation to a system of algebraic equations is done without

collocation points. Excellent agreement and high accuracy are achieved even with a small number of basis

polynomials. Also, the residual correction technique is employed to increase the accuracy of the approximate
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solution and the estimate error of the approximate solution. It is seen from Example 3 that error estimation of

the approximate solution is good even when the exact solution of the problem is unknown. Numerical results

obtained by this method are compared with various numerical methods and existing exact solutions. It is

observed from the tables and figures that our results are better than the results of the other compared methods.
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