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Abstract: In the paper we discuss two functionals of the Fekete–Szegö type: Φf (µ) = a2a4 − µa3
2 and Θf (µ) =

a4 − µa2a3 for an analytic function f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ ∆, (∆ = {z ∈ C : |z| < 1}) and a real number µ .

We focus our research on the estimation of |Φf (µ)| and |Θf (µ)| , while f is either in S∗ (the class of starlike functions)

or in K (the class of convex functions).
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1. Introduction

For a function f analytic in ∆ ≡ {z ∈ C : |z| < 1} having the power series expansion

f(z) = z + a2z
2 + a3z

3 + . . . (1)

we define two functionals for a fixed real µ :

Φf (µ) ≡ a2a4 − µa3
2 (2)

and

Θf (µ) ≡ a4 − µa2a3. (3)

The functionals Φf and Θf are generalizations of two expressions: a2a4 − a3
2 and a4 − a2a3 . The first

one is known as the second Hankel determinant and it was examined in many papers. The investigation of

Hankel determinants for analytic functions was started by Pommerenke (see [11, 12]). Following Pommerenke,

many mathematicians published their results concerning the second Hankel determinant for various classes of

univalent functions (see, for example, [2, 3, 5, 8, 10]) or multivalent functions (see [9]). The bounds of a2a4−a32

for typically real functions were presented in [14].

In this paper, Φf and Θf are called the Fekete–Szegö type functionals because in a similar way the

expression a3 − a2
2 was generalized to obtain the Fekete–Szegö functional a3 − µa2

2 .

Let us recall the result reported by Janteng et al.

Theorem 1.1 (Janteng, Halim, Darus, [4]) The following bounds are sharp
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1. If f ∈ S∗ , then |a2a4 − a3
2| ≤ 1 .

2. If f ∈ K , then |a2a4 − a3
2| ≤ 1/8 .

The functional a4 − a2a3 has not been discussed very often. The results for functions in S∗ and K are

the following.

Theorem 1.2 (Babalola, [1]) The following bounds are sharp

1. If f ∈ S∗ , then |a4 − a2a3| ≤ 2 .

2. If f ∈ K , then |a4 − a2a3| ≤ 4/9
√
3 .

It is worth stating that |Φf (µ)| and |Θf (µ)| are invariant under rotations. If f is given by (1) and

f̃(z) = e−iφf(zeiφ), φ ∈ R , then f̃(z) = z +
∑∞
n=2 ane

i(n−1)φzn . Hence

|Φf̃ (µ)| =
∣∣∣a2eiφ · a4e3iφ − µ ·

(
a3e

2iφ
)2∣∣∣ = |Φf (µ)| (4)

and

|Θf̃ (µ)| =
∣∣a4e3iφ − µ · a3e2iφ · a2eiφ

∣∣ = |Θf (µ)|. (5)

Due to this property, in the research on |Φf (µ)| and |Θf (µ)| , one can discuss not all functions f of a given

class, but only those functions for which coefficients a2 are nonnegative real numbers.

In this paper we obtain the estimates of |Φf (µ)| and |Θf (µ)| , while µ ∈ R and f is either in S∗ or in

K . Almost all presented estimates are sharp and the extremal functions are derived. Taking into account (4)

and (5), it is obvious that the rotations of the derived functions are extremal too.

2. Preliminaries

In order to prove our results, we need a few lemmas concerning functions in the class P , i.e. analytic functions

p such that p(0) = 1 and Re p(z) > 0 for all z ∈ ∆. Let p ∈ P have the Taylor series expansion

p(z) = 1 + p1z + p2z
2 + . . . , z ∈ ∆. (6)

Lemma 2.1 ([13]) If p ∈ P , then the sharp estimate |pn| ≤ 2 holds for n = 1, 2, . . . .

Lemma 2.2 ([7]) If p ∈ P , then the sharp estimate |pn − pkpn−k| ≤ 2 holds for n, k ∈ N , n > k .

Lemma 2.3 If p ∈ P , then the sharp estimate |pn − pk
2pn−2k| ≤ 6 holds for n, k ∈ N , n > 2k .

Lemma 2.4 ([6]) If p ∈ P , then

1. 2p2 = p1
2 + x(4− p1

2) ,

2. 4p3 = p1
3 + 2p1(4− p1

2)x− p1(4− p1
2)x2 + 2(4− p1

2)(1− |x|2)z ,

for some x and z such that |x| ≤ 1 , |z| ≤ 1 .
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Lemma 2.3 immediately follows from Lemma 2.1 and Lemma 2.2 if we write pn − pk
2pn−2k = (pn −

pkpn−k) + pk(pn−k − pkpn−2k).

Applying the correspondence between the functions in S∗ and P

zf ′(z)

f(z)
= p(z) , f ∈ S∗ , p ∈ P (7)

and the expansions (1) and (6) we get

(n− 1)an =

n−1∑
j=1

ajpn−j , n = 2, 3, . . . . (8)

In particular,

a2 = p1 , a3 = 1
2 (p2 + p1

2) , a4 = 1
3 (p3 +

3
2p1p2 +

1
2p1

3).

Hence, we can express Φf (µ) and Θf (µ) for f ∈ S∗ in terms of coefficients of the corresponding function

p ∈ P :

Φf (µ) =

(
1

6
− 1

4
µ

)
p1

4 +
1

3
p1p3 +

1

2
(1− µ)p1

2p2 −
1

4
µp2

2 (9)

and

Θf (µ) =
1

3
p3 +

1

2
(1− µ)p1p2 +

1

6
(1− 3µ)p1

3. (10)

3. Bounds of |Φf (µ)| for starlike functions

In the main theorem of this section we establish the sharp bounds of |Φf (µ)| for the class S∗ . The proof of

this theorem is divided into four lemmas.

Taking into account (9) and Lemma 2.4, we can write Φf (µ) as follows:

Φf (µ) =
1

16
(8− 9µ) p1

4 +
1

24
(10− 9µ) p1

2(4− p1
2)x

− 1

48
(4− p1

2)
(
4p1

2 + 3(4− p1
2)µ
)
x2 +

1

6
p1(4− p1

2)(1− |x|2)z. (11)

Lemma 3.1 Let f ∈ S∗ and µ > 1 . Then |Φf (µ)| ≤ 9µ− 8 . The result is sharp.

Proof First, assume that µ ≥ 4/3. As it was shown, |Φf (µ)| is invariant under rotations. For this reason we

can assume that p1 is real. To shorten notation, we write p instead of p1 , p ∈ [0, 2]. Hence,

|Φf (µ)| ≤
1

16
(9µ− 8) p4 +

1

24
(9µ− 10) p2(4− p2)ϱ

+
1

48
(4− p2)

(
4p2 + 3(4− p2)µ

)
ϱ2 +

1

6
p(4− p2)(1− ϱ2) , (12)

where ϱ = |x| ∈ [0, 1].

539



ZAPRAWA/Turk J Math

Denoting the right-hand side of (12) by G(p, ϱ), we can write

G(p, ϱ) =
1

48
(4− p2)(2− p)[3(2 + p)µ− 4p]ϱ2

+
1

24
(9µ− 10) p2(4− p2)ϱ+

1

16
(9µ− 8) p4 +

1

6
p(4− p2). (13)

For µ ≥ 4/3,

1

48
(4− p2)(2− p)[3(2 + p)µ− 4p] ≥ 1

6
(4− p2)(2− p) ≥ 0

and
1

24
(9µ− 10) p2(4− p2) ≥ 0.

Consequently,

G(p, ϱ) ≤ G(p, 1) =
1

12
(3µ− 2)p4 +

1

3
(3µ− 4)p2 + µ ≤ G(2, 1) = 9µ− 8.

Let now µ ∈ (1, 4/3). Since

Φf (µ) = (4− 3µ)(a2a4 − a3
2) + (3µ− 3)(a2a4 −

4

3
a3

2) ,

by Theorem 1.1 and from the previous part of this proof,

|Φf (µ)| ≤ (4− 3µ) · 1 + (3µ− 3) · 4 = 9µ− 8.

The extremal function is f(z) = z
(1−z)2 . 2

Lemma 3.2 If f ∈ S∗ , then |Φf (7/9)| ≤ 1 . The result is sharp.

Proof The formula (11) for µ = 7/9 takes the form

Φf (7/9) = a+ beiφ − ce2iφ + dreiψ , (14)

where

x = ϱeiφ , z = reiψ , φ, ψ ∈ [−π, π] , ϱ, r ∈ [0, 1]

and all four expressions:

a =
1

16
p4 , b =

1

8
p2(4− p2)ϱ , c =

1

144
(4− p2)(5p2 + 28)ϱ2 , d =

1

6
p(4− p2)(1− ϱ2)

are nonnegative.

The estimate

|Φf (7/9)| ≤ |a+ beiφ − ce2iφ|+ d (15)

is sharp, because it only requires properly taken ψ and r = 1. With the notation

h(x) = −4acx2 + 2b(a− c)x+ (a+ c)2 + b2 (16)
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we can write

|a+ beiφ − ce2iφ|2 = h(cosφ). (17)

A simple calculation leads to

max {h(x) : x ∈ [−1, 1]} =


h(−1) = (c− a+ b)2 for b(a− c) ≤ −4ac

h(x0) for |b(a− c)| < 4ac

h(1) = (a− c+ b)2 for b(a− c) ≥ 4ac ,

(18)

where x0 = b(a−c)
4ac .

Therefore, the set Ω = [0, 2]× [0, 1] is divided into three parts by the curves obtained from the equations:

b(a− c) = −4ac and b(a− c) = 4ac . In terms of p and ϱ they have the form:

(4− p2)(5p2 + 28)ϱ2 − 2p2(5p2 + 28)ϱ− 9p4 = 0 (19)

and

(4− p2)(5p2 + 28)ϱ2 + 2p2(5p2 + 28)ϱ− 9p4 = 0 , (20)

or equivalently, in the explicit form,

ϱ = ϱk(p) , k = 1, 2 ,

ϱk(p) =
p2

4− p2

(
(−1)k+1 + 2

√
16− p2

5p2 + 28

)
. (21)

Hence, we can define the sets:

Ω1 = {(p, ϱ) ∈ Ω : p ∈ [0, p0], ϱ ∈ [ϱ1, 1]}

Ω3 = {(p, ϱ) ∈ Ω : ϱ ∈ [0, ϱ2]}

Ω2 = Ω \ {Ω1 ∪ Ω3} ,

where p0 =
√
(
√
58− 4)/3 = 1.09 . . . . The calculation of the derivatives of ϱk(p) shows that these two functions

are increasing in [0, 2]. From (21) it follows that the curve ϱ1(p) meets the boundary of Ω in points (0, 0) and

(p0, 1) and the curve ϱ2(p) meets the boundary of Ω in points (0, 0) and (2, 3/8).

For (p, ϱ) ∈ Ω1 , from (15) and (18), we have

|Φf (7/9)| ≤ c− a+ b+ d

=
1

144
(4− p2)(2− p)(14− 5p)ϱ2 +

1

8
p2(4− p2)ϱ

+
1

6
p(4− p2)− 1

16
p4.

Since the coefficients of ϱ2 and ϱ are positive, we can take ϱ = 1; so

|Φf (7/9)| ≤
1

9
(7 + 4p2 − 2p4) , (22)
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which is less than or equal to 1, even for all p ∈ [0, 2]. Observe that for p = 1 there is |Φf (7/9)| = 1.

If (p, ϱ) ∈ Ω3 , then

|Φf (7/9)| ≤ a− c+ b+ d

= − 1

144
(4− p2)(2 + p)(14 + 5p)ϱ2 +

1

8
p2(4− p2)ϱ

+
1

6
p(4− p2) +

1

16
p4.

We are going to prove that the expression on the right-hand side of the inequality is less than or equal to 1. It

is equivalent to showing that

(2 + p)(14 + 5p)ϱ2 − 18p2ϱ+ 3(3p2 − 8p+ 12) ≥ 0. (23)

However,

(2 + p)(14 + 5p)ϱ2 − 18p2ϱ+ 3(3p2 − 8p+ 12) =(3p− 4)2 + 18p(2− p)ϱ+ 4(1− pϱ)(5− 4pϱ)

+ (28 + 24p− 11p2)ϱ2.

Since pϱ ≤ 3/4 for (p, ϱ) ∈ Ω3 , all components in the above formula are nonnegative. Therefore, (23) is true in

Ω3 .

For (p, ϱ) ∈ Ω2 ,

h(x0) = (a+ c)2
(
1 +

b2

4ac

)
and

|Φf (7/9)| ≤ (a+ c)

√
1 +

b2

4ac
+ d =

1

72

[
9p4 + (4− p2)(5p2 + 28)ϱ2

]√ 16− p2

5p2 + 28
+

1

6
p(4− p2)(1− ϱ2)

=
1

8
p4

√
16− p2

5p2 + 28
+

1

6
p(4− p2) +

1

72
(4− p2)

[√
(5p2 + 28)(16− p2)− 12p

]
ϱ2.

The expression in the square brackets is positive, and thus we can estimate the whole expression by taking the

greatest possible ϱ . Thus

|Φf (7/9)| ≤

{
g1(p) p ∈ [0, p0]

g2(p) p ∈ [p0, 2] ,

where

g1(p) =
p4(p+ 8)

9(p+ 2)

√
16− p2

5p2 + 28
+
p(5p6 − 2p5 − 56p4 + 200p3 − 48p2 + 336p+ 672)

18(p+ 2)(5p2 + 28)
, (24)

g2(p) =
1

18
(p4 − 2p2 + 28)

√
16− p2

5p2 + 28
. (25)

The first bound is achieved if ϱ = ϱ1 , the second one if ϱ = 1.
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For p ∈ [0, p0] , each of four functions: p2(p+8)
p+2 , p2

√
16−p2
5p2+28 ,

p
p+2 , and

5p6−2p5−56p4+200p3−48p2+336p+672
5p2+28

is nonnegative and increasing. Consequently, g1(p) is increasing and

max {g1(p) : p ∈ [0, p0]} = g(p0).

The function g2(p) for p ∈ [p0, 2] is decreasing at the beginning; after that, it starts to increase. For this
reason,

max {g2(p) : p ∈ [p0, 2]} = max {g(p0), g(2)} = g(2) = 1.

Combining all the discussed cases we have

|Φf (7/9)| ≤ 1 for (p, ϱ) ∈ [0, 2]× [0, 1].

This inequality is sharp. Taking p = 2, we immediately have |Φf (7/9)| = 1. The extremal function

is again f(z) = z
(1−z)2 . However, there exists another extremal function. It has been proved (see (22)) that

|Φf (7/9)| = 1 also for p = 1 and x = −1. If p1 = 1, then we can deduce from Lemma 2.4 that p2 = −1; thus

p2 = p1
2−2. It means that p1 , p2 are the coefficients of a function pt(z) =

1−z2
1−2zt+z2 = 1+2tz+(4t2−2)z2+ . . .

with a suitably taken t . Comparing the coefficient of the function pt at z with p1 we obtain t = 1/2. The

corresponding starlike function is of the form

f(z) =
z

1− z + z2
= z + z2 − z4 + . . . .

Summing up, the equality |Φf (7/9)| = 1 is fulfilled for f(z) = z
(1−z)2 or f(z) = z

1−z+z2 . 2

Finally, we find the estimate of |Φf (µ)| , while µ < 7/9 and µ ∈ (7/9, 1).

Lemma 3.3 Let f ∈ S∗ and µ ≤ 7/9 . Then |Φf (µ)| ≤ 8− 9µ . The result is sharp.

Proof For µ ≤ 0,

|Φf (µ)| = |a2a4 − µa3
2| ≤ |a2| · |a4|+ |µ| · |a3|2 ≤ 8 + 9|µ| = 8− 9µ.

If µ ∈ (0, 7/9), then

Φf (µ) =
1

7

[
a2a4 (7− 9µ) +

(
a2a4 −

7

9
a3

2

)
9µ

]
.

Lemma 3.2 and the previous part of this proof yield

|Φf (µ)| ≤
1

7
[8 · (7− 9µ) + 1 · 9µ] = 8− 9µ ,

with equality for f(z) = z
(1−z)2 . 2

Lemma 3.4 Let f ∈ S∗ and µ ∈ (7/9, 1) . Then |Φf (µ)| ≤ 1 . The result is sharp.
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Proof For µ ∈ (7/9, 1) we can write

Φf (µ) =
1

2

[(
a2a4 −

7

9
a3

2

)
(9− 9µ) + (a2a4 − a3

2)(9µ− 7)

]
.

From Lemma 3.2 and Lemma 3.1,

|Φf (µ)| ≤
1

2
[1 · (9− 9µ) + 1 · (9µ− 7)] = 1.

2

The results established in Lemmas 3.1–3.4 can be aggregated in the following theorem.

Theorem 3.1 If f ∈ S∗ , then |Φf (µ)| ≤ max {|9µ− 8|, 1} .

4. Bounds of |Θf (µ)| for starlike functions

At the beginning, observe that Θf (1) = 1
3 (p3 − p1

3). From Lemma 2.3 we immediately obtain the result of

Theorem 1.2, point 1.

Lemma 4.1 Let f ∈ S∗ and µ > 1 . Then |Θf (µ)| ≤ 6µ− 4 . The result is sharp.

Proof Assume that µ ≥ 5/3. The formula (10) can be rewritten in the form

Θf (µ) =
1

3

[
(p3 − p1p2) +

1

2
(5− 3µ)p1p2 +

1

2
(1− 3µ)p1

3

]
.

Lemma 2.1 and Lemma 2.2 result in

|Θf (µ)| ≤
1

3
[2− 2(5− 3µ)− 4(1− 3µ)] = 6µ− 4.

Now suppose that µ ∈ (1, 5/3). Since

Θf (µ) =
1

2

[
(5− 3µ)(a4 − a2a3) + (3µ− 3)(a4 −

5

3
a2a3)

]
,

from the previous part of this proof and from Theorem 1.2, point 1, we obtain

|Θf (µ)| ≤
1

2
[(5− 3µ) · 2 + (3µ− 3) · 6] = 6µ− 4.

It is clear that Θf (µ) = 6µ− 4 only when p1 = p2 = p3 = 2, which means that the extremal function is

f(z) = z
(1−z)2 . 2

For µ ≤ 1/3, an application of Lemma 2.1 in (10) leads directly to

Lemma 4.2 Let f ∈ S∗ and µ ≤ 1/3 . Then |Θf (µ)| ≤ 4− 6µ . The result is sharp.

Our next step is finding the bound of |Θf (2/3)| .
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Lemma 4.3 Let f ∈ S∗ . Then |Θf (2/3)| ≤ 16/9
√
3 = 1.026 . . . . The result is sharp.

Proof Applying (10) and Lemma 2.4 for f ∈ S∗ , we obtain

Θf (2/3) =
1

12
(4− p1

2)
[
3p1x− p1x

2 + 2(1− |x|2)z
]
, (26)

where |x| ≤ 1, |z| ≤ 1.

Since |Θf (2/3)| is invariant under rotations, we can assume that p1 is real, and so we write p = p1 ,

p ∈ [0, 2]. Then a sharp estimate

|Θf (2/3)| ≤
1

12
(4− p2)h(ϱ) (27)

holds, where

h(ϱ) = (p− 2)ϱ2 + 3pϱ+ 2

and ϱ = |x| ∈ [0, 1].

It is easy to verify that if p ∈ [4/5, 2] is fixed, then h(ϱ) is strictly increasing for ϱ ∈ [0, 1], and so

h(ϱ) ≤ h(1) = 4p. (28)

On the other hand, if p is fixed and p ∈ [0, 4/5), then the maximal value of h(ϱ) is achieved for ϱ = 3p
2(2−p) ;

for a stated range of p , there is 3p
2(2−p) ∈ [0, 1). In this case

h(ϱ) ≤ h

(
3p

2(2− p)

)
=

9p2 − 8p+ 16

4(2− p)
. (29)

Combining (28) and (29), we can see that

|Θf (2/3)| ≤
1

12
g(p) ,

where

g(p) =

{
1
4 (2 + p)(9p2 − 8p+ 16) p ∈ [0, 4/5)

4p(4− p2) p ∈ [4/5, 2].
(30)

If p ∈ [0, 4/5), then g(p) = 1
4 (9p

3 + 10p2 + 32) is strictly increasing in [0, 4/5), and so g(p) < g(4/5).

For p ∈ [4/5, 2] we have g(p) ≤ g(2/
√
3) = 64/3

√
3. Since g(4/5) < g(2/

√
3), we obtain |Θf (2/3)| ≤ 16/9

√
3.

The equality in the above estimate holds for p1 = 2/
√
3, x = −1, z = −1. Consequently, p2 = −2/3

and so p2 = p1
2 − 2. Hence, p1 , p2 are the coefficients of pt(z) =

1−z2
1−2zt+z2 with a suitably taken t . However,

pt(z) = 1 + 2tz + (4t2 − 2)z2 + . . . , and so t = 1/
√
3. The corresponding starlike function is

f(z) =
z

1− 2√
3
z + z2

= z +
2
√
3

3
z2 +

1

3
z3 − 4

√
3

9
z4 + . . . .

2

Now we can establish two final estimates.
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Lemma 4.4 Let f ∈ S∗ .

1. If µ ∈ (1/3, 2/3) , then |Θf (µ)| ≤ 16−18
√
3

3
√
3

µ+ 36
√
3−16

9
√
3

.

2. If µ ∈ (2/3, 1) , then |Θf (µ)| ≤ 18
√
3−16

3
√
3

µ+ 16−12
√
3

3
√
3

.

Proof The first part of Lemma 4.4 follows from

Θf (µ) = (3µ− 1)(a4 −
2

3
a2a3) + (2− 3µ)(a4 −

1

3
a2a3) , µ ∈ (1/3, 2/3)

and Lemma 4.2 and Lemma 4.3.

The second part is a consequence of Theorem 3.1, point 1, Lemma 4.3, and a formula

Θf (µ) = (3µ− 2)(a4 − a2a3) + (3− 3µ)(a4 −
2

3
a2a3) , µ ∈ (2/3, 1).

2

The results presented in Lemmas 4.1–4.4 can be collected as follows.

Theorem 4.1 If f ∈ S∗ , then

|Θf (µ)| ≤ max

{
|6µ− 4|,

(
2− 16

9
√
3

)
|3µ− 2|+ 16

9
√
3

}
.

Remark 1 The estimates in Lemma 4.4 are not sharp. They can be slightly improved, but the proof of this

result does not look good. For this reason, we have decided to omit it from this discussion.

5. Bounds of |Φf (µ)| and |Θf (µ)| for convex functions

Let f ∈ S∗ , g ∈ K , f and g have the series expansions (1) and

g(z) = z + b2z
2 + b3z

3 + . . . , (31)

respectively.

According to the Alexander relation: f ∈ S∗ if and only if g ∈ K , where f(z) = zg′(z), there is

an = nbn . From Theorem 3.1 and Theorem 4.1 we immediately obtain the bounds of |Φf (µ)| and |Θf (µ)| for
convex functions.

Corollary 1 If f ∈ K , then |Φf (µ)| ≤ max {|µ− 1|, 1/8} .

Corollary 2 If f ∈ K , then |Θf (µ)| ≤ max
{
|µ− 1|,

(
1− 8/9

√
3
)
|µ− 1|+ 4/9

√
3
}
.

The result in Corollary 1 is sharp. The extremal functions g can be found from the formula zg′(z) = f(z),

where the functions f are corresponding extremal functions in the class S∗ .

In particular, for µ = 1, Corollaries 1 and 2 reduce to

Corollary 3 If f ∈ K , then |a2a4 − a3
2| ≤ 1/8.
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Corollary 4 If f ∈ K , then |a4 − a2a3| ≤ 4/9
√
3.

These results are given in Theorem 1.1 and Theorem 1.2. Although the estimate in Theorem 1.2, point 1 is

correct, the proof given in [1] is false. The proof of Theorem 4.1, point 2, rectifies these errors.
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