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Abstract: The aim of this paper is to estimate the shape of an unknown part of the boundary of a geometrical domain.

The identification technique used to estimate this part is the observation of the solution of a diffusion problem on the

known part of this boundary. This technique is based on the sentinels theory.
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1. Introduction

In many distributed systems governed by partial differential equations, some terms may be completely or

partially unknown, as well as the initial or the boundary conditions, the operator coefficients, or the geometrical

domain. Such systems are called problems with incomplete data and can be classified as inverse problems.

Many models can be found in the mathematical literature, including modeling the environmental, climatic and

ecological problems, etc. For more details, we refer the reader to [4, 5].

In order to identify the parameters in pollution problems governed by semilinear parabolic equations and

incomplete data, Lions introduced the so-called sentinels method given in [5]. The concept of the sentinels

is related to the following three objects: a state equation, an observation function, and a control function to

be determined. Many papers used the famous definition of Lions in the theoretical aspect. See, for example,

Massengo and Nacoulima [8] and [2, 9–11, 13, 14] for the general setting. This definition is also used in numerical

studies such as [1, 2, 4].

In 1997, Bodart [2] applied the sentinels method to estimate the shape of an unknown part of the boundary

Γ of a sufficiently regular domain Ω in R2 . The shape of one side of Ω is known and set to a given temperature,

and the shape of the other side has been estimated by the observation of the temperature in the middle of the

domain.

However, for some physical problems (for example, in the management of oil wells, in the determination

of an inaccessible part of a lake, etc.), observation in the inside is difficult or impossible to be explored, which

leads to putting the observatory on the boundary. Such a problem will be the objective of this paper, where

we suppose that the known part of the domain is shared in two parts. On the first we put the source of the

temperature and on the other part we observe the distribution of the temperature in the domain. The problem

is modeled by a partial differential equation and can be solved with the method that will be presented in sequel.
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Let Ω0 ⊂ R2 be an open subset with sufficiently smooth boundary, ∂Ω0 = Γ∗ ∪ Γ0, with Γ∗ ∩ Γ0 = ∅.
We define a deformation Ωα of the domain Ω0 by

Ωα = {x+ α (x)U (x) , x ∈ Ω0} , (1)

where U is a known transverse vector field of class C∞, and α (x) is a C2 function such that Γ∗ remains

invariant by the deformation αU. Thus, the boundary of the open set Ωα, i.e. ∂Ωα = Γ∗ ∪ Γα , is of class C2

and Γ∗ ∩ Γα = ∅. Hence, Γα is a deformation of Γ0 :

Γα = {x+ α (x)U (x) , x ∈ Γ0} . (2)

We assume that Γ∗ = Γ∗
1 ∪ Γ∗

2 , Γ
∗
1 ∩ Γ∗

2 = Φ with measΓ∗
1 ̸= 0 and measΓ∗

2 ̸= 0.

Let y = y(x, t;α) be the solution of

∂y

∂t
−△y = 0 in Qα = Ωα × ]0, T [ ,

y = f on Σ∗
1 = Γ∗

1 × ]0, T [ ,
∂y

∂n
= 0 on Σ∗

2 = Γ∗
2 × ]0, T [ ,

y = 0 on Σα = Γα × ]0, T [ ,
y (., 0) = 0 in Ωα,

(3)

where f = f̃ | Γ∗
1 and f̃ ∈ L2

(
]0, T [ ,H

3
2 (Γ)

)
. It is known that (see [6, 7] )

y ∈ L2
(
]0, T [ ,H2 (Ωα)

)
, y |Γ∈ L2

(
]0, T [ ,H

3
2 (Γ)

)
and

∂y

∂n
|Γ∈ L2

(
]0, T [ ,H

1
2 (Γ)

)
, where Γ = ∂Ωα.

For all α we put O = Γ∗
2 × ]0, T [ . The solution y of (3) is supposed to be observed in O and we shall call this

observation yobs.

The vector field U is supposed to remain transverse to Γα in a sufficiently large neighborhood of α (that

means that the initial guess Ω0 is not too far from the exact domain Ωα (deformation without shearing)).

We aim to build a sequence of functions
(
αk
)
k=0...∞ locally converging in some sense, starting from an

initial guess α0 . This will give an approximation of the final shape of the deformed boundary part Γα . The

computation of αk+1 from αk will be done by the method of sentinels.

The paper is organized as follows: in Section 2, we present the sentinels method; first, we give the

definition of the sentinel function S from l2 (R)× l2 (R) into l2 (R), and second, we prove the existence and the

uniqueness of such sentinels in three steps. We start by proving that the existence and the uniqueness of the

sentinels is reduced to the resolution of an approximate control problem. Then we solve the control problem,

finally, by a convex duality process where we characterize the solution to obtain the optimal conditions on

the sentinels. In Section 3, we use the sentinels function to construct the iterative scheme and we prove the

convergence of the sequences by using the fixed point method. Here, an approximation of the unknown boundary

is given.

Finally, performing observations on a part of the boundary can solve many environmental and industrial

problems, for which the access to the middle is difficult or impossible, and it can minimize the use of energy.
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2. Application of the sentinels method

Let us consider the following parameterization of the set Γα :

Γα = {x (s) + α (s)U (s) , s ∈ [0, 1] , x (s) ∈ Γ0} , (4)

where α is a C2 function over the interval [0, 1] , i.e. α belongs to the space L2 (]0, 1[). Writing α in a basis

of functions (bj)j=1...∞ in C2 (0, 1), we keep using α ∈ l2 (R) for the infinite coordinate vector of the function

α in this basis, and hence (4) now is written as

Γα =

x (s) +
∞∑
j=1

αjbjU (s) , s ∈ [0, 1] , x (s) ∈ Γ0

 . (5)

Then our goal here is to build a sequence
(
αk
)
k=0...∞ converging in l2 (R). We define the sentinel function by:

∣∣∣∣∣∣
S : l2 (R)× l2 (R) −→ l2 (R)

(α̃, α) 7−→
(∫

O

wi (α̃) y (α) dΣ

)
i=1...∞

, (6)

where y (α) = y (x, t;α) is the solution of (3), Σ = Γ × ]0, T [ and the functions (wi (α̃))i=1...∞ are expected

to be found in some way. Now we have following result:

Proposition 1 (Existence and uniqueness of the sentinel): There exists a unique family of functions

(wi (α̃))i=1...∞ , which ensures the existence and the uniqueness of the sentinel function S (α̃, α) defined in

(6) such that:

wi (α̃) ∈ L2 (O) , i = 1...∞ has a minimal norm, (7)

DαS (α̃, α̃) = ID +M, ∀α̃ ∈ l2 (R) , (8)

where ID is the identity operator and M ∈ L
(
l2 (R)

)
with

∥(Mi)∥l2(IR) =
ε

i
, for i = 1...∞. (9)

Here, (Mi) is the ith line of the infinite matrix M , and DαS (α̃, α̃) denote the derivative of S with respect to

its second parameter computed at (α̃, α̃) .

Remark 1 Condition (8) makes sense, since y (x, t;α) is differentiable with respect to αj (see [2, 15, 16]).

Remark 2 For a fixed α̃ , Sα̃ (α) = S (α̃, α) is a sentinel in the sense of Lions [5] .

Proof (of Proposition 1): The proof will be done in three steps:

First step: Conditions (7) and (8) will be rewritten into a control problem; the function y (x, t;α) is

differentiable with respect to α as shown in [15] and we shall note

yαj =
∂y (α̃)

∂αj
,j=1...∞
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the derivative of y (x, t;α) with respect to αj at α̃ , which is the solution of the following system:

∂yαj

∂t
−△yαj = 0 in Qα̃ = Ωα̃ × ]0, T [ ,

yαj = 0 on Σ∗
1 = Γ∗

1 × ]0, T [ ,
∂yαj

∂n
= 0 on Σ∗

2 = Γ∗
2 × ]0, T [ ,

yαj = −bj (∇y (α̃) .U) on Σα̃ = Γα̃ × ]0, T [ ,
yαj (., 0) = 0 in Ωα̃,

(10)

where y (α̃) = y (x, t; α̃) solves (3) with data α̃. Thus, the general element of the infinite matrix DαS (α̃, α̃) is

(DαS (α̃, α̃))ij =

∫
O

wi (α̃) yαjdΣ. (11)

Considering i as fixed, condition (8) now reads∫
O

wi (α̃) yαjdΣ = δij + (M)ij , j=1...∞, (12)

where the matrix M is defined as in Proposition 1. Since the elements of L2 (O) and H
1
2 (O) are (respectively)

the restrictions of the L2 (Σ) and H
1
2 (Σ) elements and since H

1
2 (Σ) is dense in L2 (Σ) [12], then for every

element wi (α̃) in L2 (O) let us consider a sequence (win (α̃))n∈IN ⊂ H
1
2 (O) converging to wi (α̃), and for

every n ∈ N , let qin ∈ L2
(
]0, T [ ,H2 (Ωα̃)

)
, be the solution of the following adjoint problem:

−∂qin
∂t

−△qin = 0 in Qα̃,

qin = 0 on Σ/Σ∗
2,

∂qin
∂n

= win (α̃) on Σ∗
2

qin (T ) = 0.

, n ∈ IN. (13)

Due to the regularity of the solutions and by a suitable integration by parts, we get∫
O

win (α̃) yαjdΣ =

∫
Σα̃

bj (∇y (α̃) .U) (α)
∂qin
∂n

dΣ.

Taking n −→ +∞ to obtain ∫
O

wi (α̃) yαjdΣ =

∫
Σα̃

bj (∇y (α̃) .U) (α)
∂qi
∂n

dΣ, (14)

where qi = lim
n−→+∞

qin (qi ∈ L2
(
]0, T [ ,H

1
2 (Ωα̃)

)
) , we define a linear continuous operator B ∈ L

(
L2 (O) ; l2 (R)

)
by

B :

∣∣∣∣∣∣∣∣∣
L2 (O) −→ l2 (R)

wi (α̃) 7−→

 ∫
Σα̃

bj (∇y (α̃) .U) (α) ∂qi
∂n dΣ


j=1...∞

.
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Equation (14) allows us to rewrite (11) as

(DαS (α̃, α̃))ij = (Bwi (α̃))j . (15)

This is a control problem, i.e. to find wi (α̃) ∈ L2 (O) of minimal norm such that Bwi (α̃) = z with z ∈ l2 (R) ,
but this is an exact controllability type problem, and what we will show is that we can accomplish approximate

controllability, which is sufficient for the numerical applications.

Second step: Approximate controllability result: We are going to prove that the range of B is dense,

and to do this we shall establish that its adjoint is injective.

The adjoint operator B∗ ∈ L
(
l2 (R) ;L2 (O)

)
is given by:

B∗ :

∣∣∣∣ l2 (R) −→ L2 (O)
(σj)

j=1...∞
7−→ Φ |O,

where Φ is the solution of the following problem:



∂Φ

∂t
−△Φ = 0 in Qα̃,

Φ = 0 on Σ∗
1,

∂Φ

∂n
= 0 on Σ∗

2,

Φ = − (∇y (α̃) .U)
∞∑
j=1

bjσj on Σα̃,

Φ (., 0) = 0 in Ωα̃.

(16)

Indeed, from (16) we have

(w,Φ)L2(O) =
∞∑
j=1

σj

∫
Σα̃

bj (∇y (α̃) .U) (α)
∂qi
∂n

dΣ = (σ,Bw)l2(R) ,

i.e. Φ |O= B∗σ. Suppose now that B∗σ = Φ |O= 0, i.e. Φ identically vanishes in O. By the Cauchy uniqueness

theorem we conclude that Φ = 0 in Qα̃. Thus, we get

(∇y (α̃) .U)
∞∑
j=1

bjσj = 0.

Since (bj)
j=1...∞

is a basis of l2 (R) , then we have either {(∇y (α̃) .U) = 0} or {σj = 0, j = 1...∞} . Decomposing

the field U on the normal and tangent vectors να̃ and τα̃ on Γα̃ we get:

∇y (α̃) .U (x) = ∇y (α̃) . (aνα̃ (x)) +∇y (α̃) . (bτα̃ (x)) , ∀x ∈ Γα̃,

and since y (α̃) vanishes on Γα̃ we have:

∇y (α̃) .U (x) = a
∂y (α̃)

∂να̃
(x) , ∀x ∈ Γα̃.
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By the Cauchy uniqueness theorem we have that ∂y(α̃)
∂να̃

| Γα̃ cannot be null. Otherwise, y (α̃) would be equal

to 0 a.e. in Qα̃ . Thus, ∇y (α̃) .U ̸= 0 and B∗ is injective. This proves that the range of B is dense in l2 (R) ,
i.e.

∀ρ > 0, ∀z ∈ l2 (R) , ∃wi (α̃) ∈ L2 (O) ; ∥Bwi (α̃)− z∥l2(R) ≤ ρ. (17)

Third step: By a convex duality process a control fulfilling conditions (7) and (8) is exhibited; it

remains to construct wi (α̃) as the function of the minimal norm satisfying (17), which will be done by the

Fenchel–Rockafellar duality method. Let us consider the set Uad defined by:

Uad =
{
w ∈ L2 (O) s.t. ∥Bwi − z∥l2(R) ≤ ρ, z ∈ l2 (R)

}
,

which is nonempty (from (17)) and obviously convex and closed in L2 (O). Thus, there exists a unique wi (α̃)

satisfying (7) and satisfying the following minimization problem:

min
w∈Uad

1

2
∥w∥2L2(O) . (18)

Let F and G be two functions defined by:

F (w) =
1

2
∥w∥2L2(O) and G (µ) =

{
0 if ∥µ− z∥l2(R) ≤ ρ,

+∞ otherwise.

Then problem (18) now reads

min
w∈L2(O)

F (w) +G (Bw) .

Applying the duality theorem of Fenchel and Rockafeller (see [3],), one gets

wi (α̃) = B∗σ∗, (19)

where σ∗ solves the dual minimization problem:

min
σ∈l2(R)

F ∗ (B∗σ) +G∗ (−σ)

with F ∗ and G∗ being the Fenchel conjugates of F and G. It is known that F ∗ = F and G∗ is straightforward:

G∗ (σ) = sup
µ∈l2(R)

(µ, σ)l2(R) −G (µ) = sup
µ∈B(0,ρ)

(z + µ, σ)l2(R)

= (z, σ)l2(R) + ρ ∥σ∥l2(R) ,

where B (0, ρ) is the l2 (R) closed ball of center 0 and radius ρ . Then relation (18) becomes

min
σ∈l2(R)

J (σ) = F (Φ) + ρ ∥σ∥l2(R) − (z, σ)l2(R) , (20)

where Φ is the solution of (16). We know that J (σ) is not differentiable at 0, but under suitable conditions

we shall show that 0 is not an optimal point.
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Lemma 1 : σ∗ = 0 is the solution of (20) if and only if ∥z∥l2(IR) ≤ ρ. 2

Proof First, if σ∗ = 0, then (19) yields

wi (α̃) = 0 and Bwi (α̃)− z = −z.

Since σ∗ solves (20) , then

∥Bwi (α̃)− z∥l2(R) ≤ ρ,

i.e. ∥z∥l2(R) ≤ ρ. Next, if ∥z∥l2(R) ≤ ρ , then wi (α̃) = 0 belongs to the set Uad , obviously being the minimal

norm element of this subset. Hence, wi (α̃) = 0 is then the solution of (18). Since B∗ is injective, equation

(19) gives σ∗ = 0. From now on, we will assume that ∥z∥l2(R) > ρ , bringing us into the position to give the

optimality condition for σ∗ . For any δσ ∈ l2 (R) and σ ̸= 0, one has

(
∂J

∂σ
, δσ

)
l2(R)

= (B∗σ,B∗δσ)l2(R) + ρ

(
σ

∥σ∥l2(R)
, δσ

)
l2(R)

− (z, δσ)l2(R)

=

(
BB∗σ + ρ

σ

∥σ∥l2(R)
− z, δσ

)
l2(R)

.

Thus, σ∗ is such that

BB∗σ∗ − z = −ρ
σ∗

∥σ∗∥l2(R)
. (21)

Since wi (α̃) = B∗σ∗, we have ∥Bwi (α̃)− z∥l2(R) = ρ. Let us choose (z)j as follows:

(z)j = δij , j = 1...∞,

where (z)j is the generic coordinate of z on the canonical basis of l2 (R) and

ρ =
ε

i
with ε > 0 sufficiently small,

to get ∥z∥l2(R) > ρ. Eventually (21) gives

(Bwi (α̃))j = δij −
ε

i

σ∗
j

∥σ∗∥l2(R)
, (22)

and by combining this with (15) we obtain (8). Thus, we have proved the existence and uniqueness of a family

of functions wi (α̃) for i = 1...∞ solving (7) and (8) . 2

Remark 3 From Lemma 1,the computation of σ∗ can be done by either nonsmooth or smooth methods.

Remark 4 We remark that the differentiation of S (α̃, α) with respect to its first variable amounts to differ-

entiating (wi (α̃))i=1...∞ , i.e. to differentiating twice the system (3) . (See [2]).
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3. The iterative scheme construction

Now we shall construct an iterative scheme for the resolution of the problem presented in Section 2. Differenti-

ating S (α̃, α) with respect to α at the point (α̃, α̃) , one gets

S (α̃, α) = S (α̃, α̃) +DαS (α̃, α̃) . (α− α̃) + o (|α− α̃|) .

Taking (8) into account, we have

S (α̃, α) = S (α̃, α̃) + α− α̃+M (α− α̃) + o (|α− α̃|) .

For α̃ = αk , α = αk+1 , and

S (α̃, α) = Sobs (α̃) =

∫
O

wi (α̃) yobsdΣ


i=1...∞

, (23)

that suggests the following iterations:

αk+1 = αk + Sobs

(
αk
)
− S

(
αk, αk

)
, (24)

such that

S
(
αk, αk

)
=

∫
O

wi

(
αk
)
y
(
αk
)
dΣ


i=1...∞

,

where y
(
αk
)
= y

(
x, t;αk

)
solves (3) with data αk. We can now study the convergence of our scheme.

Theorem 1 The sequence
(
αk
)
k=0...∞ defined by

{
α0 ∈ l2 (R) given as an initial guess,
αk+1 = αk + Sobs

(
αk
)
− S

(
αk, αk

)
,

(25)

converges in l2 (R) .

Proof Looking at (25) as a fixed point problem,

αk+1 = g
(
αk
)
,

where g is a map from l2 (R) to itself obviously defined from (25) , (6) , and (23) . Let us compute g′ (µ) for

µ ∈ l2 (R) :

g′ (µ) = Id+Dα̃Sobs (µ)−Dα̃S (µ, µ)−DαS (µ, µ) ,

with all the derivatives being justified. Then, in particular for

Dα̃S (µ, µ) = Dα̃Sobs (µ)

g′ (µ) = Id−DαS (µ, µ) ,

555



SANDEL and AYADI/Turk J Math

and from (8) (in Proposition 1), we get

g′ (µ) = −M,

where M ∈ L
(
l2 (R)

)
such that ∥(Mi)∥l2(R) =

ε
i , i = 1...∞.

Now let us compute the Hilbert–Schmidt norm of g′ (µ) :

∥g′ (µ)∥2HS =
∞∑
j=1

∞∑
i=1

(g′ (µ))
2
ij =

∞∑
i=1

∞∑
j=1

(g′ (µ))
2
ij

=

∞∑
i=1

∥(Mi)∥2l2(R) = ε2
∞∑
i=1

1

i2
.

The value of the series in (26) can be set by choosing an appropriate value for ε. Namely, we can take ε such

that

∥g′ (µ)∥2HS < 1.

Then the iteration process (25) is locally convergent in the space l2 (R) . 2
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