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Abstract: In this paper, by applying the p -adic q -integrals to a family of continuous differentiable functions on the ring

of p -adic integers, we construct new generating functions for generalized Apostol-type numbers and polynomials attached

to the Dirichlet character of a finite abelian group. By using these generating functions with their functional equations,

we derive various new identities and relations for these numbers and polynomials. These results are generalizations

of known identities and relations including some well-known families of special numbers and polynomials such as the

generalized Apostol-type Bernoulli, the Apostol-type Euler, the Frobenius–Euler numbers and polynomials, the Stirling

numbers, and other families of numbers and polynomials. Moreover, by the help of these generating functions, we also

construct other new families of numbers and polynomials with their generating functions. By using these functions, we

investigate some fundamental properties of these numbers and polynomials. Finally, we also give explicit formulas for

computing the Apostol–Bernoulli and Apostol–Euler numbers.

Key words: Generalized Bernoulli numbers and polynomials, generalized Euler numbers and polynomials, Apostol–

Bernoulli and Apostol–Euler numbers and polynomials, Daehee numbers and polynomials, Stirling numbers, generating

function, Dirichlet character, p -adic Volkenborn integral

1. Introduction

In this paper, by using the p -adic Volkenborn integral and the p -adic fermionic integral method, we construct

generating functions. With the aid of these functions, we define some new families of special numbers and

polynomials. As is well known, the special numbers and polynomials have many vital applications, not only

in nearly all branches mathematics but also in other fields such as physics and engineering because it is fairly

easy to do mathematical computation and operations by using polynomials. Polynomials and their generating

functions are also used to solve real-world problems such as in physics, engineering, and biology. Therefore,

by using the p -adic integral equation method and generating functions and their functional techniques, we

introduce and investigate the various fundamental properties of our new families of the Apostol-type numbers

and polynomials associated with the Dirichlet character with conductor d . We also show that our new numbers

and polynomials are closely related to well-known classical numbers and polynomials that are the generalized

Bernoulli numbers and polynomials and the generalized Euler numbers and polynomials, the Stirling numbers,

and other families of numbers and polynomials such as the Frobenius–Euler polynomials, the Apostol-type

Bernoulli and Euler numbers and polynomials, and the Daehee and Changhee numbers and polynomials.
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In this paper we need the following notations and definitions:

N = {1, 2, 3, . . . } , N0 = {0, 1, 2, 3, . . . } . Z , R , C , and Zp denote the set of integers, the set of real

numbers, the set of complex numbers, and the set of p-adic integers, respectively. 0n = 1 if n = 0 and 0n = 0

if n ∈ N . Moreover, let v ∈ N0 .
(x)v = x(x− 1) · · · (x− v + 1),

(x)0 = 1 and (
x

v

)
=

x(x− 1) · · · (x− v + 1)

v!
=

(x)v
v!

(cf. [1–39] and the references cited therein).

There is benefit in expressing the following comments on the λ -Bernoulli numbers and polynomials and

λ -Euler numbers and polynomials, which have been studied in different sets. That is, on the set of complex

numbers, we assume that λ ∈ C , and on set of p -adic numbers numbers or p -adic integrals, we assume that

λ ∈ Zp .

In order to define our new families of special numbers and polynomials, we also need the next well-known

classical numbers and polynomials with their generating functions:

The Apostol–Bernoulli polynomials, Bn(x;λ), are defined as follows:

FA(t, x;λ) =
tetx

λet − 1
=

∞∑
n=0

Bn(x;λ)
tn

n!
. (1.1)

Observe that Bn(λ) = Bn(0;λ)

denotes the Apostol–Bernoulli numbers (cf. [18, 28, 37–39] and the references cited therein). Note that

Bn = Bn(0; 1) denotes the classical Bernoulli numbers (cf. [1–39] and the references cited therein).

Let d ∈ N and (Z/dZ)∗ denote the unit group of reduced residue class modulo d . Throughout this

paper, χ is a Dirichlet character with modulo d , which is a group homomorphism, i.e.

χ : (Z/dZ)∗ → C\ {0}

(cf. [2]).

The generalized Apostol–Bernoulli numbers attached to the Dirichlet character, Bn,χ(λ), are defined as

follows:
d−1∑
j=0

λjetjtχ(j)

λdetd − 1
=

∞∑
n=0

Bn,χ(λ)
tn

n!
, (1.2)

(cf. [1, 12, 19, 21, 39] and the references cited therein).

By combining (1.2) with (1.1), one can easily get

Bn,χ(λ) = dn−1
d−1∑
j=0

λjχ(j)Bn

(
j

d
;λd

)
.

If χ is a trivial character in (1.2), then the numbers Bn,χ(λ) reduce to the Apostol–Bernoulli numbers; that is,

Bn(λ) = Bn,1(λ)

(cf. [1, 12, 19, 21, 27, 29, 39] and the references cited therein).
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The Apostol–Euler polynomials En(x, λ) are defined as follows:

FP1(t, x;λ) =
2etx

λet + 1
=

∞∑
n=0

En(x, λ)
tn

n!
. (1.3)

If we substitute x = 0 into (1.3), then we have the Apostol–Euler numbers:

En(λ) = En(0, λ).

Substituting λ = 1 into (1.3), one easily sees that

En = E(1)
n (1)

denotes the classical Euler numbers (cf. [4–39] and the references cited therein).

The generalized Apostol–Euler numbers attached to the Dirichlet character, En,χ(λ), are defined as

follows:

2
d−1∑
j=0

λjetjχ(j)

λdetd + 1
=

∞∑
n=0

En,χ(λ)
tn

n!
(1.4)

(cf. [19, 21, 39] and the references cited therein).

By combining (1.4) with (1.3), one easily sees that

En,χ(λ) = dn
d−1∑
j=0

λjχ(j)En
(
j

d
;λd

)
.

When χ ≡ 1 in (1.4), one has

En(λ) = En,1(λ)

(cf. [19, 21, 39]).

Let u ∈ C with u ̸= 1. The Frobenius–Euler numbers are defined as follows:

Ff (t, u) =
1− u

et − u
=

∞∑
n=0

Hn(u)
tn

n!
, (1.5)

(cf. [7, 25, 34, 39] and the references cited therein).

The Stirling numbers of the first kind, S1(n, k), are defined as follows:

FS1(t, k) =
(log(1 + t))

k

k!
=

∞∑
n=0

S1(n, k)
tn

n!
. (1.6)

By using the above generating function, we have

S1(0, 0) = 1.

The other properties are given as follows:
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S1(0, k) = 0 if k > 0. S1(n, 0) = 0 if n > 0. S1(n, k) = 0 if k > n and also

S1(n+ 1, k) = −nS1(n, k) + S1(n, k − 1)

(cf. [32, 35], and see also the references cited in each of these earlier works).

Let k ∈ N0 . The Stirling numbers of the second kind, S2(n, k), are defined as follows:

FS(t, k) =
(et − 1)

k

k!
=

∞∑
n=0

S2(n, k)
tn

n!
. (1.7)

By using (1.7), an explicit formula for the numbers S2(n, k) is given by

S2(n, k) =
1

k!

k∑
j=0

(−1)
k−j

(
k

j

)
jn. (1.8)

From (1.7), we also have

S2(0, 0) = 1.

If k > n , then

S2(n, k) = 0.

S2(n, 0) = 0 if n > 0 and also

S2(n+ 1, k) = S2(n, k − 1) + kS2(n, k)

(cf. [4, 32, 38] and the references cited therein).

The Bernoulli numbers of the second kind bn(0) are defined by means of the following generating function:

Fb2(t) =
t

log(1 + t)
=

∞∑
n=0

bn(0)
tn

n!
(1.9)

(cf. [32, p. 116]).

We also note that some authors denote the Bernoulli numbers of the second kind by Cn , which are also

the so-called Cauchy numbers.

Integrating a falling factorial polynomial

(u)n = u(u− 1) · · · (u− n+ 1)

from 0 to 1, the Bernoulli numbers of the second kind are also computed by the following integral formula:

bn(0) =

∫ 1

0

(u)ndu

(cf. [26, 32]; see also the references cited in each of these earlier works).

Let K be a field with a complete valuation. Let C1(Zp → K) be a set of continuous differentiable

functions.
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In order to define the p -adic q -integral on Zp , we need the q -Haar distribution, defined by Kim [14], as

follows:

µq(x) = µq(x+ pNZp) =
qx

[pN ]
,

where q ∈ Cp with | 1− q |p< 1 and

[x] = [x : q] =

{
1−qx

1−q , q ̸= 1

x, q = 1
.

We observe that

lim
q→1

[x : q] = x.

The p -adic q -integral of a function f is defined by Kim [14] as follows:

∫
Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]

pN−1∑
x=0

f(x)qx (1.10)

where f ∈ C1(Zp → K).

Taking limit q → 1, (1.10) reduces to the Volkenborn integral (the p -adic bosonic integral), which is

used to construct the Bernoulli type numbers and polynomials and the others, as follows:

∫
Zp

f(x)dµ1(x) = lim
N→∞

1

pN

pN−1∑
x=0

f(x), (1.11)

where

µ1(x) = µ1(x+ pNZp) =
1

pN

(cf. [33]; see also [11, 14, 21]).

Substituting

f(x) =

(
x

j

)
, (1.12)

j ∈ N0 , into (1.11), we have ∫
Zp

(
x

j

)
dµ1 (x) =

(−1)j

j + 1
(1.13)

(cf. [33, p. 168, Proposition 55.3]).

Kim [18] defined the fermionic p -adic integral, which is used to construct generating functions for the

Euler, the Genochhi type numbers, and the others, as follows:

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)
x
f (x) (1.14)
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where p ̸= 2 and

µ−1(x) = µ−1

(
x+ pNZp

)
=

(−1)x

pN

(cf. [11, 18]).

In order to give the integral of a function associated with the Dirichlet character with conductor d , we

also need the following notations.

Let p be a fixed prime. Letting d be a fixed positive integer with (p, d) = 1, we have

X = Xd = lim
←
N

Z/dpNZ,

X1 = Zp,

and

a+ dpNZp =
{
x ∈ X | x ≡ a

(
mod

(
dpN

))}
where a ∈ Z satisfies the condition 0 ≤ a < dpN .

Let f ∈ UD(Zp,Cp). Thus, we have∫
Zp

f(x)dµ1(x) =

∫
X
f(x)dµ1(x) (1.15)

(cf. [11, 12, 14, 16, 33]).

Let

Edf(x) = f(x+ d).

The following integral equation was defined by Kim [21, Theorem 3]:

qd
∫
Zp

Edf (x) dµ−q (x)− (−1)d
∫
Zp

f (x) dµ−q (x) = [2]
d−1∑
j=0

(−1)d−j−1qjf(j), (1.16)

where d is a positive integer. Substituting d = 1 into (1.16), one has∫
Zp

(qf (x+ 1) + f (x)) dµ−q (x) = (q + 1) f(0).

When q → 1 in the above integral equation, we easily see that∫
Zp

(f (x+ 1) + f (x)) dµ−1 (x) = 2f(0)

(cf. [21]). Substituting (1.12) into the above integral equation, Kim et al. [10] gave the following formula:∫
Zp

(
x

j

)
dµ−1 (x) =

(−1)j

2j
. (1.17)

Let us give a brief summary of our results as follows:
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ŞİMŞEK/Turk J Math

In Section 2, by using the fermionic p -adic integral method, we construct a generating function for

generalized Apostol-type numbers and polynomials attached to the Dirichlet character χ . A new family

of generalized Apostol-type numbers are defined by the Dirichlet character with even and odd conductors.

In other subsections, we define generalized Apostol–Changhee numbers attached to the Dirichlet character

with odd conductor. By using generating functions and their functional equations, we derive many identities

and relations associated with the generalized Apostol–Daehee numbers and polynomials, Apostol–Changhee

numbers and polynomials, Stirling numbers, Bernoulli numbers of the second kind, Frobenius–Euler polynomials,

generalized Bernoulli numbers, and generalized Euler numbers. Finally, we give the p -adic Volkenborn integral

representations of these numbers with some combinatorial sums.

2. Generating functions for generalized Apostol-type numbers

By applying the fermionic p -adic q -integral on the set of X to the following function

f(x, t;λ) = λx(1 + λt)xχ(x), (2.1)

where λ ∈ Zp , we construct generating functions for the generalized Apostol–Changhee numbers and poly-

nomials attached to Dirichlet character χ with conductor d . By using these functions with their functional

equations, we study and investigate some fundamental properties of these numbers and polynomials. We also

show that these numbers and polynomials are related to the Stirling numbers, the Frobenius–Euler polynomials,

the generalized Bernoulli numbers, the generalized Euler numbers, and the Daehee numbers and polynomials.

Finally, fermionic integral representation of these numbers can be given.

Substituting (2.1) into (1.16), we get

∫
X

λx(1 + λt)xχ(x)dµ−q (x) =
[2]

(λq)
d
(1 + λt)d − (−1)d

d−1∑
j=0

(−1)d−j−1χ(j) (λq)
j
(1 + λt)j , (2.2)

where λ ∈ Zp .

We have two cases in the above integral equation. In order to construct the generalized Apostol-

type numbers and polynomials and other related numbers and polynomials, we peruse these cases, which are

associated with a conductor of the Dirichlet character, in the next sections.

2.1. Generating functions for generalized Apostol–Changhee numbers and polynomials attached

to the Dirichlet character with odd conductor

Here we give generating functions for generalized Apostol–Changhee numbers and polynomials associated with

the Dirichlet character with odd conductor. By aid of these functions, we not only investigate many fundamental

properties of these numbers and polynomials, but also derive various identities related to the generalized

Apostol–Daehee and Apostol–Changhee numbers and polynomials, the Stirling numbers, the Bernoulli numbers

of the second kind, the generalized Bernoulli numbers, the generalized Euler numbers, and the Frobenius–Euler

polynomials.

Let d be an odd integer. If χ is the Dirichlet character with conductor d , then equation (2.2) reduces

to the following equation:

∫
X

λx(1 + λt)xχ(x)dµ−q (x) =
[2]

(λq)
d
(1 + λt)d + 1

d−1∑
j=0

(−1)jχ(j) (λq)
j
(1 + λt)j . (2.3)

563
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By using the above integral equation, we define the generalized Apostol–Changhee numbers and polyno-

mials by means of the following generating functions, respectively:

FE(t;λ, q, χ) =
(1 + q)

∑d−1
j=0(−1)jχ(j) (λq)

j
(1 + λt)j

(λq)
d
(1 + λt)d + 1

=
∞∑

n=0

Chn,χ(λ, q)
tn

n!
(2.4)

and

FE(t, z;λ, q, χ) = FE(t;λ, q, χ)(1 + λt)z =
∞∑

n=0

Chn,χ(z;λ, q)
tn

n!
. (2.5)

From the above generating functions, we get

Chn,χ(λ, q) = Chn,χ(0;λ, q).

By using (2.4) and (2.5), we get

∞∑
n=0

Chn,χ(z;λ, q)
tn

n!
=

∞∑
n=0

(
z

n

)
λntn

∞∑
n=0

Chn,χ(λ, q)
tn

n!
.

Making the Cauchy product of the above right-hand side of the two infinite series, we get

∞∑
n=0

Chn,χ(z;λ, q)
tn

n!
=

∞∑
n=0

 n∑
j=0

(
n

j

)
λn−j(z)n−jChj,χ(λ, q)

 tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 1 Let n ∈ N0 . Then we have

Chn,χ(z;λ, q) =
n∑

j=0

(
n

j

)
λn−j(z)n−jChj,χ(λ, q).

Remark 1 If q → 1 and λ = 1 and χ ≡ 1 , then (2.5) reduces to the generating function for the Changhee

polynomials:

2

t+ 2
(1 + t)z =

∞∑
n=0

Chn(z)
tn

n!
.

From this equation, we see that

Chn = Chn(0),

where Chn denotes the Changhee numbers (cf. [10, 22], and also see [6, 8–10, 15]).

By using (2.3), a fermionic p -adic q -integral representation for the generalized Changhee numbers is

given by the following theorem:
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Theorem 2 Let n ∈ N0 . Then we have

Chn,χ(λ, q) =

∫
X

λx+n(x)nχ(x)dµ−q (x) . (2.6)

By using (2.3), we also get the following functional equation:

FC(t, x;λ, q, χ) =
(1 + q)

2

d−1∑
j=0

(−1)jχ(j) (λq)
j
FP1

(
d log (1 + λt) ,

j

d
; (λq)

d

)
.

Combining the above equation with (1.3) and (2.4), we obtain

(1 + q)

2

d−1∑
j=0

(−1)jχ(j) (λq)
j

∞∑
n=0

dnEn
(
j

d
; (λq)

d

)
(log (1 + λt))

n

n!
=

∞∑
m=0

Chm,χ(λ, q)
tm

m!
.

Combining (1.6) with the above equation, we obtain

[2]

2

d−1∑
j=0

χ(j) (−λq)
j

∞∑
n=0

dnEn
(
j

d
; (λq)

d

) ∞∑
m=0

S1(m,n)
(λt)

m

m!
=

∞∑
m=0

Chm,χ(λ, q)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, since S1(m,n) = 0, m < n , we arrive at

the following theorem:

Theorem 3 Let m be a nonnegative integer. Then we have

Chm,χ(λ, q) =

d−1∑
j=0

(−q)jχ(j)

m∑
n=0

λj+mdnEn
(
j

d
; (λq)

d

)
S1(m,n). (2.7)

By combining (2.7) with the following widely known interesting formula including the generalized Euler

numbers,

Chn,χ(λ) = dn
d−1∑
j=0

(−1)jλjχ(j)En
(
j

d
;λd

)
,

we arrive at the following corollary:

Corollary 1 Let m ∈ N0 . Then we have

Chm,χ(λ, q) =
m∑

n=0

En,χ(qλ)S1(m,n). (2.8)

Remark 2 If q → 1 , λ = 1 and χ ≡ 1 , then (2.8) reduces to the following well-known result, which was proved

by Kim et al. (cf. [10]):

Chm =
m∑

n=0

EnS1(m,n).
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Substituting λt = eu − 1 into (2.4), we get

[2]

(λq)
d
edu + 1

d−1∑
j=0

(−1)jχ(j) (λq)
j
eju =

∞∑
n=0

Chn,χ(λ, q)
(eu − 1)

n

n!
. (2.9)

By substituting (1.7) into the above equation, since S2(m,n) = 0 with n > m , we get

∞∑
m=0

[2]

2

d−1∑
j=0

(−1)jχ(j) (λq)
j
dmEm

(
j

d
; (λq)

d

)
um

m!
=

∞∑
m=0

m∑
n=0

Chn,χ(λ, q)S2(m,n)

λn

um

m!
.

Comparing the coefficients of um

m! on both sides of the above equation, we arrive at the following theorem:

Theorem 4

[2]

2

d−1∑
j=0

(−1)jχ(j) (λq)
j
dmEm

(
j

d
; (λq)

d

)
=

m∑
n=0

Chn,χ(λ, q)S2(m,n)

λn

or

Em, χ(λ) =
2

[2]

m∑
n=0

Chn,χ(λ, q)S2(m,n)

λn
. (2.10)

Remark 3 If χ ≡ 1 , q → 1 , and λ = 1 , then (2.10) reduces to the following well-known result, which was

proved by Kim et al. (cf. [10]):

Em =
m∑

n=0

ChnS2(m,n).

Replacing λ by −λ and 1− λt = eu in equation (2.4), we get

u

∞∑
n=0

(−1)n+1Chn,χ(−λ, q)
(eu − 1)

n

λnn!
= [2]

∞∑
m=0

Bm,χ(λq)
um

m!
.

Substituting (1.7) into the above equation, since S2(m,n) = 0 with n > m , we get

∞∑
m=0

Bm,χ (λq)
um

m!
=

∞∑
m=0

(
m

[2]

m−1∑
n=0

(−1)n+1

λn
Chn,χ(−λ, q)S2(m− 1, n)

)
um

m!
.

Comparing the coefficients of um

m! on both sides of the above equation, we arrive at the following theorem:

Theorem 5 Let m be a positive integer. Then we have

Bm,χ (λq) =
m

[2]

m−1∑
n=0

(−1)n+1

λn
Chn,χ(−λ, q)S2(m− 1, n). (2.11)

If χ ≡ 1 and q → 1, then equation (2.11) reduces to the following corollary:
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Corollary 2 Bm (λ) = m
2

∑m−1
n=0

(−1)n+1

λn Chn(−λ, 1)S2(m− 1, n).

By combining (1.5) with (2.9), we obtain

∞∑
m=0

(1 + q)

(λdqd + 1)

d−1∑
j=0

(−1)jχ(j) (λq)
j
dmHm

(
j

d
;− 1

(λq)
d

)
tm

m!
=

∞∑
m=0

m∑
n=0

Chn,χ(λ, q)S2(m,n)

λn

tm

m!
,

where d is an odd integer. Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at

the following theorem:

Theorem 6 Let d be an odd integer. Then we have

(1 + q)

(λdqd + 1)

d−1∑
j=0

(−1)jχ(j) (λq)
j
dmHm

(
j

d
;− 1

(λq)
d

)
=

m∑
n=0

Chn,χ(λ, q)S2(m,n)

λn
.

If χ ≡ 1 and q → 1, then (2.11) reduces to the following corollary:

Corollary 3

Hm

(
− 1

λ

)
=

λ+ 1

2

m∑
n=0

Chn(λ, 1)S2(m,n)

λn
.

2.2. A new family of generalized Apostol-type numbers attached to the Dirichlet character with

even conductor

Here we give generating functions for new families of generalized Apostol-type numbers and polynomials attached

to the Dirichlet character with even conductor. These functions give us many facilities to derive many identities

and relations. These relations and identities are related to various well-known special numbers and polynomials,

such as the generalized Apostol–Daehee and Apostol–Changhee numbers and polynomials, the Stirling numbers,

the Bernoulli numbers of the second kind, the Frobenius–Euler polynomials, the generalized Bernoulli numbers,

the generalized Euler numbers, and the Frobenius–Euler polynomials.

Let d be an even integer. If χ is the Dirichlet character with even conductor d , then equation (2.2)

reduces to the following integral equation:

∫
X

λx(1 + λt)xχ(x)dµ−q (x) =
−(1 + q)

(λq)
d
(1 + λt)d − 1

d−1∑
j=0

(−1)jχ(j) (λq)
j
(1 + λt)j .

By using the above equation, we define a new family of special numbers including generalized Apostol-type

numbers by means of the following generating functions:

H(t;λ, q, χ) =
(1 + q)

∑d−1
j=0(−1)jχ(j) (λq)

j
(1 + λt)j

(λq)
d
(1 + λt)d − 1

=
∞∑

n=0

Yn,χ(λ, q)
tn

n!
, (2.12)

where d is an even positive integer and λ ∈ Zp with λ ̸= 1.
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We modify equation (2.12) as follows:

H(t;λ, q, χ) = (1 + q)
∞∑

m=0

(−1)mχ(m) (λq)
m
(1 + λt)m

=
∞∑

n=0

Yn,χ(λ, q)
tn

n!
.

If q → 1 in (2.12), then we get the following generating functions for the numbers Yn,χ(λ):

2
∑d−1

j=0(−1)jχ(j)λj(1 + λt)j

λd(1 + λt)d − 1
=

∞∑
n=0

Yn,χ(λ)
tn

n!
.

Using the motivation of the above generating equation, we also derive another generating function for a new

family of numbers, Yn(λ), as follows:

g(t;λ) =
2

λ2t+ λ− 1
=

∞∑
n=0

Yn(λ)
tn

n!
. (2.13)

The numbers Yn(λ) are related to various kinds of well-known numbers such as the Apostol–Bernoulli numbers,

the q -Euler numbers, the Stirling numbers, the q -Changhee numbers, and the Daehee numbers. We investigate

these relations in next section.

It is time to define a new family of the generalized Apostol-type polynomials, Yn,χ(z;λ, q), by means of

the following generating function:

H(t, z;λ, q, χ) = (1 + λt)zH(t;λ, q, χ) =
∞∑

n=0

Yn,χ(z;λ, q)
tn

n!
. (2.14)

Combining (2.14) with (2.12), we deduce that

Yn,χ(λ, q) = Yn,χ(0;λ, q).

By using (2.14) and (2.12), we obtain

∞∑
n=0

Yn,χ(z;λ, q)
tn

n!
=

∞∑
n=0

(z)nλ
n t

n

n!

∞∑
n=0

Yn,χ(λ, q)
tn

n!
.

By using the Cauchy rule of product for the above series, we get

∞∑
n=0

Yn,χ(z;λ, q)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n

j

)
λn−j(z)n−jYj,χ(λ, q)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 7 Let n ∈ N0 . Let d be an even positive integer. Then we have

Yn,χ(z;λ, q) =
n∑

j=0

(
n

j

)
λn−j(z)n−jYj,χ(λ, q). (2.15)
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Substituting λt = eu − 1 into (2.12), we get the following functional equation:

H(λ−1 (eu − 1) ;λ, q, χ) =
1 + q

du

d−1∑
j=0

(−1)jχ(j) (λq)
j
FA

(
du,

j

d
;λdqd

)
.

Combining the above equation with (1.1) and (2.12), we have

(1 + q)

∞∑
n=0

dn−1
d−1∑
j=0

(−1)jχ(j) (λq)
j Bn

(
j

d
;λdqd

)
un

n!
=

∞∑
n=0

n

n−1∑
m=0

λ−mYm,χ(λ, q)S2(n− 1,m)
un

n!
.

Equating coefficients of un

n! on both sides of the above equation, we obtain the following theorem:

Theorem 8 Let n ∈ N . Let d be an even positive integer. Then we have

n−1∑
m=0

λ−mYm,χ(λ, q)S2(n− 1,m) =
(1 + q) dn−1

n

d−1∑
j=0

(−1)jχ(j) (λq)
j Bn

(
j

d
;λdqd

)
.

We give the following functional equation:

d log(1 + λt)H(t;λ, q, χ) = (1 + q)
d−1∑
j=0

(−1)jχ(j) (λq)
j
FA

(
d log(1 + λt),

j

d
;λdqd

)
.

Combining the above equation with (1.1) and (2.12), we obtain

∞∑
m=0

Ym.χ(λ, q)
tm

m!
= (1 + q)

∞∑
n=0

d−1∑
j=0

(−1)jχ(j) (λq)
j
dn−1Bn

(
j

d
; (λq)

d

)
(log(1 + λt))

n−1

n!
.

Combining the above equation with (1.6), we have

∞∑
m=0

Ym.χ(λ, q)
tm

m!
= (1 + q)

∞∑
m=0

m∑
n=0

d−1∑
j=0

(−1)jχ(j) (λq)
j
dn−1Bn+1

(
j

d
; (λq)

d

)
S1(m,n)

(λt)m

(n+ 1)m!

since S1(m,n) = 0 with m < n . Equating coefficients of tm

m! on both sides of the above equation, we arrive at

the following theorem:

Theorem 9 Let m ∈ N . Let d be an even positive integer. Then we have

Ym.χ(λ, q) = λm
m∑

n=0

(1 + q) dn−1S1(m,n)

n+ 1

d−1∑
j=0

(−1)jχ(j) (λq)
j Bn+1

(
j

d
; (λq)

d

)
. (2.16)

If we set χ ≡ 1 and q → 1 in (2.16), we get the following corollary:

Corollary 4 Let m ∈ N . Then we have

Ym(λ) = 2λm
m∑

n=0

Bn+1 (λ)S1(m,n)

n+ 1
.
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2.3. Derivative and integrals of the polynomials Yn,χ(z;λ, q)

Here we give derivative formulas for the polynomials Yn,χ(z;λ, q). By applying the p -adic Volkenborn integral,

we give some summation and combinatorial sums. By differentiating equation (2.14) with respect to z , we get

∂

∂z
H(t, z;λ, q, χ) = H(t, z;λ, q, χ) log(1 + λt).

From this equation, we have

∞∑
n=0

∂

∂z
Yn,χ(z;λ, q)

tn

n!
=

∞∑
n=0

(−1)n
(λt)

n+1

n+ 1

∞∑
n=0

Yn,χ(z;λ, q)
tn

n!
.

Therefore,
∞∑

n=0

1

n+ 1

∂

∂z
Yn+1,χ(z;λ, q)

tn

n!
=

∞∑
n=0

n∑
j=0

(−1)j
λj+1

(j + 1) (n− j)!
Yn−j,χ(z;λ, q)t

n.

Comparing the coefficients of tn on both sides of the above equation, we arrive at the following theorem:

Theorem 10 Let n be a positive integer. Then we have

∂

∂z
Yn+1,χ(z;λ, q) =

n∑
j=0

(−1)j
(
n+ 1

j + 1

)
j!λj+1Yn−j,χ(z;λ, q).

Integrating both sides of the equation (2.15) from 0 to 1, we get

1∫
0

Yn,χ(z;λ, q)dz =
n∑

j=0

(
n

j

)
λn−jCn−jYj,χ(λ, q),

where Cn−j denotes the Cauchy numbers of the first kind.

By applying the p -adic integral to the equation (2.15), we arrive at the bosonic q -integral representation

for the polynomials Yn,χ(z;λ, q) as follows:

∫
X

Yn,χ(z;λ, q)dµ1 (z) =
n∑

j=0

(
n

j

)
λn−jDn−jYj,χ(λ, q).

Since

Dn = (−1)n
n!

n+ 1

(cf. [5, 8]), we also get the following combinatorial sums:

Theorem 11 ∫
X

Yn,χ(z;λ, q)dµ1 (z) =
n∑

j=0

(−1)n−j

(
n

j

)
(n− j)!λn−j

n+ 1− j
Yj,χ(λ, q).
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By applying the fermionic p -adic integral to the equation (2.15), we arrive at the fermionic q -integral

representation for the polynomials Yn,χ(z;λ, q) as follows:

∫
X

Yn,χ(z;λ, q)dµ−1 (z) =
n∑

j=0

(
n

j

)
λn−jChn−jYj,χ(λ, q).

Since

Chn = (−1)n
n!

2n

(cf. [10]), we also get the following combinatorial sums:

Theorem 12 ∫
X

Yn,χ(z;λ, q)dµ−1 (z) =
n∑

j=0

(−1)n−j

(
n

j

)
(n− j)!λn−j

2n−j
Yj,χ(λ, q).

2.4. Fundamental properties of the polynomials Yn(z;λ) and the numbers Yn(λ)

Here, using generating functions and functional equations, we derive recurrence relations for the numbers Yn(λ)

and the polynomials Yn(z;λ). We also derive some identities and relations including the generalized Bernoulli

numbers, the generalized Euler numbers, the Stirling numbers, and the q -Changhee numbers. We also give

some new formulas for computing the generalized Bernoulli numbers and the generalized Euler numbers.

By using the umbral calculus method in (2.13), we get the following recurrence relation for the numbers

Yn(λ):

Theorem 13 Let n ∈ N . Starting with

Y0(λ) =
2

λ− 1
,

we have

Yn(λ) =
nλ2

1− λ
Yn−1(λ). (2.17)

We now give an explicit formula for the number Yn(λ) by the following theorem:

Theorem 14 Let n ∈ N0 . Then we have

Yn(λ) = 2(−1)n
n!

λ− 1

(
λ2

λ− 1

)n

. (2.18)

Proof We assume that
∣∣λ2t

∣∣ < |λ− 1| . Thus, by equation (2.13), we get

∞∑
n=0

Yn(λ)
tn

n!
=

2

λ− 1

∞∑
n=0

(−1)n
λ2n

(λ− 1)
n t

n.

Comparing the coefficients of tn on both sides of the above equation, we arrive at the desired result. 2
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We compute a few values of the numbers Yn(λ) by (2.17), as follows:

Y1(λ) = − 2λ2

(λ− 1)
2 , Y2(λ) =

4λ4

(λ− 1)
3 ,

Y3(λ) = − 12λ6

(λ− 1)
4 , Y4(λ) =

48λ8

(λ− 1)
5 , . . .

A new family of polynomials, Yn(z;λ), is defined by means of the following generating function:

G(t, z;λ) = g(t;λ)(1 + λt)z =
∞∑

n=0

Yn(z;λ)
tn

n!
(2.19)

so that, obviously,

Yn(λ) = Yn(0;λ).

By using the same proof of Theorem 7, and using (2.15), we get following formula:

Yn(z;λ) =

n∑
j=0

(
n

j

)
λn−j(z)n−jYj(λ). (2.20)

By using (2.15), we also get

2(1 + λt)z =
∞∑

n=0

λ2Yn(z;λ)
tn+1

n!
+

∞∑
n=0

(λ− 1)Yn(z;λ)
tn

n!
.

By using the above equation, we get

2
∞∑

n=0

(z)n λ
n t

n

n!
= λ2

∞∑
n=0

Yn(z;λ)
tn+1

n!
+ (λ− 1)

∞∑
n=0

Yn(z;λ)
tn

n!
.

Equating coefficients of tn

n! on both sides of the above equation, we obtain a recurrence relation for the

polynomials Yn(z;λ) by the following theorem:

Theorem 15 Let n ∈ N0 . Then we have

2 (z)n λ
n = nλ2Yn−1(z;λ) + (λ− 1)Yn(z;λ).

We compute a few values of the numbers Yn(z;λ) by (2.20), as follows:

Y0(z;λ) =
2

λ− 1
,

Y1(z;λ) =
2λ

λ− 1
z − 2λ2

(λ− 1)
2 ,

Y2(z;λ) =
2λ2

λ− 1
z2 − 6λ3 − 2λ2

(λ− 1)
2 z +

4λ4

(λ− 1)
3 ,

Y3(z;λ) =
2λ3

λ− 1
z3 − 12λ4 − 6λ3

(λ− 1)
2 z2 +

22λ5 − 14λ4 + 4λ3

(λ− 1)
3 z − 12λ6

(λ− 1)
4 , . . .
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We give the following functional equation for the generating function G(t, z;λ):

G(t, z + w;λ) = G(t, z;λ)(1 + λt)w.

From this equation, we get

∞∑
n=0

Yn(z + w;λ)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n

j

)
λn−j(w)n−jYj(z;λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 16 Let n ∈ N0 . Then we have

Yn(z + w;λ) =
n∑

j=0

(
n

j

)
λn−j(w)n−jYj(z;λ). (2.21)

Substituting w = −1 into (2.21), we get

Yn(z − 1;λ) = n!
n∑

j=0

(
n

j

)
(−1)n−jλ

n−jYj(z;λ).

Theorem 17 Let m ∈ N . Then we have

Bm (λ) =
m

λ− 1

m−1∑
n=0

n∑
k=0

(−1)k
(
n

k

)(
λ

λ− 1

)n

km−1. (2.22)

Proof Substituting λt = eu − 1 into (2.13), we get

2

λeu − 1
=

∞∑
n=0

λ−nYn(λ)
(eu − 1)

n

n!
.

Combining the above equation with (1.3), (1.1), and (1.7), we get

∞∑
m=0

2Bm (λ)
um

m!
=

∞∑
m=0

m−1∑
n=0

mλ−nYn(λ)S2(m− 1, n)
um

m!

since S2(m,n) = 0 with m < n . Equating coefficients of um

m! on both sides of the above equation, we get

Bm (λ) =
m

2

m−1∑
n=0

λ−nYn(λ)S2(m− 1, n). (2.23)

Substituting (2.18) and (1.8) into (2.23), we arrive at the desired result. 2

Remark 4 By using equation (2.23), the Apostol–Bernoulli numbers are easily computed by values of the

numbers Yn(λ) and the Stirling numbers of the second kind. Explicit formulas for the Apostol–Bernoulli numbers

were also proved by Apostol [1, Eq-(3.7)], and also see [3].
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Remark 5 The formula in equation (2.22) is very useful and elegant because this formula is a combinatorial

sum, which gives us direct computation of the Apostol–Bernoulli numbers.

In [23], Kim et al. defined the q -Changhee numbers by means of the following generating function:

T (t; q) =
q + 1

qt+ q + 1
=

∞∑
n=0

Chn(q)
tn

n!
. (2.24)

By using the above equation, we get the following functional equation:

∞∑
n=0

Chn(q)
tn

n!
=

∞∑
n=0

(−1)n
(

q

q + 1

)n

tn.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 18

Chn (q) = (−1)n
(

q

[2]

)n

n!. (2.25)

By combining (2.24) and (1.3) for x = 0 with (2.25), we get a explicit formula for the numbers En
(

q
[2]

)
by the following theorem:

Corollary 5

En
(

q

[2]

)
= (−1)n

(
q

[2]

)n

n!.

By using (2.24) and (1.3), we get

[2]

2q

∞∑
m=0

Em
(
1

q

)
tm

m!
=

∞∑
n=0

Chn(q)
(et − 1)

n

qnn!
.

Combining the above equation with (1.7), we get

[2]

2q

∞∑
m=0

Em
(
1

q

)
tm

m!
=

∞∑
m=0

m∑
n=0

1

qn
Chn(q)S2(m,n)

tm

m!

since S2(m,n) = 0 with m < n . Combining the above equation with (2.25), we get

[2]

2q

∞∑
m=0

Em
(
1

q

)
tm

m!
=

∞∑
m=0

m∑
n=0

(−1)n
n!

[2]
nS2(m,n)

tm

m!
.

By substituting (1.8) into the above equation and after equating the coefficients of tn

n! on both sides of the

above equation, we arrive at the following theorem:
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Theorem 19

Em
(
1

q

)
= 2q

m∑
n=0

n∑
k=0

(−1)k
(
n

k

)
km

[2]
n+1 . (2.26)

Remark 6 The formula in equation (2.26) is also very useful for direct computing of the Apostol–Bernoulli

numbers.

Remark 7 By using the Changhee numbers of the second kind, Kim et al. [23, Theorem 4] gave the following

computation formula for the q -Euler numbers as follows:

En,q =

n∑
k=0

1 + [2]

(q + 1)
k
S2(n, k), (2.27)

where the numbers En,q are defined by means of the following generating function:

1 + q

qet + 1
=

∞∑
n=0

En,q
tn

n!

(cf. [23, 30]). By combining (1.7) with (2.27), we have the following explicit formula for the numbers En,q as

follows:

En,q =

n∑
k=0

k∑
j=0

(−1)
k−j

(
k

j

)
1 + [2]

k! (q + 1)
k
jn.
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